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Abstract

Background: MicroRNAs are a class of short non-coding RNAs derived from either cellular or viral transcripts that
act post-transcriptionally to regulate mRNA stability and translation. In recent days, increasing numbers of miRNAs
have been shown to be involved in the development and progression of a variety of diseases. We, therefore, intend
to enumerate miRNA targets in several known disease classes to explore the degree of miRNA regulations on them
which is unexplored till date.

Results: Here, we noticed that miRNA hits in cancer genes are remarkably higher than other diseases in human.
Our observation suggests that UTRs and the transcript length of cancer related genes have a significant
contribution in higher susceptibility to miRNA regulation. Moreover, gene duplication, mRNA stability, AREScores
and evolutionary rate were likely to have implications for more miRNA targeting on cancer genes. Consequently,
the regression analysis have confirmed that the AREScores plays most important role in detecting miRNA targets on
disease genes. Interestingly, we observed that epigenetic modifications like CpG methylation and histone
modification are less effective than miRNA regulations in controlling the gene expression of cancer genes.

Conclusions: The intrinsic properties of cancer genes studied here, for higher miRNA targeting will enhance the
knowledge on cancer gene regulation.
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Background
MicroRNAs (miRNAs) are abundant classes of en-
dogenous small non-coding RNAs approximately 21–
23 nucleotides (nts) long transcripts generated from
70–100 nts hairpin precursors, which regulate gene ex-
pression post-transcriptionally by affecting the translation
of target messenger RNAs (mRNAs) [1]. These small
miRNA molecules play important roles in cell growth, dif-
ferentiation, proliferation, apoptosis, and polarization of
neurons [2]. With the recent advancement of experimen-
tal studies, many biological factors have been revealed to
contribute in the recognition of miRNA targeting [3]. In-
depth characterization of miRNA targets enables better
understanding of the role of miRNAs in various biological
processes.
There is a growing body of evidence regarding the im-

portance of miRNAs in human diseases [4]. Studies have
established that mutations, dysregulations or dysfunction
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of miRNA biogenesis and their targets led to the block-
age of physiological and biochemical pathways that in-
fluenced various diseases in human [5]. Computational
prediction did not only reveal a number of miRNA-
disease associations but also showed that the mechanis-
tic associations in miRNAs and human diseases are very
complicated. Previously, it has also been demonstrated
that genetic defects in miRNAs, their processing ma-
chinery and epigenetic regulations are common hall-
marks of human diseases [3].
Although a number of studies have dealt with the

miRNA-disease association, but no study has yet been
conducted in concerning the type of disease class which
is more susceptible to miRNA target. In the present
study, we aimed to identify the disease class which is
more prone to miRNA target. Our studies indicated that
the cancer disease genes are more prevalent in miRNA-
targeted human disease genes compared to the other
disease gene classes. These findings raise the obvious
question, why cancer genes are more targeted by miRNAs.
To explain this, we have analyzed the role of various gene
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subcomponents, mRNA decay rates, mRNA stability,
AREScores. Finally, we revealed a remarkable insight that
the miRNAs have more influence than epigenetic modifi-
cations in controlling the expression of cancer related
genes.

Results
miRNA targets of disease genes
We have separated human disease genes depending on
the miRNA target to the disease genes in two groups:
miRNA-targeted disease genes and miRNA non-
targeted disease genes. We aimed to find out the dis-
ease class which is mostly targeted by miRNA among
all disease classes. Thus, we have broadly categorized a
total of 301 miRNA targeted disease genes into eight
different disease classes according to the Human Gene
Mutation Database (HGMD) [6], such as cancer disease
genes, neurological disease genes, developmental dis-
ease genes, metabolic disease genes, respiratory tract
disease genes, immunological disease genes, cardiovas-
cular disease genes and muscle/bone disease genes. The
miRNA targeted disease genes category and their corre-
sponding miRNA targets are listed in the online supple-
ment (Additional file 1: Table S1). Measuring the
miRNA target profile across the disease gene classes,
we have noticed significant differences in their distribu-
tions (Figure 1). Among all the disease classes, cancer
genes (29.80%) were observed to be mostly targeted by
miRNA (Figure 1a). Moreover, we have noticed the
average number of miRNA target sites were also higher
for cancer genes compared to the other classes of genes
(Figure 1b). To exemplify the novel characteristics of
cancer genes required for mRNA::miRNA base-pairing,
we have merged the other seven disease classes into
Figure 1 (a) Distribution of miRNA targeted disease genes (in percen
of miRNA hits among cancer and non-cancer disease genes (Error bar indic
non-cancer disease group and performed the rest of the
study by comparing cancer (N = 90) and non-cancer
disease genes (N = 211) (Additional file 1: Table S1).

Gene subcomponents in cancer genes
It was evident that miRNAs perform their regulatory
roles mainly by base-pairing with 3′-UTRs of target
genes. Therefore, genes targeted by miRNAs should have
longer 3′-UTR sequences [7]. Hence, we have calculated
lengths of 3′-UTRs and observed that the average 3′-
UTRs length are longer for cancer genes than non-cancer
disease genes (Table 1). To determine the effect of other
gene subcomponents, we have calculated the length of 5′-
UTRs and transcript of these two disease groups since it
was ascertained that miRNA also targets at these regions
[8]. We have found that both 5′-UTRs lengths and tran-
script lengths are significantly higher on average for can-
cer disease genes compared to non-cancer disease genes
(Table 1). To understand the relationship between gene
subcomponents and number of miRNA hits, we per-
formed correlation analysis [7,9]. Considering all the dis-
ease genes together, we have noticed that both the 3′- and
5′-UTRs as well as transcript length hold significant posi-
tive correlations with the number of miRNA hits (ρ3′-UTR
vs. miRNA hits = 0.532; P = 2.2 × 10−19, N = 243; ρ5′-UTR vs.

miRNA hits = 0.153; P = 4.9 × 10−2, N = 212; ρtranscript length

vs. miRNA hits = 0.166; P = 4.2 × 10−2, N = 150).
Therefore, it could be expected that longer structure

of genes is most likely to have more complex regula-
tion. Indeed, we have found that longer gene structures
(Table 1) is significantly higher in cancer genes than
non-cancer disease genes, indicating that gene lengths
are more crucial for miRNA regulation of cancer genes
(see Additional file 2: Table S2).
tage) (Error bar indicates 5% standard error). (b) Average number
ates 5% standard error).



Table 1 Length of gene structures in miRNA-targeted
cancer genes and non-cancer disease genes

Structural
parameters

miRNA-targeted
cancer disease
genes (bp)

miRNA-targeted
non-cancer disease

genes (bp)

Level of
significance

(P)

Average
3′-UTR lengths

1143 908 4.4 × 10−2

Average
5′-UTR lengths

349 254 4.2 × 10−2

Average
transcript lengths

4196 3418 2.8 × 10−2
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Intrinsic genomic properties of cancer genes
To reveal the pattern of gene expression level of the
miRNA-targeted cancer genes, we computed the correl-
ation between miRNA hits and gene expression levels
of cancer and non-cancer disease genes separately. We
obtained a significant negative correlation between
miRNA hits and the expression levels of cancer disease
genes ρexpression levels vs. miRNA hits = −0.266; P = 3.8 × 10−2;
N = 51). However, no significant correlation exists in the
case of non-cancer disease genes (ρexpression levels vs. miRNA

hits = 0.004; P = 9.9 × 10−1; N = 122). Moreover, we have
noticed that the percentage of lowly expressed genes are
much higher in miRNA-targeted cancer disease genes
than non-cancer disease genes (in cancer: 49.18%; in non-
cancer: 31.97%; at 95% significance level) which suggests
that miRNAs prefer the lowly expressed genes for their
target. This observation was also echoed in an earlier
report that proposed highly expressed genes could not
be targeted by miRNA due to their shorter genomic
structure [7].
Next, to examine whether the higher expression of

onco-miRNAs repressed the expression of onco-mRNAs,
we did correlation analysis between miRNA expression
and mRNA expression of cancer genes. We have obtained
a negative correlation between them (ρmRNA expression vs.

miRNA expression = −0.273; P = 3.9 × 10−2; N = 51)
(Additional file 3: Figure S1). This result clearly indicates
that miRNA plays a significant role in lowering the ex-
pression of cancer genes.
Conrad et al. [10] showed that duplicate genes play

important roles in human diseases and it has also been
reported that miRNA is prerequisite for dosage compen-
sation of duplicated genes [11]. Thus, we have tested the
prevalence of gene duplications in miRNA-targeted can-
cer and non-cancer genes and observed that gene dupli-
cation are more frequent in cancer genes than non-
cancer genes (duplicate frequency in cancer: 58.24%; in
non-cancer: 45.02%; at 95% significance level, N = 301)
(Additional file 3: Figure S2).
Gene duplication is the key regulatory mechanism of

genome and organism evolution. It was already reported
that genes having more distinct miRNA binding sites at
the 3′UTR regions tend to have slower evolutionary
rates [9]. Measuring evolutionary rates of the cancer
and non-cancer genes, we have noticed that evolution-
ary rates are slower for miRNA-targeted cancer genes
than non-cancer genes (in cancer: 0.1786; in non-
cancer: 0.3129; P = 3.0 × 10−6, N = 281) (Additional file
3: Figure S3).
Our observation is in accordance with the report of

Thomas et al. (2003) [12]. Thus, higher purifying selec-
tion on cancer genes could be treated as a trademark of
higher miRNA targets.

Mode of cancer genes regulation by miRNA
Generally, in a cellular environment, miRNAs mediate
gene regulation by reducing the stability of their target
mRNAs through mRNA degradation methods or using
translational repression processes [7]. Thus, we hypoth-
esized that the cancer genes should have more mRNA
decay rates than others. Therefore, to test mRNA sta-
bility differences between miRNA-targeted cancer dis-
ease genes and miRNA-targeted non-cancer genes on
the genomic scale, we have compared mRNA decay
rates which were taken from Pai et al. [13]. We have no-
ticed a significant positive correlation between miRNA
targets and mRNA decay rates (ρmiRNA hits vs. mRNA decay

rates = 0.119; P = 5.0 x 10−2; N = 264) (Additional file 3:
Figure S4). This result suggests that the number of
miRNA targets may enhance mRNA decay rates which is
in agreement with the previous findings that miRNA tar-
geted genes have higher decay rates [7].
Jing et al. [14] showed that the ARE-(AU-rich ele-

ments) containing mRNA degradation required to be
targeted by miRNAs. Therefore, we have calculated the
correlation between miRNA targets and AREScore and
found a positive correlation between them (ρmiRNA hits vs.

AREScore = 0.124; P = 4.0 x 10−2; N = 273) (Additional file
3: Figure S5). Higher miRNA targets of cancer genes
may be the artifact of higher AU-rich element in cancer
genes. Thus, we proposed that cancer genes regulation
mediated through miRNA is achieved via lowering the
stability of corresponding mRNA.

Relative contribution of the factors in determining miRNA
targets on disease genes
We have studied several factors that might influence
the miRNA targets on disease genes. In this section we
summarize the relative contribution of each of these
factors that contribute significantly for determining
miRNA targets on genes. Since, gene duplication data
is a binary variable, we have converted rest of the fac-
tors into the binary variables and performed logistic re-
gression analysis by taking number of miRNA hits as a
dependent variable and gene subcomponents, gene du-
plication, evolutionary rate, mRNA decay rate, AU-rich
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elements (AREScores) as the independent variables. We
did not consider epigenetic modifications since they did
not show any significant effects on miRNA hits in cor-
relation analysis. The result delineated in Table 2
strongly advocates that AREScores is the most import-
ant predictor of miRNA hits. The relative contribution
of the factors is in the order of AREScores > 3′-UTR
lengths > transcript lengths > 5′-UTR lengths.

miRNA regulations vs. epigenetic modifications of cancer
genes
Proper orchestration of gene expression primarily de-
pends on the epigenetic modifications and miRNA
regulation [15]. A close association between epigenetic
modifications and miRNAs is just beginning to be
understood and has a great importance in the field of
molecular biology. Recent studies suggested that miR-
NAs are considered as the important players in the
regulation of epigenetic modifications, such as DNA
methylations and histone modifications [16]. We, there-
fore, intended to investigate whether epigenetic modifi-
cations or miRNA plays the most important role in
regulating cancer genes expression. For this purpose,
we have measured two important epigenetic modifica-
tions like CpG methylation and histone modifications
in cancer and non-cancer disease genes and observed
that the cancer genes have relatively lower level of
methylation (68.13%) as compared to non-cancer dis-
ease genes (82.94%) (Significant at 99% level, McCul-
lum Proportion test). We did not find any significant
correlation (ρmiRNA hits vs. CpG methylation = 0.115, P =
7.7 × 10−1, N = 237) between miRNA hits and CpG
methylation which suggests that gene regulation by
miRNA and CpG methylation is not interconnected.
Histone modifications are another part of epigenetic si-
lencing mechanism in mammals. It was previously re-
ported that non-coding RNAs can direct the cytosine
methylation and histone modifications that are related
Table 2 The relative contributions of different parameters
on number of miRNA targets

Variables β value Level of significance

ARE Scores 2.712 2.5 × 10−4

3′-UTR lengths 1.914 3.4 × 10−3

Transcript lengths 1.695 1.0 × 10−2

5′-UTR lengths 1.562 3.4 × 10−2

Intron lengths 0.335 7.1 × 10−1

CDS lengths −0.090 9.0 × 10−1

Gene lengths −0.151 8.3 × 10−1

Paralogs −0.157 8.4 × 10−1

mRNA decay rates −0.287 6.4 × 10−1

Evolutionary Rates −0.939 1.6 × 10−1
to gene expression regulation in complex organisms
among several other unrelated functions [17]. Thereafter,
we have computed the histone modification to determine
its effect on cancer and non-cancer genes. However, we
did not obtain any significant difference in the rate of his-
tone modification between cancer and non-cancer disease
genes (in cancer: 677.8118; in non-cancer: 693.5784;
P = 9.8 × 10−1, N = 289). Here also we did not get any sig-
nificant relation between miRNA hits and histone modifica-
tion (ρmiRNA hits vs. histone modification = 0.088, P = 1.4 × 10−1,
N = 289).
To analyze the effective roles of miRNA hits and epi-

genetic modifications on disease gene expression, we
performed a partial correlation analysis by considering
these factors (i.e., gene expression, miRNA hits, histone
modifications, and DNA methylation) and found that
disease gene expression is negatively correlated with
miRNA hits when both epigenetic modifiers i.e. CpG
methylation and histone modifications are controlled
(Table 3), but the correlation between gene expression
and CpG methylation disappeared when we controlled
the miRNA hits and histone modifications. Moreover,
we also did not find any significant correlation between
gene expression and histone modifications after con-
trolling CpG methylation and miRNA hits (Table 3).
These results suggest that miRNAs play more signifi-

cant role in controlling the disease gene expression than
epigenetic modifications such as CpG methylations or
histone modifications.

Discussion
In this manuscript, we have sought to address three
questions: First, which class of disease genes is most tar-
geted by miRNAs? Second, why is this particular class of
disease genes frequently targeted by miRNAs? Third,
whether miRNAs or epigenetic modifications is the
major guiding factor in controlling the expression of dis-
ease genes in human? We have detected that miRNAs
commonly targets the cancer disease genes. To explore
the underlying aims of this observation, we have ana-
lyzed several structural and functional parameters. We
have traced the important role of 3′-UTRs among other
gene subcomponents in determining the miRNA target
site in cancer disease genes. miRNAs usually target
genes which have long 3′-UTRs, and cancer genes are
observed to possess longer UTRs than non-cancer dis-
ease genes. Therefore, it is quite reasonable that miRNA
readily target the cancer disease genes. We also tested
gene expression levels and noticed that lowly expressed
genes are abundant in miRNA targeted cancer genes.
Consequently, we also observed that miRNA targeted
cancer genes are evolutionary slower than miRNA tar-
geted non-cancer disease genes. Since miRNA targeted
genes are proposed to be evolutionary slower [7], the



Table 3 Partial correlation analysis for miRNA-targeted cancer gene expression with miRNA hits, CpG methylation and
histone modifications

Factors Partial correlation for disease gene expression Level of Significance

Number of miRNA hits −0.345 (controlling CpG methylation ratio and histone modification rate) 1.6 × 10−2

CpG methylation ratio 0.169 (controlling histone modification and miRNA hits) 2.5 × 10−1

Histone modification rate 0.143 (controlling miRNA hits and CpG methylation ratio) 3.3 × 10−1
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slower evolutionary rate of cancer genes could be treated
as a good substrate for miRNA target compared to non-
cancer disease genes. However, the relation between ex-
pression and evolutionary rate pursued in our study may
arise a controversy since evolutionarily conserved genes
are evident to have higher expression levels [18]. How-
ever, it is also reported that highly expressed genes are
generally linked with lower mRNA decay rates, and
genes undergoing rapid mRNA decay, are enriched with
putative binding sites for miRNA and RNA binding pro-
teins [13]. In our case, we observed that the cancer
genes have higher mRNA decay rates due to higher AU-
rich elements and miRNA target sites. So, higher mRNA
decay rates may bring down the expression of miRNA
targeted cancer genes. Moreover, the reduction of
mRNA levels by miRNAs in cancer genes also suggested
the reasonable hypothesis that miRNAs in some cases
could stimulate mRNA decay through increasing decap-
ping rates [19]. The longer gene structure of poorly
expressed miRNA targeted cancer genes also supports
the ‘selection for economy’ theory that explains the
highly and broadly expressed genes have to be shorter to
reduce the high energy cost for transcription [20]. This
observation also implies that the expression of miRNA
targeted cancer genes cannot be attributed to their
slower evolutionary rate. This could be treated as an ex-
ceptional case where expression could not explain the
reason for slower evolutionary rates. It may be the se-
lective stringency of miRNA targeted genes since they
possess longer 3′-UTR structure which is reported to
hold strong negative correlation with evolutionary rates
[9], or it may be the integral property of cancer disease
genes as they are over-represented in the collection of es-
sential genes [12] which are known to be evolutionarily
conserved [21]. In addition, intense purifying selection
may help to prevent multigene interactions concerned in
certain cancers [12]. Moreover, higher duplicability of
miRNA targeted cancer genes observed in our study was
also relevant to their slower evolutionary rates.
Now the question remains, miRNA targets or epigen-

etic modifications which one controls the gene expres-
sion in miRNA-targeted cancer disease genes. In our
study, we noticed that the epigenetic regulation is less
likely to control the expression of cancer genes com-
pared to miRNA regulations. Occasionally, miRNA also
gets deregulated by several mechanisms like inefficient
processing of miRNAs through drosha or dicer etc.
This epigenetic silencing of miRNAs in cancer cells
modulates the activity of oncogenes as well as the tumor
suppressor genes [22]. So, it is quite natural if miRNA gets
deregulated, it will induce disease phenotypes. In our re-
sult, we found that cancer disease is more prevalent than
non-cancer disease genes in miRNA deregulated disease
gene set (average number of miRNA targets: in cancer =
4.0222; in non-cancer = 1.7488, P = 1.0 × 10−14, N = 301).
Persistence of human miRNA genes in the genomic re-
gions involved in the loss of heterozygosity, amplification
or breakpoints in cancers [18], also suggesting a link be-
tween miRNA and the development of cancer.

Conclusions
In summary, we have reported ample evidences to support
the link between longer gene structure, higher enrichment
of AREs, higher duplicability, slower evolutionary rates,
and lower mRNA decay rates of cancer genes that make
them good substrate for miRNA targeting. Regression
analysis has established AU-rich elements as the most in-
fluential genomic property that determines miRNA hits
on disease genes. The cause and fate of miRNA targets on
cancer genes analyzed in our study will help in enhancing
the knowledge and medicinal improvement of cancer
genes.

Methods
Human disease genes and microRNA data
Human (Homo sapiens) disease genes were collected from
The International Cancer Gene Consortium (ICGC, ftp://
data.dcc.icgc.org/), Human Gene Mutation Database
(HGMD, http://www.hgmd.cf.ac.uk/ac/index.php) [6], and
Genetic Association Database (GAD, http://geneticasso-
ciationdb.nih.gov/) [23]. Disease genes in our study have
been classified in eight major disease classes, like cancer,
cardiovascular, developmental, immunological, metabolic,
muscle/bone disorder, neurological and respiratory tract
diseases according to HGMD.
After removing the redundancy in disease gene data-

sets, we considered only those genes for which miRNA
targets information are available in TargetScan release 6.2
database (http://www.targetscan.org/) [24] and DIANA
TarBase v6.0 (http://diana.imis.athena-innovation.gr/
DianaTools/index.php) [25]. It was reported that Tar-
getScan have high fidelity for target prediction from
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http://www.targetscan.org/
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http://diana.imis.athena-innovation.gr/DianaTools/index.php
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biological and informatics validation. TargetScan is
used for its reported accuracy and advantages of seed-
pairing mechanisms in miRNA (which is required for
mRNA-miRNA bindings) over other miRNA databases.
Furthermore, to increase the reliability of our results,
we only considered the miRNAs whose target sites are
conserved across most mammals (as defined by Tar-
getScan) [24]. We used context+score as defined by
Garcia et al. [26]. DIANA TarBase provides experimen-
tally verified data and it is the largest available manually
curated target database. In order to achieve more con-
sistent results, we have considered only those miRNA
targets those are present in both the prediction data-
base as well as experimental database. Finally, we have
collected only a total of 301 miRNA-targets for our
analysis (Additional file 1: Table S1).
Gene subcomponent data
Gene subcomponents, such as 3′-UTR lengths, 5′-UTR
lengths, transcript lengths data were collected from
UCSC genome browser (hg19) [27,28] and Ensembl
Biomart database v69 [29] (Additional file 2: Table S2).
Gene expression data
The mRNA expression data collected from GNF Gene
Atlas (http://biogps.org/). The expression values were
averaged over tissues and sorted into ascending order.
Then the values are equally divided into three groups.
The first group containing low expressed genes, the sec-
ond group is of medium expressed genes and the third
one contains highly expressed genes.
Next, we have retrieved miRNA expression data from

CancerMiner database [30] which contains microarray ex-
pression data for ten tissues of cancer patients. We have
averaged the expression values over tissues and then
mapped the miRNA expression levels with our dataset
(Additional file 2: Table S2).
Table 4 Shapiro-wilk test results to show the
non-parametric dataset used in our study

Parameters W score P value

ARE Scores 0.786 1.3 × 10−16

3′-UTR lengths 0.951 4.4 × 10−7

Transcript lengths 0.931 2.0 × 10−6

5′-UTR lengths 0.785 2.6 × 10−15
Identification of paralogs
Human paralogs were downloaded from ENSEMBL
database (v69) [29]. We have collected 148 duplicated
genes data after removing the redundant entries and tak-
ing the paralogous similarity cut-off value 40% for our
data [11] (Additional file 2: Table S2).
Paralogs 0.824 4.5 × 10−12

mRNA decay rates 0.735 2.2 × 10−22

Evolutionary Rates 0.787 7.4 × 10−19

CpG methylation 0.891 4.5 × 10−12

Histone modification rate 0.699 2.0 × 10−22

miRNA hits 0.929 7.8 × 10−11

mRNA expression levels 0.193 8.3 × 10−27
Calculation of evolutionary rate
Protein evolutionary rates [dN/dS] data for human using
1:1 orthology relationship to Chimpanzee (Pan troglo-
dytes) were downloaded from ENSEMBL database (v69).
Next, we mapped the evolutionary rate data to miRNA
targeted human disease genes for further analysis (Add-
itional file 2: Table S2).
mRNA decay rate and ARE score data
A total of 16,823 mRNA decay rate data was obtained
from Pai et al. [13] dataset. We have mapped the data
with our dataset and finally collected 267 data for our ana-
lysis. AREScore data was collected from AREScore data-
base (http://arescore.dkfz.de/arescore.pl) [31] by assigning
all default parameter setup (Additional file 2: Table S2).
Collection of epigenetic data
Histone modification data were retrieved from human his-
tone modification database (HHMD, http://202.97.205.78/
hhmd/index.jsp) [32] which contains useful histone modi-
fications information from experimental data that is essen-
tial for understanding the modifications at a systematic
level (Additional file 2: Table S2). We have collected DNA
methylation data from NGSmethDB (http://bioinfo2.ugr.
es/NGSmethDB/index.php) [33] database which is based
on next-generation sequencing DNA methylation data
from different human tissues (Additional file 2: Table S2).
Statistical analysis
All statistical analysis except partial correlations was
performed using SPSS v20 and R v3.0.2. TANAGRA
(v1.4) [34] was used to determine the partial correlation.
For correlation analysis, we have used Spearman’s rank
correlation test since all of our data shows non-parametric
distribution. To test the non-parametric distributions of
our dataset we have performed Shapiro-Wilk test (used
for the dataset smaller than 2000) (Table 4). To find the
difference between two datasets, we have performed
Mann–Whitney U test (Two-tailed test). The results are
considered to be significant if the P-value is less than 0.05.
We used McCullum proportion test to verify the confi-
dence level of the proportion data used in the study.

http://biogps.org/
http://arescore.dkfz.de/arescore.pl
http://202.97.205.78/hhmd/index.jsp
http://202.97.205.78/hhmd/index.jsp
http://bioinfo2.ugr.es/NGSmethDB/index.php
http://bioinfo2.ugr.es/NGSmethDB/index.php
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Additional files

Additional file 1: Table S1. miRNA targeted disease genes category
and their corresponding number and name of miRNA hits.

Additional file 2: Table S2. miRNA targeted disease genes and their
different characteristics (gene subcomponents, miRNA expression, gene
duplication, evolutionary rates, mRNA decay rate, AU rich element, CpG
methylation, Histone modifications) analyzed in our study.

Additional file 3: Figures S1. Correlation between microRNA expression
levels and microRNA targeted repressed mRNA expression levels in Cancer
disease genes. S2. Percentage of duplicated genes in miRNA-targeted
cancer and non-cancer disease genes. S3. Mean difference of evolutionary
rates of cancer and non-cancer disease genes in human. S4. Correlation
between mRNA decay rates and number of miRNA targets. S5. Correlation
between AU-rich element scores and number of miRNA targets.
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