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Abstract

more molecular markers in cotton.

sequences and the actual sequencing results.

Background: Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant
breeding, which is particularly important in the case of less researched crops such as cotton. Considering the
obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels),
expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop

Results: A total of 1,349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium
hirsutum and G. barbadense, mining G. hirsutum unigenes, and analyzing 3’ untranslated region (3'UTR) sequences.
The marker polymorphisms were investigated using the two parents of the mapping population based on the
single-strand conformation polymorphism (SSCP) analysis. Of all the markers, 137 (10.16%) were polymorphic, and
revealed 142 loci. Linkage analysis using a BC; population mapped 133 loci on the 26 chromosomes. Statistical analysis
of base variations in SNPs showed that base transitions accounted for 55.78% of the total base variations and gene
ontology indicated that cotton genes varied greatly in harboring SNPs ranging from 1.00 to 24.00 SNPs per gene.
Sanger sequencing of three randomly selected SNP markers revealed discrepancy between the in silico predicted

Conclusions: In silico analysis is a double-edged blade to develop EST-SNP/InDel markers. On the one hand, the
designed markers can be well used in tetraploid cotton genetic mapping. And it plays a certain role in revealing
transition preference and SNP frequency of cotton genes. On the other hand, the developmental efficiency of
markers and polymorphism of designed primers are comparatively low.
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Background

Molecular markers are the foundation of modern molecu-
lar plant breeding. There are many types of molecular
markers such as restriction fragment length polymorph-
ism (RFLP), simple sequence repeat (SSR) and SNPs. In
cotton which is the world most important natural fiber
crop, the most prevalent marker type as of today is SSR.
However, with the advent of next generation sequencing
technologies that significantly reduce sequencing cost,
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SNP markers are becoming more and more important
due to their abundance in the genome and very simple
genetic mode (bi-allelic).

Cotton researchers have tried different methods to
develop SNP markers. An et al. [1] reported a few SNP
markers when studying R2R3-MYB transcription factors.
In 2009, Van Deynze [2] reported the first large-scale
SNP discovery results in cotton. They developed about
1,000 SNPs and 300 InDels by re-sequencing the ESTs
of 24 upland cotton genotypes. About 200 of these SNPs
were also mapped in the TM-1 x 3-79 genetic map [3,4].
Recently, research in cotton SNP discovery has been
accelerated and many SNP markers have been reported
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[5,6]. In spite of this, the number of cotton SNP markers
is still low as compared with other major crops such as
maize or soybean. More importantly, a great majority of
these SNP markers have neither been validated in other
genotypes nor mapped.

Due to its allotetraploid nature, it has been a challenge
to differentiate a true SNP (within a sub-genome) from a
pseudo-SNP (between subgenomes) in cotton SNP marker
development. In 2009, Trick et al. [7] developed many
SNP markers in Brassica napus that is also an allote-
traploid using transcriptome sequencing. This study
provided some insights that could be useful in the devel-
opment of cotton SNP markers.

Direct sequencing has been a standard method to
develop SNP markers, although its efficiency is low, es-
pecially in plants with complex genomes [8,9]. Another
alternative is to take advantage of the large amount of
sequence data available in public databases to develop
SNP and InDel markers using bioinformatics [10].

Expressed sequence tags (ESTs) have been mined for
large-scale SNP discovery in plants including Arabidopsis
[11], barley [12], maize [13], sugarcane [14], tomato [15],
and cotton [2]. SNPs mined from ESTs have the po-
tential to be functional markers if the particular EST
or gene is responsible for phenotypic variations [16,17].
Several methods for identifying SNPs from ESTs have
been reported [17,18], and numerous cotton ESTs are
available in public databases [19], providing important
foundations for the development of EST-based cotton
SNP markers.

The 3’ untranslated regions (UTRs) undergo less se-
lective pressure than the coding sequences (CDSs) [20],
resulting in a higher rate of sequence variation than the
CDSs. Thus, 3'UTRs have become valuable resources in
identifying SNPs or InDels, especially in those species
with duplicate genomes [21]. Koepke et al. [22] developed
InDel markers by focusing on the 3"UTRs of the RNA-seq
data in sweet cherry.

In the present study, cotton SNP and InDel markers
were developed using four strategies. First, interspecific
EST-SNPs were developed by comparing the ESTs be-
tween G. hirsutum and G. barbadense. Second, intraspe-
cific EST-SNPs were developed by mining the unigenes
of G. hirsutum. Third, EST-InDels were developed by
mining the 3'UTRs of public G. hirsutum sequences.
And fourth, InDel markers were developed by blasting
putative 3'UTRs of G. hirsutum against the 3'UTRs of
Arabidopsis. Subsequently, we used SSCP technology to
validate these markers, and analyzed their polymor-
phisms between the two mapping parents. Polymorphic
markers were used to genotype our BC; mapping popu-
lation [19] and mapped. SNP and InDel markers devel-
oped in this report will be a valuable genomic resource
for cotton genetics and breeding research.
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Results

In silico analysis and primer design

Interspecific EST-SNP markers

The collected 273,779 G. hirsutum ESTs and 11,311 G.
barbadense ESTs were clustered into 3,263 clusters,
which were then imported into HaploSNPer (http://www.
bioinformatics.nl/tools/haplosnper/) to identify the inter-
specific SNPs. Of the 3,263 clusters, 1,668 (51.12%) had
no SNPs, 109 (3.34%) had only inter-homoeologous
SNPs, 200 (6.13%) had inter/hemi-SNPs, and 1,286
(39.41%) had hemi-SNPs. Only the clusters containing
inter/hemi-SNPs or hemi-SNPs were used to design
primers to detect interspecific SNPs (see Additional
files 1 and 2).

Among the 200 clusters containing inter/hemi-SNPs,
the number of clusters containing 4, 5, 6, 7 and =8
sequences was 46, 28, 24, 15 and 87, respectively. Five
clusters were removed due to failing to meet the strin-
gent criteria described in the ‘Methods’. Among the
remaining 195 clusters, the number of clusters contain-
ing 4, 5, 6, 7 and 28 sequences were 43 (93.48%), 27
(96.43%), 23 (95.83%), 15 (100.00%) and 87 (100.00%),
respectively. Eventually, 27, 21, 16, 11 and 59 inter/
hemi-SNPs, and 0, 2, 1, 2 and 10 hemi-SNPs were devel-
oped, respectively (see Additional file 3). Detailed infor-
mation of the markers, sequence accession numbers
and sequences used to design primers, and SNPs of 134
inter/hemi-SNPs and 15 hemi-SNPs are listed in the
Additional file 1.

To those 1,286 clusters containing only hemi-SNPs,
the same classification analysis was conducted. After se-
lection of the same stringent criteria, only 276 (21.46%)
clusters were kept for SNP marker design. Finally, a
total of 207 hemi-SNPs were developed (see Additional
files 1 and 4).

Intraspecific EST-SNP markers

There were a total of 21,738 unigenes available from NCBI
(http://www.ncbinlm.nih.gov/) in July 2010 when this re-
search was initiated, derived from more than 19 cotton ge-
notypes. After removing 7,449 unigenes containing less than
4 sequences, the remaining 14,289 unigenes were down-
loaded from NCBI, and the 1,339 unigenes containing
sequences originating from the same genotype were further
removed. As a result, 12,950 unigenes were imported into
HaploSNPer to identify EST-SNPs. The results showed that
4,378 unigenes did not contain SNPs, while 8,572 unigenes
contained SNPs.

The 8,572 unigenes were first classified according to the
previously mentioned standards. Then the unigenes con-
taining only putative SNPs were removed, and only 475
(5.54%) unigenes containing reliable SNPs were kept for
primer design. Finally, 455 intraspecific EST-SNP markers
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were designed (see Additional files 5 and 6). In general,
one primer pair was developed from each unigene. How-
ever, ideal primer pair could not be designed from some
unigenes; and two or more primer pairs were designed
from the unigenes containing some distant SNPs to amp-
lify more possible SNPs.

InDel markers of G. hirsutum

A total of 8,938 G. hirsutum nucleiotide sequences were
evaluated for possible InDel marker development, and
1,021 sequences with complete CDSs were selected.
Among these sequences, 615 had 3'UTR sequences lon-
ger than 100 bp. After removing redundancy, 509 unique
sequences were eligible to develop InDel markers. In
total, 415 HAU-InDel-prefixed markers were developed
(see Additional file 7).

Three sets of G. hirsutum sequences, including 65,520
genome survey sequences (GSS), 15,815 nucleotides
sequences and 65,371 mRNAs were used to blast against
the 25,843 3'UTRs of Arabidopsis sequences. According
to the criteria described in the ‘Methods’, 8, 107 and 218
sequences were homologous to the 3’'UTRs of Arabidopsis
sequences including 111 singlets and 62 contigs. Subse-
quently, another 123 HAU-InDel-prefixed markers were
developed (see Additional files 8 and 9).

Table 1 Polymorphic rates of the SNP and InDel markers
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Polymorphisms of the SNP and InDel markers

All the 1,349 SNP and InDel markers described
above were analyzed for their polymorphisms be-
tween G. hirsutum cv. Emian22 and G. barbadense
acc. 3-79 using SSCP method. As a result, 137 (10.16%)
primer pairs were polymorphic, and produced 142 loci
(Table 1).

Among the 356 interspecific EST-SNP primer pairs,
47 (13.20%) pairs were polymorphic, and revealed 50
loci, including 23 inter/hemi-SNPs and 24 hemi-SNPs
(Table 1). The 23 polymorphic inter/hemi-SNPs were
screened out of 134 primer pairs, with a polymorphic
rate of 17.16%. And the 24 polymorphic hemi-SNPs
were selected from 222 primer pairs, with a poly-
morphic rate of 10.81%. SSCP analysis revealed 43
(9.45%) polymorphic markers out of the total 455 in-
traspecific EST-SNP primer pairs, producing 43 loci
(Table 1). As for the polymorphisms of the InDel markers,
47 were polymorphic, and revealed 49 loci. More speci-
fically, of the total 415 InDel markers designed through
G. hirsutum mRNAs, 41 (9.88%) were polymorphic, and
produced 42 loci (Table 1). Among the total 123 InDel
markers developed from blast analysis against Arabidopsis
3'UTRs, 6 (4.88%) were polymorphic, and produced 7 loci
(Table 1).

Primers No. markers  No. polymorphic  Polymorphic  Classes Subclasses”  No. Markers  No. Polymorphic  Polymorphic
markers/loci rate (%) markers/loci rate (%)
HAU-SNP" 356 47/50 13.20 4 27 6/6 22.22
inter 5 21 4/5 19.05
23/134 6 16 2/3 12.50
17.16% 7 11 0/0 0.00
28 59 1/ 18.64
4 0 0/0 -
hemi 5 8 1/1 12.50
24/222 6 9 2/2 2222
10.81% 7 10 0/0 0.00
28 195 21/22 10.77
HAU-SNP? 455 43/43 945 4 171 15/15 8.77
5 89 12/12 1348
6 97 6/6 6.19
7 38 3/3 7.89
28 60 7/7 11.67
HAU-InDel® 415 41/42 9.88
HAU-InDel” 123 6/7 488
Total 1,349 137/142 10.16

YHAU-SNP0O1 ~ 356, which were developed by comparing ESTs between G. hirsutum and G. barbadense.

2HAU-SNP357 ~ 811, which were developed by mining G. hirsutum unigenes.

3HAU-InDel001 ~ 415, which were developed by mining the 3'UTRs of public G. hirsutum sequences.
“HAU-InDel416 ~ 538, which were developed by blasting putative 3'UTRs of G. hirsutum against the 3'UTRs of Arabidopsis.
FSubclasses mean different types of clusters/unigenes classified by the number of sequences contained in a cluster/unigene.
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Distribution of SNP and InDel markers on the interspecific
BC, linkage map

After linkage analysis, 133 of the 142 SNP and InDel
polymorphic loci were mapped on the 26 cotton chro-
mosomes. Sixty-six loci were mapped on the 13 chromo-
somes of the Ar genome, which included 1,204 loci with
a total genetic distance of 2,297.27 c¢cM and an average
marker interval of 1.91 c¢M. Sixty-seven loci were mapped
on the 13 chromosomes of the Dt genome, which inclu-
ded 1,415 loci with a total genetic distance of 2,246.24 cM
and an average marker interval of 1.59 c¢cM. The present
interspecific linkage map contains 2,619 loci with a
total genetic distance of 4,543.51 ¢cM and an average
marker interval of 1.73 c¢cM (Table 2, and also see
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Additional file 10). Although the 133 SNP and InDel
markers were mapped on all 26 chromosomes, they
were not evenly distributed. Chr09, Chr10, Chr19 and
Chr26 had more loci, while Chr04 and Chr06 had fewer
loci (Table 2, see Additional file 10).

Statistical analysis of base variations and SNP frequency
of cotton genes

Statistical analysis of reliable base variations showed that
the SNPs in different clusters/unigenes that were used to
design HAU-SNP-prefixed markers had the same ten-
dency towards more base transitions (C— T or G — A)
(Table 3). Specifically, the percentage of a certain base
variation varied from 1.27% (C/-) to 28.56% (C — T) in

Table 2 Distribution of SNP and InDel markers on the interspecific BC; linkage map

Chromosome Size (cM) Marker interval (cM) Total loci SNP loci HAU-SNP loci”?  HAU-SNP loci® HAU-InDel loci® HAU-InDel loci®
Chro1 186.87 246 76 3 1 2 0 0
Chr02 156.03 240 65 6 3 2 1 0
Chr03 156.23 206 76 5 2 2 1 0
Chro4 140,07 250 56 1 0 0 1 0
Chr05 24276 175 139 6 1 2 3 0
Chro6 17143 204 84 1 1 0 0 0
Chro7 103.39 148 70 4 2 2 0 0
Chros 14805 153 97 4 0 3 1 0
Chro9 14883 143 104 9 2 3 3 1
Chr10 179.66 191 % 9 4 2 2 1
Chrin 23477 163 144 7 1 2 4 0
Chr12 2104 219 1071 6 3 0 2 1
Chr13 20814 212 %8 5 2 2 1 0
Argenome 229727 191 1204 66 22 22 19 3
Chr14 156.15 163 % 4 1 0 2 1
Chrls 189.00 160 118 5 2 0 3 0
Chrié 94.32 099 95 5 4 1 0 0
chr17 14943 213 70 5 3 2 0 0
chr1g 146.95 147 100 6 3 2 0 1
Chr19 252.27 164 154 8 1 4 3 0
Chr20 107.50 1.00 108 6 3 0 2 1
Chr21 256.03 182 141 5 1 3 1 0
Chr22 166.03 184 20 3 1 0 2 0
Chr23 193.19 182 106 4 1 2 1 0
Chr24 187.04 164 114 3 1 1 1 0
Chr25 151.25 141 107 5 3 1 1 0
Chr26 197.09 1.70 116 8 1 3 3 1
Drgenome 224624 159 1415 67 25 19 19 4
Total 454351 173 2619 133 47 41 38 7

DHAU-SNPOO1 ~ 356.
2HAU-SNP357 ~ 811.
3HAU-INDel001 ~ 415,
“HAU-InDel416 ~ 538.



Table 3 Summary of cotton base variations

Types of SNPs

Interspecific EST-SNPs

Intraspecific EST-SNPs

Inter/hemi-SNPs

Hemi-SNPs

Subtotal

4

5

6

7

>8

Subtotal

Total

CoT
G—A
All transitions
C—-G
A>T
C—A
T—G

All transversions

All InDels
Total

265 (26.26%)
271(26.86%)
536 (53.12%)
74 (7.33%)
82 (8.13%)
88 (8.72%)
97 (9.61%)
341 (33.80%)
52 (5.15%)

22 (2.18%)

28 (2.78%)

30 (2.97%)

132 (13.08%)
1009 (100.00%)

1036 (29.21%)
981 (27.66%)
2017 (56.86%)
282 (7.95%)
410 (11.56%)
304 (8.57%)
304 (8.57%)
1300 (36.65%)
56 (1.58%)

36 (1.01%)

37 (1.04%)

101 (2.85%)
230 (6.48%)
3547 (100.00%)

1301 (28.56%)
1252 (27.48%)
2553 (56.04%)
356 (7.81%)
492 (10.80%)
392 (8.60%)
401 (8.80%)
1641 (36.02)
108 (2.37%)

58 (1.27%)

65 (1.43%)

131 (2.88%)
362 (7.95%)
4556 (100.00%)

158 (30.10%)
147 (28.00%)
305 (58.10%)
40 (7.62%)
45 (8.57%)
33 (6.29%)
42 (8.00%)
160 (30.48%)
18 (3.43%)
13 (2.48%)
16 (3.05%)
13 (2.48%)

60 (11.43%)
525 (100.00%)

153 (36.00%)
120 (28.24%)
273 (64.24%)
12 (2.82%)
41 (9.65%)
31 (7.29%)
32 (7.53%)
116 (27.29%)
13 (3.06%)

5 (1.18%)

3 (0.71%)

15 (3.53%)

36 (847%)
425 (100.00%)

249 (27.04%)
244 (26.49%)
493 (53.53%)
61 (6.62%)
96 (10.42%)
67 (7.27%)
79 (8.58%)
303 (32.90%)
40 (4.34%)

29 (3.15%)

27 (2.93%)

29 (3.15%)
125 (13.57%)
921 (100.00%)

103 (29.94%)
97 (28.20%)
200 (58.14%)
17 (4.94%)
33 (9.59%)
23 (6.69%)
19 (5.52%)
92 (26.74%)
25 (7.27%)

4 (1.16%)

11 (3.20%)

12 (3.49%)

52 (15.12%)
344 (100.00%)

170 (24.50%)
170 (24.50%)
340 (48.99%)
47 (6.77%)
61 (8.79%)
53 (7.64%)
73 (10.52%)
234 (33.72%)
47 (6.77%)
16 (2.31%)
22 (3.17%)
35 (5.04%)
120 (17.29%)
694 (100.00%)

833 (28.64%)
778 (26.74%)
1611 (55.38%)
177 (6.09%)
276 (9.49%)
207 (7.12%)
245 (842%)
905 (31.11%)
143 (4.92%)

67 (2.30%)

79 (2.72%)

104 (3.58%)
393 (13.51%)
2909 (100.00%)

2134 (28.59%)
2030 (27.19%)
4164 (55.78%)
533 (7.14%)
768 (10.29%)
599 (8.02%)
646 (8.65%)
2546 (34.11%)
251 (3.36%)
125 (1.67%)
144 (1.93%)
235 (3.15%)
755 (10.11%)
7465 (100.00%)
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the clusters used to design the interspecific EST-SNP
markers, and from 2.30% (C/-) to 28.64% (C — T) in the
unigenes used to design the intraspecific EST-SNP
markers (Table 3). In total, the percentage varied from
1.67% (C/-) to 28.59% (C— T) in this study, with base
transitions (C— T or G — A) accounting for 55.78% of
the total SNPs (Table 3).

In order to gain more understanding about the relation-
ship between SNPs and gene functions, we conducted
functional annotation analyses of the consensus sequen-
ces. The number of SNPs/gene involved in cellular com-
ponent, molecular function and biological process was
13.90, 9.36 and 10.56 respectively for those clusters used
to design interspecific EST-SNP markers. In the unigenes
used to design the intraspecific EST-SNP markers, a simi-
lar analysis showed that the number of SNPs/gene in
cellular component, molecular function and biological
process was 6.14, 6.46 and 5.21, respectively. In total, the
highest number of SNPs/gene was in the cellular compo-
nent category (11.96), followed by the molecular function
(8.02) and biological process (7.92) categories (Table 4).

GO analysis of the total 947 consensus sequences on
level 3 showed that 28 sequences were assigned to 4
functions in the ‘cellular component’ category, 199 were
assigned to 24 functions in the ‘molecular function’ cat-
egory, and 158 were assigned to 32 functions in the ‘bio-
logical process’ category (see Additional file 11). Among
these functions, genes belonging to ‘killing of cells of
other organism’ had the maximum SNPs/gene (24.00);
while, genes belonging to ‘selenium binding’, ‘circadian
rhythm’, etc. harbored the minimum SNPs/gene (1.00)
(see Additional file 11).

Confirmation of the predicted SNPs

To validate the SNPs predicted by in silico analysis, the
PCR products generated from three polymorphic primer
pairs were randomly chosen to be cloned and Sanger-
sequenced. The results showed that the product sizes of

Table 4 GO analysis of consensus sequences used to
design the HAU-SNP-prefixed markers on level 1

Functional categories Number Number SNPs/gene
of genes  of SNPs
HAU-SNP"  Cellular component 21 292 139
Molecular function 107 1001 9.36
Biological process 80 845 10.56
HAU-SNP?  Cellular component 7 43 6.14
Molecular function 92 594 6.46
Biological process 78 406 5.21
Total Cellular component 28 335 11.96
Molecular function 199 1595 802
Biological process 158 1251 792

YHAU-SNP0O1 ~ 356. ?HAU-SNP357 ~ 811.
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two markers (HAU-SNP304 and HAU-SNP504) were
not different between Emian22, 3-79 and the original
sequences, but those of marker HAU-SNP248 were
slightly different between them (Figure 1).

In silico analysis predicted several SNPs in the ampli-
fied products of the marker HAU-SNP248, including
base transitions at the 88™ and 93" bases, and a series
of base variations starting at the 161°° base. However,
sequence analysis of the two mapping parents differed
from the predicted results. Two base transitions ap-
peared at the 61° base (A in Emian22 — G in 3-79) and
the 80™ base (C in Emian22 — T in 3-79). The interspe-
cific differences in the end of the amplified sequences
appeared at the 163" and 164™ bases (- in Emian22 — T
in 3-79) (Figure 1a).

The three predicted interspecific SNPs in marker
HAU-SNP304 included base transitions at the 112"¢ and
118™ bases, and a base transversion at the 148" base.
These SNPs were confirmed by the two mapping parents
without any discrepancy (Figure 1b).

Only one SNP was predicted in the amplified products
of the marker HAU-SNP504, which was a transition
at the 62" base (C in DW — T in DT). However, both
Emian22 and 3-79 contained T at the 62°? base, while the
difference between the two parents appeared at the 183"
base (A in Emian22 — G in 3-79). Besides the base transi-
tions at the 62"¢ and 183" bases, there was no difference
among the four sequences (Figure 1c).

Discussion

Reliability of SNPs contained in clusters/unigenes

The in silico analysis of clusters used to design the inter-
specific EST-SNPs showed that, among the 200 clus-
ters containing inter/hemi-SNPs, 195 (97.50%) contained
reliable SNPs. This value increased with the number
of sequences contained in the clusters increased (see
Additional file 3). Similar trend was observed in the 1,286
clusters containing hemi-SNPs though the number of reli-
able SNPs was smaller (see Additional file 4). The reason
behind this might be that most of the clusters containing
hemi-SNPs had fewer G. barbadense sequences while
more G. barbadense sequences existed for those contain-
ing inter/hemi-SNPs.

In silico analysis of unigenes used to design the intra-
specific EST-SNPs showed that, only 475 (5.54%) of the
total 8,572 unigenes containing putative SNPs harbored
reliable SNPs. This number further decreased with the
increasing number of sequences contained in the uni-
genes, ranging from 62.03% to 0.95% (see Additional
file 6). This might be partially due to different sequences
of the same genotype submitted by different researchers,
along with the increase of the total number of sequences
contained in the unigenes that demands more rigorous
comparison.
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B T
Emian22 . ’ 92
3-79 92
Gh 92
Gb 92
ruler
a.HAU-SNP248 | . . 179
3-7% 181
Gh 183
Gb 183
ruler
103
103
103
103
b. HAU-SNP304 »0s
205
205
205
97
97
97
97
c. HAU-SNP504
194
194
194
194

Figure 1 Sequence comparisons between in silico analyses and actual Sanger-sequencing results of PCR products from two cotton
genotypes (Emian 22 and 3-79). Vector and primer sequences are removed, and the predicted SNPs are shown in boxes; Gh, Gb, DT and DW
are from GenBank. a) Marker HAU-SNP248; b) Marker HAU-SNP304; and ¢) Marker HAU-SNP504.

Polymorphism comparison of SNP and InDel markers

The polymorphic rate of the intraspecific EST-SNP
markers (9.45%) was relatively low, which is consistent
with the fact that markers derived from coding se-
quences have a lower polymorphism due to their more
conserved nature compared to non-coding sequences
[23]. The interspecific EST-SNP markers had the highest
polymorphic rate (13.20%), which is mainly due to the
focused attention on the interspecific differences while
developing markers [7]. Although various polymorphic
rates of markers among the subclasses existed in the
both categories, the polymorphic rate of inter/hemi-SNPs
(17.16%) was much higher than that of hemi-SNPs
(10.81%).

Compared to the intraspecific EST-SNP markers, the
first batch of HAU-InDel-prefixed markers had a higher
polymorphic rate (9.88%), which is consistent with the
results obtained by Zhu et al. [8]. However, the second
batch of HAU-InDel-prefixed markers showed the low-
est polymorphic rate (4.88%). Generally, this is a possible
but unsatisfactory method to develop cotton markers by
comparing with Arabidopsis sequences. Application of
this method might result in inaccurate information. This
inaccuracy may be overcome when tetraploid cotton
genome sequence becomes available. In summary, appro-
priate methods of marker development, either through
improving the reliability of predicted SNPs or targeting

regions possessing more variations, are necessary to
increase polymorphic rates.

Even distribution of SNP and InDel markers on the
interspecific BC, linkage map

No obvious difference was observed in the number of
SNP/InDel loci mapped between the Ar and Dt sub-
genomes. However, uneven distribution was present
among chromosomes. Within a chromosome, the SNP/
InDel loci were relatively evenly distributed (Table 2, see
Additional file 10). The results are consistent with the
fact that base substitutions exist throughout the cotton
genome [24].

Transition preference and SNP frequency of cotton genes
Statistical analysis of the cotton base variations showed
that base transitions appeared more frequently than
other base variations, consistent with previous reports of
the preference for base transitions [13,25,26]. Specific-
ally, base transitions accounted for 55.78% of all the reli-
able SNPs in this study, which may be due to methylated
cytosines in CpG dinucleotides changed into thymines
during the genesis of the SNPs [27].

SNP frequency of cotton genes on level 1 showed that
SNPs/gene decreased gradually in the order of cellular
component category, molecular function category and
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biological process category (Table 4). On level 3, SNP
frequency in each gene varied from 1.00 to 24.00 among
genes with different functions (see Additional file 11).
These results could provide directions to the research
on SNP effects on gene functions.

Advantages and disadvantages of developing
EST-SNP/InDel markers

With the availability of large number of ESTs and the
release of plant genomes, a large number of SNPs/InDels
in various plants have been discovered using bioinfor-
matics [11,13,15], indicating that bioinformatics is an
efficient tool to discover SNPs/InDels. In this study,
however, there were some differences between the pre-
dicted results and the sequencing results (Figure 1). The
materials used for sequencing in our study are different
from those materials for predicting SNPs/InDels, which
may account for the differences observed. Additionally,
the deviation between bioinformatics and experiments
partly explained why these markers had such low poly-
morphism in this study. In conclusion, direct sequencing
of the mapping parents may be the best way to develop
highly reliable and polymorphic SNP/InDel markers.

Conclusions

A total of 1,349 SNP/InDel markers were developed
from a large number of ESTs. Of them, 137 markers
(10.16%) were polymorphic between two mapping par-
ents and revealed 142 polymorphic loci based on the
SSCP analysis. Although the marker discovery efficiency
and marker polymorphism were relatively low, linkage
analysis mapped 133 loci on the 26 chromosomes, indi-
cating that EST-based SNPs and InDels developed by in
silico analysis are useful in tetraploid cotton genetic
mapping. In addition, this study also revealed the prefer-
ence of base transitions over other types of base variations
and different SNP frequencies contained in cotton genes.
Sanger sequencing showed certain discrepancy between
the in silico sequence prediction and the actual sequences.
In general, the in silico analysis is a complementary but of
low efficiency method to develop SNPs and InDels in
cotton, indicating that resequencing or high-throughput
sequencing may be a better way to develop cotton SNPs/
InDels.

Methods

Plant materials

Gossypium hirsutum cv. Emian22 and G. barbadense acc.
3-79 were used to detect polymorphisms of the newly
developed SNP and InDel markers. The BC; population
[(Emian22 x 3-79) x Emian22] with 141 progenies [19] was
used as the mapping population to map all polymorphic
markers.
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In silico analysis and primer design

Interspecific EST-SNP markers

The ESTs of G. hirsutum and G. barbadense downloaded
from NCBI (http://www.ncbinlm.nih.gov/) were clustered
using the wed program [28]. All of the clusters were then
imported into HaploSNPer (http://www.bioinformatics.nl/
tools/haplosnper/) to identify SNPs between G. hirsutum
and G. barbadense with default parameters. In this step,
the clusters containing no SNPs or inter-homoeologous
SNPs (Figure 2a) were discarded, while the clusters
containing inter/hemi-SNPs (Figure 2b) or hemi-SNPs
(Figure 2c) were kept. To be qualified for primer design,
the clusters must contain two or more sequences from
G. hirsutum and G. barbadense, respectively. Primer 3
(version 0.4.0) (http://frodo.wi.mit.edu/primer3/) was used
to design primers with criteria as follows: primer length
18-24 bp, optimum 20 bp; GC content 40-60%, optimum
50%; optimum annealing temperature 58°C; and PCR
product size 100-300 bp. The SNP markers developed
were named as HAU-SNP001 ~ HAU-SNP356.

Intraspecific EST-SNP markers

G. hirsutum unigenes with at least four ESTs were down-
loaded from NCBI, and then unigenes with ESTs from the
same genotype were discarded. For the remaining uni-
genes, HaploSNPer was used to identify SNPs with default
parameters. Unigenes that contained only potential
SNPs predicted by HaploSNPer were further removed
(Figure 3a), while unigenes containing reliable SNPs
(Figure 3b) were used to design primers with criteria same
as those of the interspecific EST-SNP primers. The SNP
markers developed herein were named as HAU-SNP357 ~
HAU-SNP811.

InDel markers of G. hirsutum

Message RNA sequences with complete CDSs were selec-
ted from the collected G. hirsutum nucleiotide sequences.
After removing redundancy, the remaining unique sequen-
ces that had 3'UTR sequences longer than 100 bp were
used to develop HAU-InDel-prefixed markers to amplify
InDels existing in the 3'UTRs. The criteria for primer
design using Primer Premier 6.0 software (http://www.
premierbiosoft.com) were as follows: primer length
18-24 bp, optimum 20 bp; GC content 35-60%, optimum
50%; optimum annealing temperature 55°C; and PCR
product size 100-500 bp [29].

The 3'UTR sequences of Arabidopsis were kindly pro-
vided by Prof. Graziano Pesole (graziano.pesole@biologia.
uniba.it). The collected genome survey sequences, nucleo-
tide sequences and mRNA sequences of G. hirsutum were
used to blast against the Arabidopsis 3'UTR sequences
with E value of 1.0 x E™'® and matched sequence length
of 2100 bp. Subsequently, the redundant sequences were
removed manually. The matched parts of the G. hirsutum
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E_ Haplotype ID sequence name

2

2

Gb9299 315072504
Gh204560 84150638
Gh246819_73943648
Gb2106_66783460

Gh101588_ 164257407

SNP location 171 234 237 256 288 317 326 371

C T A A Cc G G C

b. HaplotypelD sequence name

SNP location 222 235 246 306 338 370

1 Gb2262 66783616 C AT T G -
1 Gb5245 66786599 cC A T T G -

1 Gh61385 164317270 ¢c A TT T -

2 Gh135354 109872022 T C €C C T A
2 Gh168759 109838610 T €C C C T A
C. Haplotype ID sequence name SNP location 596 629 635 646
1 Gb2513_ 66783867 T G T G
1 Gb504 66781858 T G T G
1 Gh251019_ 73862334 T G T G
2 Gh125253 109882129 o] o] (o] T
2 Gh279199 31406595 c o] (o] T

Figure 2 Three types of clusters during in silico analysis of interspecific EST-SNPs. a: Clusters with only inter-homoeologue SNPs (Both G.
hirsutum and G. barbadense harbor two base types at a certain base, and no difference in base types exists between them); b: Clusters with inter/
hemi-SNPs (G. hirsutum and G. barbadense harbor different base types at one or more bases); ¢: Clusters with only hemi-SNPs (One of G. hirsutum
and G. barbadense harbors only one base type at a certain base, and the other one harbors two base types at the certain base. Base types between

them are partially different).

a. Haplotype ID

1

1

1

2

2

sequence name SNP location 449 507

DT567004 T T
DW230729 T T
ES831757 T T
DW497812 A c
DW497813 A o
b. HaplotypelD sequence name SNP location 110

1 DN780229 G

1 DN780234 G

2 DW488976 T

2 DW488977 T

Figure 3 Two types of unigenes during in silico analysis of intraspecific EST-SNPs. a: Unigenes with only putative SNPs; b: Unigenes with

reliable SNPs.
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sequences were also used to design HAU-InDel-prefixed
primers following the similar methods described above.

Genotyping markers using SSCP analysis

PCR amplification of SNP and InDel markers was con-
ducted according to the methods described by Lin et al.
[30]. Polymorphism detection between the two mapping
parents and genotyping of the whole mapping popu-
lation using polymorphic markers were carried out
according to the improved SSCP technology described
by Li et al. [31]. In brief, the amplified products were
denatured in a boiling water bath for five minutes. The
single-stranded DNA was separated on an 8% native
polyacrylamide gel (29 acrylamide: 1 N,N-methylene
bisacrylamide) at a constant watt of 15 W for about 4 h,
and DNA fragments were detected with silver staining
(an example see Additional file 12).

Genetic mapping

The polymorphic SNP and InDel markers were inte-
grated into our previously published interspecific BC;
linkage map [19,29,31,32]. The logarithm of odds (LOD)
threshold during map construction was 8.0, while the
other parameters were the same as those described by
Lietal. [31].

Statistical analysis of base variations and SNP frequency
of cotton genes

All the reliable SNPs were subjected to the statistical
analysis, producing six kinds of base variations including
A/-orT/-,C/l-or G/, A>GorT—>C,A—-Cor T—
G, A—>Tor T—A and C— G or G— C. In addition,
the SNP frequency in cotton genes was evaluated by com-
bining the gene ontology analyses of all the sequences
used to design the HAU-SNP-prefixed markers. The func-
tional annotation of nucleotide sequences was performed
using Blast2GO [33,34] with default parameters, and the
subsequent analyses were conducted according to the
methods described by Li et al. and annotations on level 3
were directly used [35].

Validation of predicted SNPs using Sanger sequencing
The PCR-amplified products of randomly chosen SNP
markers were recovered from agarose gels and purified
using QIAGEN purification kits (QIAGEN, Dusseldorf,
Germany). The purified amplicons were cloned into
T-Easy vector (Promega, Madison, Wis., USA). Then at
least three clones were randomly selected to be commer-
cially sequenced from both ends using M13F and M13R
primers. All above experimental procedures were accord-
ing to the methods described by Li et al. [31]. After remo-
ving the vector and primer sequences, CLUSTAL_X [36]
was used to compare the DNA sequences of the two
parents and the original sequences.
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Additional files

Additional file 1: Details of the 356 interspecific EST-SNP markers.
SNP primer names, forward and reverse primer sequences, reference
sequences used to design primers, and details of the interspecific SNPs
are all listed.

Additional file 2: Primary screening process of clusters used to
develop interspecific EST-SNP markers. Four types of clusters
produced after identification of interspecific SNPs using HaploSNPer.

Additional file 3: Flowchart of developing inter/hemi-SNPs.

i: Primers amplifying inter/hemi-SNPs; h: Primers amplifying only hemi-SNPs.
One hundred and thirty-four primers amplifying inter/hemi-SNPs, and
15 primers amplifying only hemi-SNPs were developed finally.

Additional file 4: Flowchart of developing hemi-SNPs. h: Primers
amplifying only hemi-SNPs. Two hundred and seven primers amplifying
only hemi-SNPs were developed finally.

Additional file 5: Details of the 455 intraspecific EST-SNP markers.
SNP primer names, forward and reverse primer sequences, unigenes
and reference sequences used to design primers, and details of the
intraspecific SNPs are all listed.

Additional file 6: Flowchart of developing intraspecific EST-SNP
markers. After several steps of selection, only 8572 of the total 21,738
unigenes were eligible for further analysis to design intraspecific EST-SNP
markers, and 455 markers amplifying intraspecific EST-SNPs were developed
finally.

Additional file 7: Details of the 415 EST-InDel markers developed
by mining the 3'UTRs of public G. hirsutum sequences. InDel primer
names, forward and reverse primer sequences, reference sequences used
to design primers and their Genebank numbers are all listed.

Additional file 8: Details of the 123 EST-InDel markers developed
by blasting putative 3'UTRs of G. hirsutum against the 3'UTRs of
Arabidopsi.s InDel primer names, forward and reverse primer sequences,
and reference sequences used to design primers are all listed.

Additional file 9: Flowchart of developing HAU-InDel-prefixed
markers by blasting putative 3'UTRs of G. hirsutum against

the 3'UTRs of Arabidopsis. Three parts of cotton 3’UTRs were
undergone blast analysis against the Arabidopsis 3'"UTRs respectively.
Obtained unique sequences produced 62 contigs and 111 singlets,
then 123 primers amplifying cotton InDels existing in 3’UTRs were
developed.

Additional file 10: Linkage map of 26 cotton chromosomes based
on an interspecific BC; population. SNP and InDel markers reported in
this research are italicized, underlined and bolded.

Additional file 11: SNP frequencies of cotton genes on level 3.
There were 4 sub-categories in cell component category (a), 24 in
molecular function category (b) and 32 in biological process category
(c). Among all the sub-categories, the number of SNPs/genes varied from
1.00 to 24.00.

Additional file 12: The electrophoresis gel of marker HAU-SNP572.
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