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Abstract

Background: Research on the aryl hydrocarbon receptor (AHR) has largely focused on variations in toxic outcomes
resulting from its activation by halogenated aromatic hydrocarbons. But the AHR also plays key roles in regulating
pathways critical for development, and after decades of research the mechanisms underlying physiological
regulation by the AHR remain poorly characterized. Previous studies identified several core genes that respond to
xenobiotic AHR ligands across a broad range of species and tissues. However, only limited inferences have been
made regarding its role in regulating constitutive gene activity, i.e. in the absence of exogenous ligands. To address
this, we profiled transcriptomic variations between AHR-active and AHR-less-active animals in the absence of an
exogenous agonist across five tissues, three of which came from rats (hypothalamus, white adipose and liver)
and two of which came from mice (kidney and liver). Because AHR status alone has been shown sufficient to
alter transcriptomic responses, we reason that by contrasting profiles amongst AHR-variant animals, we may elucidate
effects of the AHR on constitutive mRNA abundances.

Results: We found significantly more overlap in constitutive mRNA abundances amongst tissues within the same species
than from tissues between species and identified 13 genes (Agt, Car3, Creg1, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1,
Pdk1, Slc35a3, and Sqrdl) that are affected by AHR-status in four of five tissues. One gene, Creg1, was significantly
up-regulated in all AHR-less-active animals. We also find greater overlap between tissues at the pathway level
than at the gene level, suggesting coherency to the AHR signalling response within these processes. Analysis of
regulatory motifs suggests that the AHR mostly mediates transcriptional regulation via direct binding to response elements.

Conclusions: These findings, though preliminary, present a platform for further evaluating the role of the AHR in regulation
of constitutive mRNA levels and physiologic function.

Keywords: Aryl hydrocarbon receptor, AHR endogenous ligands, Constitutive gene expression, TCDD-induced toxicity,
Core-gene battery
Background
The aryl hydrocarbon receptor (AHR) is an evolutionarily-
conserved, ligand-activated transcription factor and a
member of the basic helix-loop-helix/PER-ARNT-SIM
family [1]. Proteins within this family participate in sig-
nalling and metabolic pathways important for the regula-
tion of circadian rhythm, development and responses to
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hypoxia and xenobiotic stress [2]. The involvement of the
AHR in development has been elucidated on several
levels, perhaps most convincingly by studies using trans-
genic mice, which maintain abolished or considerably-
reduced AHR activity [3-7]. Ahr−/− mice exhibit a broad
range of behavioural, morphological and functional abnor-
malities including disrupted oculomotor control, cardiomy-
opathy, vascular hypertrophy, gastric hyperplasia, immune
deficiency and reproductive difficulties [3,4,7-9]. Recent
studies reveal that the AHR also has functional importance
in processes such as regulatory T-cell differentiation, cell
cycle regulation, mediation of stress responses, inflammation
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Table 1 Study sample characteristics

Species Tissue AHR-active AHR-less-active

Strain n Strain n

Mouse Kidney C57BL/6J
(wild-type)

6 C57BL/6J
(AHR-null)

3

Mouse Liver C57BL/6J
(wild-type)

5 C57BL/6J
(AHR-null)

3

Rat Liver Long-Evans
(Turku/AB)

3 Han/Wistar
(Kuopio)

4

Rat Adipose Long-Evans
(Turku/AB)

3 Han/Wistar
(Kuopio)

4

Rat Hypothalamus Long-Evans
(Turku/AB)

4 Han/Wistar
(Kuopio)

4

The composition of each study is described by species, tissues, strains, AHR-status
and the number of samples for each group.
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and participation in molecular cross-talk [10-15]. The AHR
may even be pathogenically involved in diseases such as
hypertension, type II diabetes and cancer [16-19].
The AHR is often described as an environmental sensor

for its ability to bind a wide range of compounds and
mobilize functionally-relevant gene batteries [20-22]. The
classical activation pathway is initiated by ligand-binding,
and followed by receptor hetero-dimerization, entry into
the nucleus and interactions with regulatory regions of
target genes to alter their transcript abundance [23]. By
virtue of this ligand imperative, it is probable that the
AHR relies on endogenous activators to carry out its
developmental responsibilities. Identification of nuclear
AHR complexes in cells and tissues not treated with xeno-
biotics has provided molecular evidence for the existence
of such endogenous ligands [24,25]. Similarly, indole-
containing compounds from dietary sources have been
shown to undergo metabolism to higher-affinity AHR
agonists in mammalian digestive tracts [26,27]. Many
endogenous candidates have been proposed. Notable
examples include tryptophan derivatives, arachidonic
acid metabolites, 7-ketocholestrol and carotinoids, all
of which exhibit AHR binding as well as participation
in processes coherent with existing knowledge of AHR
function [28-32]. Although there are numerous candi-
date endogenous AHR ligands, our understanding of
their physiologic roles remains incomplete.
In contrast, exogenous AHR ligands have been studied

much more extensively. While exogenous ligands as well
as endogenous ligands exhibit an exceptional range of
structures and biological activities, exogenous ligands gen-
erally exhibit AHR binding affinities that are considerably
greater than that of their endogenous counterparts [33].
The most potent of these is 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD). TCDD is a widespread environmental
toxicant formed as a by-product of industrial processes
involving thermal reactions, herbicide production and
low-temperature waste incineration [23]. Exposure in
laboratory animals has led to a wide range of toxico-
logical endpoints, yet these vary drastically across spe-
cies. For example, guinea pigs are extremely sensitive
(LD50 1–2 μg/kg), while hamsters are highly resistant
(LD50 1000–5000 μg/kg) [34]. This variation also exists
within species, as shown by studies of Long-Evans (Turku/
AB; L-E, LD50 = 17.7 μg/kg) and Han/Wistar (Kuopio;
H/W, LD50 > 9600 μg/kg) rats [34]. Many investigations
have been conducted to evaluate transcriptomic profiles
induced by xenobiotics in AHR-active and -less-active
animals [35-45], but few have attempted to characterize,
in vivo, transcriptomic profiles elicited by endogenous li-
gands. To address this, we exploit two animal models that
both present phenotypically-divergent responses to ex-
ogenous ligands based on differences in AHR-status: a
mouse AHR knockout model and the H/W rat model of
reduced sensitivity to toxic effects of TCDD. By contrast-
ing transcriptomic profiles in the absence of xenobiotic
treatment, we hope to capture genes correlated with AHR
function and elucidate underlying mechanisms of AHR
physiology.

Methods
Samples and experimental design
We assessed transcriptomic profiles in rat white adipose
tissue (from here on referred to as “adipose”) and hypo-
thalamus tissue. We also re-analyzed constitutive mRNA
abundance in samples from untreated animals from
three experiments [37,46] to extend our analysis to
two species (mouse and rat) and a total of five tissue
types, three of which came from rats (hypothalamus,
white adipose and liver) and two of which came from
mice (kidney and liver). We use the term “AHR-less-
active” to described H/W rats and AHR-null C57BL/6J
mice and “AHR-active” in reference to L-E rats and
C57BL/6J mice which have wild-type AHRs. A more
detailed outline of animal characteristics is available in
Table 1.

Animal handling and tissue preparation
Detailed procedures of animal handling for past experi-
ments have been previously outlined [37,46]. All study
plans were approved by the Animal Experiment Com-
mittee of the University of Kuopio and the Provincial
Government of Eastern Finland and all animal handling
and reporting comply with ARRIVE guidelines [47]. Ani-
mals for the current study were bred and housed at the
National Public Health Institute, Division of Environ-
mental Health, in Kuopio, Finland. Four male H/W and
four male L-E rats were used for each of the adipose and
hypothalamus studies. Animals were singly-housed in
stainless-steel wire-mesh cages, the housing environ-
ment maintaining a 12-hour light/dark cycle (with lights
on at 7:00 am) and temperature and relative humidity of
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21 ± 1°C and 50 ± 10% respectively. Pelleted feed and tap
water were available ad libitum.
To maintain consistency with experimental conditions,

all rats were administered a single dose of corn oil via oral
gavage at 15–16 weeks of age for H/W rats and 18–19
weeks of age for L-E rats to compensate for the acceler-
ated growth rates of the H/W strain. In the hypothalamus
cohort, euthanasia by decapitation was performed ap-
proximately 23 hours following corn oil administration,
near the end of the dark phase (between 5:40 am and 6:45
am). In the adipose cohort, this was done during light
hours, approximately 24 hours post corn oil administra-
tion. Samples were then rapidly collected, weighed, snap
frozen in liquid nitrogen and stored at −80°C or lower
until processed. Adipose tissues were harvested from the
inguinal region of animals while the hypothalamus was re-
moved using incision sites along the rostral border of the
optic chiasm, caudal border of the mamillary body, ventral
border of the anterior commissure and lateral borders of
the tuber cinereum and mamillary body complexes.

Sample processing and microarray hybridization
In all experiments, total RNA was extracted using Qia-
gen RNeasy kits following the manufacturer’s instruc-
tions (Qiagen, Mississauga, Canada). Total RNA yield
was quantified by UV spectrophotometry and RNA integ-
rity verified using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA). RNA levels for rat sam-
ples were measured on Affymetrix RAE230-2 arrays and
those from mouse samples on Affymetrix MOE430-2
arrays (Affymetrix, Santa Clara, CA) at The Centre for
Applied Genomics (Toronto, Canada). RNA abundances
were quantified using an Affymetrix GeneChip Scanner
3000 following standard manufacturer protocols.

Data preparation and visualization
Raw data were loaded in the R statistical environment
(v3.0.2) and normalized using the RMA algorithm with
the affy package (v1.40.0) of the BioConductor open-
source project [48]. Probes for the rat and mouse studies
were annotated using the rat2302rnentrezgcdf (v18.0.0)
and mouse4302mmentrezgcdf (v18.0.0) packages respect-
ively [49]. All data were tested for spatial and distributional
homogeneity using unsupervised pattern recognition with
the divisive clustering algorithm (DIANA) in the cluster
package (v1.14.4) using Pearson’s correlation as the similar-
ity metric (Additional file 1: Figure S1, Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
Figure S4, Additional file 5: Figure S5). One array from
the L-E group in the adipose study (RAE2302_083106-
W_AO07.CEL) was deemed an outlier due to failure to
properly normalize (Additional file 4: Figure S4). This
array was removed from downstream analysis and the
remaining arrays were re-normalized (with n = 3 in the
L-E group). Exclusion of the outlier array improved overall
spatial and distributional homogeneity (Additional file 6:
Figure S6). Data visualization was facilitated by the lattice
(v0.20-27), latticeExtra (v0.6-26) and VennDiagram (v1.6.4)
packages [50]. All raw and normalized microarray data can
be found in the National Center for Biotechnology Infor-
mation Gene Expression Omnibus archive (http://www.
ncbi.nlm.nih.gov/geo/) under the accessions GSE15857
(mouse kidney), GSE15858 (mouse liver), GSE18301 (rat
adipose), GSE18257 (rat hypothalamus) and GSE13513
(rat liver).

Statistical analysis
Statistical analyses of microarray data were performed in
the R statistical environment (v3.0.2) using the limma
package (v3.18.13) [51]. A linear model was fit to exam-
ine potential differences occurring as a result of AHR
genotype. The contrast used in all cases was:

AHRAHR−less−active−AHRactive ð1Þ
We hypothesized that the AHR present in the AHR-

less-active strains are inherently different from their
AHR-active counterparts – with this difference ultim-
ately reflected in the mRNA abundance of genes under
AHR regulatory control. Using the general linear model:

Y gij ¼ μg þ αgi þ ∈gij ð2Þ

where Ygij is the abundance of gene g at condition i
and replicate j, μg is the estimate of the gene effect, αgi
the estimate of AHR-status effect and εgij the error term,
with the goal of capturing the response of any gene g
(Yg) exclusively as a result of the effect of the AHR
(αAHR):

Y g ¼ αAHR ð3Þ
An empirical Bayes method was applied following lin-

ear modelling to reduce standard error and a moderated
t-test was used to identify differential abundance be-
tween different AHR genotypes [51]. All p-values were
adjusted for multiple testing using a 5% false discovery
rate [52]. Significance was defined at q-value < 0.05 un-
less stated otherwise. Interspecies comparisons were
conducted through HomoloGene IDs (HID). Homolo-
Gene data were obtained from the National Center for
Biotechnology Information (NCBI) HomoloGene database
(http://www.ncbi.nlm.nih.gov/homologene, accessed on
March 21, 2014). HIDs act as a surrogate for comparing
gene homologues across eukaryotic species. All Entrez
Gene IDs were matched to a corresponding HID where
available and duplicates and those failing to annotate were
removed from the final analysis. This left a final count of
10,445 genes. Fold changes and q-values for all genes in
each experiment are available in Additional file 7: Table S1,

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/homologene
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Additional file 8: Table S2, Additional file 9: Table S3,
Additional file 10: Table S4, Additional file 11: Table S5.
Hypergeometric testing was performed on all common

genes between studies to assess whether the observed
overlap was significantly greater than expected by chance
alone. In the context of this test, we defined “enrichment
ratio” as:

enrichment−ratio ¼ observed−gene− counts
expected−gene−counts

ð4Þ

We also employed this test to assess, separately for
each study, whether significantly altered genes were
biased for specific chromosomes (Additional file 12:
Table S6).
To assess significance of overlap amongst three rat tis-

sues, we performed a bootstrap to estimate the p-value.
For this, we used a total of three variables, each repre-
senting one of the three rat tissues. Each variable consti-
tuted a vector of positions of length n matching the
number of significant genes in each rat tissue (n = 1,187
for rat liver, n = 318 for rat hypothalamus and n = 316
for rat adipose). We randomly allocated the positions in
each variable vector to a vector of positions that represented
the total number of genes in our analysis (n = 10,445). We
then counted the positions (i.e. rows) that were true for all
three variables and repeated this process 106 times. We used
the distribution thus generated to evaluate the fraction of
permuted counts that was greater than our observed overlap
and used this to approximate the p-value. We have provided
the R code used to generate this analysis as an additional
(Additional file 13).
We performed differential power analysis to verify that

the removal of one array from the L-E group from the
adipose study did not reduce our statistical power. For
this, we repeated the systematic removal of an array
from the H/W group, one at a time, followed by re-
normalization and re-fitting of the entire data set (match-
ing the number of samples at each instance in the H/W
group with n = 3). Our analysis indicated that results ob-
tained using n = 3 or n = 4 were comparable, thus affirm-
ing our decision to move forward in our analyses using all
four H/W samples (Additional file 14: Figure S7).

Transcription-factor binding site analysis
The AHR has been shown to associate with conserved
DNA response elements AHRE-I and AHRE-II during
transcription [53,54]. Hence the presence of these ele-
ments in the upstream 5′-regulatory region of genes
would provide further evidence for AHR involvement in
their regulation. We quantified the occurrence (count)
and conservation (score) of four motifs for each of our
candidate genes using the sequences GCGTG, TNGCGTG,
[T|G]NGCGTG[A|C][G|C]A and CATG{N6}C[T|A]
TG, representing the AHRE-I (Core), AHRE-I (Extended),
AHRE-I (Full) and AHRE-II motifs respectively [53,54].
Using REFLINK and REFFLAT tables obtained from
UCSC genome browser data (mm9, downloaded on
May 9, 2012), transcription start sites were determined
and parsed ±3 kilo base pairs (kbp) for the aforemen-
tioned motifs [55]. A PhyloHMM conservation score
was calculated between zero and one to provide a metric
for assessing the strength of conservation across species,
with a score of 0.0 indicating no conservation, and a
score of 1.0 indicating perfect conservation [56]. Dis-
tributions of counts and scores for all motifs were
compared between sets of significantly altered genes
and insignificant genes within each experiment (Additional
file 15: Figure S8, Additional file 16: Figure S9, Additional
file 17: Figure S10, Additional file 18: Figure S11).

AHR binding analysis
AHR binding to regulatory motifs was assessed through
analyses using a publicly available dataset that studied
the AHR using chromatin immunoprecipitation with DNA
microarray technology (ChIP-chip) [57]. RMA-normalized
data for control samples treated only with DMSO were ob-
tained from the Gene Expression Omnibus (GSE11850,
files GSM299302-GSM299307) and reformatted to an
appropriate format for analysis (BED files) using a cus-
tom script. Genomic regions were annotated for the
nearest gene within 1 kb upstream and downstream of
the transcription start site using cisGenome [58] and
REFFLAT tables (mm7, downloaded on June 2, 2014)
from the UCSC genome browser [55]. The output was
parsed using a custom script to remove regions that
failed to annotate. The final annotated file was loaded
into the R statistical environment (v3.1.0) and a stu-
dent’s t-test was used to identify probes that preferen-
tially bound to the AHR. A liberal approach was taken for
multiple probes mapping to the same gene, in which only
the probe with the lowest p-value was kept. The fraction
of AHR binding was then calculated using:

matched− significant−genesChIP−chipdata
total− significant−genes

ð5Þ

Gene ontology
Analysis of gene ontology (GO) enrichment was per-
formed using the web tool GoMiner (v2011-01) [59].
Genes that were significantly altered by AHR status at
q < 0.05 were assessed for enriched ontologies using all
species-relevant databases, look-up options and gene on-
tologies. All results were tested against a null distribu-
tion generated using 1000 permutations and a false
discovery rate threshold of 0.1%, with the minimum cat-
egory size in all incidences set to five. Significance for
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GO analysis was defined at FDR <0.01. A significance fil-
ter was applied to raw GoMiner outputs and only GO
terms meeting the FDR criterion were subsequently ana-
lyzed. Using a custom script, we appended a list of chan-
ged genes to each GO term. Since the relationship between
GO terms mirrors a directed acyclic graph, we used an-
other custom script to trace all significant GO terms back
to their parent GO term to reflect higher-order functional
grouping. Significant GO terms and their enrichment
scores, changed gene lists, associated parent GO term
and FDR values are provided in Additional file 19: Table S7,
Additional file 20: Table S8, Additional file 21: Table S9,
Additional file 22: Table S10.

Results
To comprehensively study constitutive AHR effects, we
measured mRNA abundances in adipose and hypothal-
amic tissues of H/W and L-E rats in the absence of exogen-
ous ligands. A common consequence of TCDD exposure in
laboratory animals is anorexia-like wasting syndrome [60].
Since TCDD toxicity is mediated via the classical AHR acti-
vation pathway and the adipose and hypothalamic tissues
are major sites within the body for energy storage and feed-
ing regulation, these tissues were selected as proxies to
measure constitutive AHR effects [61]. We supplemented
Figure 1 Overview of significantly altered genes. The number of genes
tissue (A) and across multiple tissues (B). Variations in constitutive mRNA le
significant genes common to at least two tissues (C).
our analysis with control animals from three previous exper-
iments that had been conducted by our lab [35,37,46] to ex-
pand our coverage of species and tissue types across mouse
kidney, mouse liver, rat adipose, rat hypothalamus and rat
liver.

Transcriptomic profile of constitutive AHR activation
Our preliminary assessment of data quality demonstrated
that our results were not sensitive to the significance
threshold (Additional file 23: Figure S12) and similar
numbers of genes were up-regulated as down-regulated
by the presence of an AHR-active form of the receptor
(Additional file 24: Figure S13). We performed within-
experiment linear modelling and imposed a significance
selection criterion (q < 0.05); this revealed a range of 231
genes (mouse, kidney) to 1,443 genes (rat, hypothalamus)
whose mRNA levels were differentially-abundant within
experiments (Figure 1A). mRNA levels for these genes
were also dependent on AHR-status across multiple spe-
cies and tissues (Figure 1B). Amongst these, 12 genes (Agt,
Car3, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1, Pdk1,
Slc35a3, and Sqrdl) were significantly altered in four
out of five experiments while one gene (Creg1) was up-
regulated in AHR-less-active animals in all five tissues.
Genes differentially-abundant in more than one tissue
statistically associated with AHR-status (q < 0.05) in each individual
vels were visualized in a heatmap of log2 fold changes, using
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(n = 101) presented distinct patterns in fold-change
magnitudes and directions that clustered tightly with
species (Adjusted Rand Index, ARI = 1), not tissue types
(ARI = −0.11, Figure 1C).
To further investigate these potential AHR-regulated

core functions, we examined genes altered in multiple spe-
cies and tissues and performed hypergeometric testing to
establish if some tissue/species pairs shared similar AHR-
associates of transcriptomic profile. The enrichment ratios
computed for commonly altered genes confirm our earlier
statement that there was a distinct species-driven pattern
Figure 2 Assessment of transcriptomic similarity. Hypergeometric testing
profiles (A). Spot size represents the magnitude of the calculated gene enrich
hypergeometric testing. Genes not probed on the array are represented by “X
tissues (C) and liver tissues (D).
in AHR-mediated signalling, with a milder pattern exhib-
ited across the same tissues (Figure 2A, raw counts of gene
overlaps are available in Additional file 25: Figure S14). For
example, rat liver and rat adipose had 2.7 times more
significant genes in common than expected by chance
(observed = 98, expected = 36, q = 2.01−20, Figure 2B).
This trend was also observed for mouse kidney and mouse
liver where the overlap was 3.7 times more than the ex-
pected (observed = 31, expected = 9, q = 1.05 × 10−9).
Alternatively, a more moderate association was observed
between mouse and rat liver, despite organ homology, and
was conducted on all pairs of tissues to identify similar transcriptomic
ment ratio while the background shade denotes q-values obtained from
”. Venn diagrams of commonly altered genes between all tissues (B), rat
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an enrichment ratio of 2.3 was noted (observed = 101, ex-
pected = 44, q = 2.39 × 10−16, Figure 2C). Pairwise assess-
ments of all overlaps are available in Additional file 26:
Figure S15. A set of 49 genes were commonly altered
across all rat tissues examined (Figure 2D). From our
bootstrap test employing 106 permutations, we estimated
the significance of this overlap to be p < 10−6. Of these, six
genes (Creg1, Ctsc, Enpp1, Gstm4 Pdk1 and Sqrdl) were
detected in mouse tissues, suggesting the other 43 genes
may contribute to rat-specific events.

A set of proposed endogenously-regulated AHR core
genes
To compare ligand-induced and constitutive profiles of
well-known AHR target genes, we studied a set of genes,
called the AHR core-response genes, previously confirmed
to be altered by TCDD via the classical AHR activation
pathway in a wide range of tissues: Ahrr, Aldh3a1, Cyp1a1,
Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Inmt, Nfe2l2, Nqo1,
Tiparp and Ugt1a1 (or Ugt1a6) [21,35,62-64]. We in-
cluded the abundance of Ahr as a reference to facilitate
biological interpretation. Abundance of most of the
AHR core-response genes were not significantly altered in
the absence of an exogenous ligand (Figure 3A). Interest-
ingly though, AHR-less-active animals appear to exhibit
lower mRNA levels for these genes compared to their
AHR-active counterparts without xenobiotic treatment
(p = 0.00026, 95% confidence interval: 0.63-1.00, one-
sample prop test), correlated with our assumption of
lower AHR activity in these animals. It is also worth
noting that although most of the AHR core genes pos-
sess binding motifs AHRE-I (Full) and AHRE-II, none
were found to associate with AHR binding in the ab-
sence of xenobiotics [57].
Next, we focused on genes whose abundance was sig-

nificantly dependent on AHR-status in at least four out
of our five studies (n = 13). Of these, Creg1 was up-
regulated in AHR-less-active animals across all species and
tissues (M = 0.39 – 1.3, q = 6.07 × 10−6 – 0.02, Figure 3B).
In contrast to patterns displayed by AHR core-response
genes, most of our constitutive candidates appear to ex-
hibit up-regulatory trends in the AHR-less-active animals
(p = 0.0014, 95% confidence interval: 0.58-1.00, one-
sample prop test). Overall, three genes (Creg1, Enpp1
and Sqrdl) showed consistent up-regulation across tis-
sues and species, three genes (Ctsc, Gstm4 and Slc35a3)
displayed diverging species-dependent patterns in regula-
tion and five genes (Agt, E2f6, Kcnj8, Me1 and Pdk1) ex-
hibited more complex trends that appeared to vary with
tissues. Two genes in particular (Enpp1 and Pdk1) pos-
sessed both AHRE-I (Full) and AHRE-II binding motifs in
the upstream 5′-regulatory region while four other genes
(Car3, Ctsc, Gatm and Kcnj8) possessed only the AHRE-II
motif. Although Gstm4 and Slc35a3 were not found to
contain either motif, both showed evidence of AHR bind-
ing in vitro [57].

Constitutive AHR pathways involve many common genes
To assess enrichment of specific pathways in biological
interactions, we conducted gene ontology (GO) analysis
using GoMiner [64]. Our analysis did not unveil any
enriched pathways in the rat hypothalamus data but did
identify several significantly enriched ontology terms
amongst the other tissues. To capture common path-
ways, we analyzed overlapping GO terms across tissues
and species and conducted hypergeometric testing to as-
sess the significance of overlapping pathways. Raw counts
of GO term overlap can be found in Additional file 27:
Figure S16. We observed that the enriched ontologies in
rat adipose and mouse kidney were entirely independent
of one another (Figure 4A). However for most other tis-
sues we found significant overlap, ranging from 50 – 180
times greater than the expected count. While the overlap
of mouse kidney and mouse liver at the gene level was
enriched by 3.7 fold (Figure 2A), at the pathway level
it was nearly 110 fold (observed = 19, expected = 0.17,
q = 2.75 × 10−37, Figure 4A). Similarly between mouse
and rat liver, there were 93 times more GO terms in
common than expected by chance alone (observed = 25,
expected = 0.27, q = 1.91 × 10−45), in contrast to 2.3 times
the number of shared genes (Figure 2A). Pairwise assess-
ments of all GO term overlaps are available in Additional
file 28: Figure S17.
Results at the pathway level further verified variations

at the transcriptomic level as a function of species and
tissues, but also demonstrated an abundance of bio-
logical interactions within excretory tissues, such as kid-
ney and liver, relative to the adipose or hypothalamus
(Figure 4B). We selected genes that were significant in at
least three tissues and re-analyzed functional enrichment
using GoMiner to assess global trends. We filtered our
new results for GO terms that were also reflected in at
least three of the individual analyses. We found ten such
commonly enriched GO terms and traced back their
branch of functional groupings to identify the originat-
ing parent GO terms (Figure 4C). We found that all ten
can be essentially explained by three unique parent ontol-
ogies of (fundamental) biological processes, lipid meta-
bolic processes and small molecule metabolic processes.

AHR constitutive transcriptomic effects regulated
primarily by direct binding
Lastly, we sought to determine whether the changes we
observed at the constitutive level in animals of different
AHR-status were mediated directly by the AHR. We
took three separate approaches to address this question.
First, we examined the presence of conserved AHR bind-
ing motifs in the upstream 5′-regulatory regions of



Figure 3 Transcriptomic profiles of exogenous and endogenous
AHR activation. Transcriptional profiling of AHR core-response
genes shows little association with AHR-status in the absence of
exogenous ligands (A). By contrast, 13 genes were observed to
significantly differ based on AHR-status between animals in at
least four tissues, with most of these demonstrating higher levels
in AHR-less-active animals (B). All fold changes shown are in log2
scale, with the magnitude represented by spot size and q-values
are denoted by background shade. Only rat gene names are
shown. Genes are ordered alphabetically for AHR core-response
genes (A) and by decreasing average absolute magnitude of
change across studies for AHR constitutive genes (B).
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significantly altered genes to assess potential for AHR
regulation resulting from direct binding. We found
that the presence of conserved AHRE-I (Full) motifs
was generally more common amongst genes whose
abundance varied with AHR-status in multiple tissues
(Figure 5A). Corresponding fractions for the AHRE-I
(Core), AHRE-I (Extended) and AHRE-II motifs are
available in Additional file 29: Figure S18. Next, we
conducted a more inclusive assessment and considered
the partitions of these genes for both AHRE-I (Full)
and AHRE-II motifs. To facilitate this analysis, we di-
chotomized our gene list by redefining “significant”
and “non-significant” with respect to an alternate selection
criterion: differential abundance in at least three tissues.
We calculated the fractions with one, two or ≥ three motif
counts and found that in general, “significant” genes con-
tained more occurrences of AHRE-II motifs (Figure 5B).
Our second approach was to assess AHR binding

using a publicly available ChIP-chip dataset [57]. Mirror-
ing the procedure of our first approach, we evaluated
the fraction of genes to exhibit AHR binding in the ab-
sence of exogenous ligands (p < 0.05). We found a
higher fraction of binding amongst genes commonly
altered across multiple tissues (Figure 5C). Focusing
on the rat liver data, which displayed higher magnitude
changes in the proposed AHR constitutive genes (Figure 3B),
we split the transcriptome into three groups based on their
direction of regulation: significantly-repressed genes, signifi-
cantly up-regulated genes and genes with no statistically-
significant changes. We found that induced genes displayed
more binding (Figure 5D), suggesting that AHR binding
generally elicits an activating effect.
Our final approach was to assess whether those genes

that differ in constitutive expression also differ in re-
sponse to TCDD. For this, we compared our findings to
genes that were significantly altered in TCDD-treated
samples from our mouse and rat liver experiments
[37,46]. We found greater proportions of genes that were
changed by TCDD treatment in the mouse liver (Figure 5E)
and rat liver (Figure 5F) to also exhibit significant variations
in their constitutive expressions between AHR-variant ani-
mals. In contrast, genes that remained unresponsive to



Figure 4 Assessment of pathway similarity. Hypergeometric testing was conducted on all pairs of tissues to identify commonly enriched
biological pathways (A). Magnitude of enrichment is represented by spot size while background shade represents q-values from hypergeometric
testing. “X” denotes absence of significant enrichment. Assessment of common GO terms across all species and tissues revealed localized overlap
(B). Three general ontologies, biological process, lipid metabolic process and molecular function, are represented among the ten commonly
enriched pathways (C).
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TCDD were also largely invariant with AHR status
(Figures 5E,5F). Since TCDD is a known activator of
the AHR, seeing similar trends in the presence and ab-
sence of exogenous ligands provides strong support of
regulatory control by the AHR of many genes that also
respond to dioxin-like chemicals.

Discussion
The AHR is highly conserved throughout evolution; this
fact alone suggests that it plays an important role in or-
ganism development and function [65]. We previously
reported hints that gene expression in control rat livers
depend on AHR-status, but this was limited to a single
tissue and species [36]. Here, we generalize and extend
that result by evaluating constitutive mRNA associations
with AHR activity in two species and four tissues. Al-
though we refer to H/W rats throughout the text as
“AHR-less-active” animals, we are aware of the bold
premise in assuming lower AHR activity in these ani-
mals, especially since Cyp1a1 induction by TCDD oc-
curs normally in the H/W strain [37]. However, we do
generally observe lower numbers of genes altered as a
result of TCDD treatment in comparison to L-E rats
[37], suggesting that inter-strain differences in AHR
physiology are present [37] and that our assumption is
not unfounded. Evidence in support of our approach is
further observed in results from the rat liver samples,
where mRNA abundance of the Ahr was significantly
lower for H/W rats (Figure 3A). Thus we decided to
maintain the usage of this terminology throughout. After
rigorous statistical analysis and attempts to control for
species-specific effects, we identified 13 genes of interest:
Agt, Car3, Creg1, Ctsc, E2f6, Enpp1, Gatm, Gstm4, Kcnj8,
Me1, Pdk1, Slc35a3, and Sqrdl (Figure 3B). We propose
that these genes are likely AHR-regulated via endogenous
ligands in multiple tissues and species.
Three genes have roles in energy homeostasis: Me1,

Pdk1 and Gatm. Me1 encodes malic enzyme 1, a lipo-
genic enzyme essential for catalyzing the production of
pyruvate from malate in the citric acid cycle for fatty
acid synthesis [66]. In recent years, it has been identified
as a causal gene in the development of obesity and type II
diabetes from genome-wide association studies [66-68].
Pyruvate serves as an intermediary between glucose, fatty



Figure 5 (See legend on next page.)
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Figure 5 Evaluation of AHR binding: presence and effects. A higher fraction of genes that were significantly affected by AHR-status across
multiple tissues were found to possess AHRE-I (Full) motifs in the upstream 5′-regulatory region, compared to genes that were AHR-status
independent (A). At several count thresholds, the fractions of significant and non-significant genes were contrasted for the presence of
both AHRE-I (Full) and AHRE-II motifs (B). Similar to findings of the transcription factor binding site analysis, a higher fraction of genes
significantly altered across multiple tissues were found to exhibit AHR binding in vitro (C). The AHR appears to largely exert an upregulating
effect on genes in rat liver in the absence of exogenous ligands, but a smaller fraction of downregulation is present as well (D). Genes that
were differentially-abundant in the constitutive condition were also observed to be altered in greater proportions following TCDD-induced
AHR activation in the mouse liver (E) and rat liver (F).
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acid and amino acid metabolic pathways and is an import-
ant molecule in the regulation of body energy. We postu-
late that the lower hepatic levels of Me1 observed in
AHR-less-active animals may suggest a lower propensity
for lipogenesis in these animals and a preferred reliance
on an alternative pathway for energy catabolism. This may
be a pathway not directly influenced by the AHR, which
could explain the increased resistance of these animals to
TCDD-induced wasting syndrome [61]. Interestingly, the
log2-fold change of Me1 following TCDD-treatment in H/
W rat liver was 2.2 (q = 0.02) but nearly twice as high in
L-E rats (log2-fold change = 4.24, q = 0.04) [37].
Pdk1 is also involved in the regulation of pyruvate

[69]. It encodes isozyme 1 of the pyruvate dehydrogen-
ase kinase, a mitochondrial enzyme responsible for the
phosphorylation and subsequent inactivation of pyru-
vate dehydrogenase [69]. Since pyruvate dehydrogen-
ase functions to increase acetyl-CoA production, Pdk1
thereby exerts an inhibitory effect on lipogenesis. Lower
hepatic levels of Pdk1 observed in AHR-less-active ani-
mals are consistent with the previously-stated hypothesis
of decreased lipogenesis in AHR-less-active animals. The
third gene, Gatm, encodes glycine amidinotransferase, an
enzyme whose net effect is to increase production of
creatine. Creatine is a molecule that supplies energy to
muscle cells via increasing ATP formation [70]. mRNA
levels of Gatm are higher in AHR-less-active animals,
indicating that on average, these animals utilize creatine
more than AHR-active animals as a source of energy.
Taken in conjunction with levels of Me1 and Pdk1, it ap-
pears that AHR-less-active animals may preferentially
utilize nitrogenous molecules as sources of energy and
that this preference may somehow confer a protective ef-
fect against TCDD-induced wasting syndrome.
Several other genes, though not functionally catego-

rized together, have important implications on the devel-
opmental role of the AHR. Two of these have roles in
vascularization: Agt and Kcnj8. Agt, which encodes
angiotensinogen, is important for the regulation of blood
pressure [71]. Mutations in this gene have been associated
with renal tubular dysgenesis [72,73]. This is particularly
relevant as a known teratogenic effect of TCDD is hydro-
nephrosis; thus dysregulation of Agt may be contributing
to this outcome [74]. Moreover, studies in AHR knockout
mice have demonstrated reduced renin-angiotensin sig-
nalling as a cause of hypotension in these animals [75].
Kcnj8 encodes a G-protein controlled potassium channel
that preferentially directs potassium into the cell and is
critical for vascular tonus [76]. Knockout mice for Kcnj8
demonstrate high rates of spontaneous death resulting
from cardiovascular events [76]. Since cardiomyopathy
and vascular hypertrophy are both documented pheno-
types of AHR-null mice, a rational biological backdrop for
AHR involvement in their regulation exists.
Enpp1 encodes the enzyme ectonucleotide pyropho-

sphatase/phosphodiesterase-1, which is important for the
inhibition of calcification and maintenance of insulin sen-
sitivity [77]. Enpp2 was also one of the relatively few H/
W-specific genes that were altered by TCDD in rat hepatic
tissues [37]. Previous studies have shown that the AHR is
required both for proper vessel pruning and insulin regu-
lation, which again suggests that AHR physiological
control of this gene is coherent with existing biological
evidence [78,79]. Creg1, cellular repressor of E1A-stimulated
genes 1, encodes a protein that antagonizes the activity of
the adenovirus E1A protein, which functions to increase
proliferation and decrease differentiation [80,81]. Higher
mRNA levels of this proliferation-antagonizing gene were
found in AHR-less-active animals, suggesting that chronic
AHR activation may lead to higher levels of the proliferative
adenovirus E1A protein. This implicates a role for AHR in
carcinogenesis, an aspect of AHR physiology that has been
studied quite extensively [13,20,31,82-91].
Our previous studies proved gene ontology analysis to

be a useful tool in comparing and grouping significantly
altered genes for a more comprehensive assessment of
biological relevance [35,44]. For our current analysis, we
noted a greater overlap at the pathway level compared
to the gene level and this was strongly indicative of the
common recruitment of other genes amongst these
pathways and processes, in a manner that cannot be ac-
curately assessed based on transcriptomic changes alone.
We found a major fraction of genes influenced by AHR-
status to be associated with lipid metabolism processes
(Figure 4C). This observation was also made in our pre-
vious studies of TCDD-induced transcriptomic variation
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[61,92,93]. Enrichment of changed genes involved in
lipid metabolic processes is consistent with our previous
proposal of inherent differences in energy regulation be-
tween AHR-variant animals and may pose as a potential
explanation for differential sensitivity to TCDD-induced
body wasting.
Our AHR binding analysis provided strong indications

of AHR binding for AHR-related differences in the con-
stitutive regulation of genes. We found a high fraction of
genes whose constitutive expression depends on AHR-
status to contain AHR-DNA binding motifs as well as
exhibiting AHR binding in vitro (Figure 5A,5C). How-
ever, the transcriptomic effects of AHR binding for the
constitutive targets may be down-regulatory, as higher
levels of these genes were observed in the AHR-less-
active animals (Figure 3B). We postulate this may be due
to the presence of inhibitory dioxin-response elements
(iDREs) [94]. Binding of the activated AHR complex to
specific DNA sequences, termed inhibitory dioxin-response
elements (iDREs), exerts anti-estrogenic effects [94]. These
iDREs either overlap or are immediately adjacent to re-
sponse elements, so binding of the activated AHR complex
blocks binding of other transcription factors, preventing
transcription [94-96]. The removal of this inhibition in our
AHR-less-active animals may have resulted in the higher
mRNA abundances observed for certain genes (Figure 3B).
Finally, since binding is not an absolute necessity for
regulation, we speculate that genes without evidence of
binding sites may be regulated via other means, such
as interactions of the AHR complex with other tran-
scription factors [97].
There are still some issues concerning cross-species

comparisons and caution must be taken when drawing
conclusions from these results. As indicated in Figure 2C,
upwards of 1000 genes were altered as a result of AHR-
status in rat liver and rat hypothalamus, but less than
300 were affected in the mouse tissues. Theoretically,
the rat model, which captures the effects of a deletion in
the transactivation domain of the AHR, should not have
more profound effects than the mouse model, which
employed a complete knockout of the receptor. One po-
tential explanation might be the molecular context of
these assessments: the mouse model measured the ef-
fects of the AHR within the same strain (C57BL/6J mice)
while the rat model actually compared differences across
strains (H/W vs. L-E rats). The genomes of different
strains of rats will likely vary at many loci, whereas in
our mouse model, this difference was virtually – if not
exclusively – confined to the AHR locus. A portion of
the detected changes in rats may be artefacts of strain
variations. A better cross-species parallel might utilize
the DBA/2 mouse, with the AHR allele of reduced bind-
ing affinity, in the murine model [98]. Unfortunately, we
do not possess array data for mice with these alleles and
our current cross-species-and-tissues analysis was done
using the best available data.
A similar but distinct issue exists for our rat model.

As previously mentioned, both H/W and L-E rats exhibit
comparable hepatic induction of Cyp1a1 upon treatment
with TCDD [37]. This may be suggestive of inter-strain
differences in the AHR pathways, which bears restric-
tions on the accurate interpretation and generalizability
of the results. Alternatively, the use of knockout rat
models would greatly improve our comparison and miti-
gate inter-strain uncertainties. Unfortunately, knockout
rats were not technically feasible until recently and pres-
ently only a few specific models have been made com-
mercially available [99]. We anticipate that advancing
technology will aid in both increasing the availability
and lowering the costs of using such models and enable
us to further explore this question in the future.
It is important to acknowledge that although animals

used in these studies were not treated with exogenous li-
gands per se, all were given a single dose of corn-oil. Re-
sponses to corn oil cannot be ruled out for our studies
using rats. However, this is not the case for our mouse
experiments, where AHR activity has been effectively
knocked-out. Therefore the effects we do observe are via
AHR-mediation, even if triggered to some extent by corn
oil. Finally, it is important to note that our tests were
conducted across all genes and not only amongst
expressed genes. In other words, for our cross-tissues
comparisons, we did not filter out genes that were only
expressed in some tissues (i.e. liver-specific, kidney-
specific or other tissue-specific genes). By using the total
number of genes as the denominator, we may be under-
estimating the fraction of common effects across tissues.

Conclusions
In summary, we propose a list of 13 genes that consti-
tute a constitutive AHR gene battery, at least in the tis-
sues studied, in mice and rats (Agt, Car3, Creg1, Ctsc,
E2f6, Enpp1, Gatm, Gstm4, Kcnj8, Me1, Pdk1, Slc35a3,
and Sqrdl). We established these candidates from
within-experiment transcriptional profiling of control
animals with distinct AHR genotypes, using appropriate
statistical methods and assessed their mode of regulation
via AHRE and AHR binding analyses. We propose that
the majority of these genes are inversely associated with
AHR activity and although binding is the primary
method of transcriptional regulation, some of these
genes could also be regulated via non-classic mecha-
nisms, such as interactions with other transcription fac-
tors. We further conducted gene ontology analysis to
make large-scale interpretations and to suggest possible
functional connections with existing knowledge of AHR
function. We hypothesize that AHR-less-active animals
differ on a fundamental molecular level from AHR-active
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animals in how energy balance is regulated. Future work
will help determine whether the genes identified in this
study, as being dependent on AHR-status for constitutive
expression, are exclusive to mice and rats, or whether they
are also functional in other species and cell types. We
hope that this work will rally further research into an
often under-appreciated aspect of AHR physiology.
Availability of supporting data
The data sets supporting the results of this article are
available in the National Center for Biotechnology In-
formation (NCBI) Gene Expression Omnibus (GEO)
repository, through accession numbers GSE15857 for
mouse kidney (http://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE15857), GSE15858 for mouse liver (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15858),
GSE18301 for rat adipose (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE18301), GSE18257 for
rat hypothalamus (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE18257) and GSE13513 for rat liver (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13513).
Additional files

Additional file 1: Figure S1. Data Quality Assessment: Mouse, Kidney.
Comparison of distributions of probe-level log2 intensities before (A) and
after (B) RMA normalization. The average intensities of probes across
ProbeSets were examined using an RNA degradation plot (C). Inter-array
correlation was assessed with a heatmap generated using complete
agglomerative clustering, with Pearson’s coefficient employed as the
similarity metric (D).

Additional file 2: Figure S2. Data Quality Assessment: Mouse, Liver.
Comparison of distributions of probe-level log2 intensities before (A) and
after (B) RMA normalization. The average intensities of probes across
ProbeSets were examined using an RNA degradation plot (C). Inter-array
correlation was assessed with a heatmap generated using complete
agglomerative clustering, with Pearson’s coefficient employed as the
similarity metric (D).

Additional file 3: Figure S3. Data Quality Assessment: Rat, Liver.
Comparison of distributions of probe-level log2 intensities before (A) and
after (B) RMA normalization. The average intensities of probes across
ProbeSets were examined using an RNA degradation plot (C). Inter-array
correlation was assessed with a heatmap generated using complete
agglomerative clustering, with Pearson’s coefficient employed as the
similarity metric (D).

Additional file 4: Figure S4. Data Quality Assessment: Rat, Adipose.
Comparison of distributions of probe-level log2 intensities before (A) and
after (B) RMA normalization. The average intensities of probes across
ProbeSets were examined using an RNA degradation plot (C). Inter-array
correlation was assessed with a heatmap generated using complete
agglomerative clustering, with Pearson’s coefficient employed as the
similarity metric (D). Presence of an outlier array was evident in the
L-E group (RAE2302_083106W_AO07.CEL).

Additional file 5: Figure S5. Data Quality Assessment: Rat,
Hypothalamus. Comparison of distributions of probe-level log2 intensities
before (A) and after (B) RMA normalization. The average intensities of
probes across ProbeSets were examined using an RNA degradation plot
(C). Intra-array correlation was assessed with a heatmap generated using
complete agglomerative clustering, with Pearson’s coefficient employed
as the similarity metric (D).
Additional file 6: Figure S6. Data Quality Assessment: Rat, Adipose,
Outlier Removed. Comparison of distributions of probe-level log2 intensities
before (A) and after (B) RMA normalization with the outlier array removed
(RAE2302_083106W_AO07.CEL). The average intensities of probes across
ProbeSets were examined using an RNA degradation plot (C). Intra-array
correlation was assessed with a heatmap generated using complete
agglomerative clustering, with Pearson’s coefficient employed as the
similarity metric (D). Removal of the outlier array improved overall
spatial and distributional homogeneity.

Additional file 7: Table S1. Annotated Genes and Fold Changes:
Mouse, Kidney. The log2 fold changes (M) and q-values of all 17,607
unique and sorted Entrez Gene IDs (GeneID) are listed. Useful gene
information are provided where available, including gene symbol
(Symbol), chromosome, HomoloGene ID (HID) and gene full name
(FullName).

Additional file 8: Table S2. Annotated Genes and Fold Changes:
Mouse, Liver. The log2 fold changes (M) and q-values of all 17,607 unique
and sorted Entrez Gene IDs (GeneID) are listed. Useful gene information
are provided where available, including gene symbol (Symbol),
chromosome, HomoloGene ID (HID) and gene full name (FullName).

Additional file 9: Table S3. Annotated Genes and Fold Changes: Rat,
Liver. The log2 fold changes (M) and q-values of all 12,560 unique and
sorted Entrez Gene IDs (GeneID) are listed. Useful gene information are
provided where available, including gene symbol (Symbol), chromosome,
HomoloGene ID (HID) and gene full name (FullName).

Additional file 10: Table S4. Annotated Genes and Fold Changes: Rat,
Adipose. The log2 fold changes (M) and q-values of all 12,560 unique and
sorted Entrez Gene IDs (GeneID) are listed. Useful gene information are
provided where available, including gene symbol (Symbol), chromosome,
HomoloGene ID (HID) and gene full name (FullName).

Additional file 11: Table S5. Annotated Genes and Fold Changes: Rat,
Hypothalamus. The log2 fold changes (M) and q-values of all 12,560
unique and sorted Entrez Gene IDs (GeneID) are listed. Useful gene
information are provided where available, including gene symbol
(Symbol), chromosome, HomoloGene ID (HID) and gene full name
(FullName).

Additional file 12: Table S6. Chromosome Enrichment.
Hypergeometric testing was used to assess chromosomal bias of
significant genes. The table reports the observed counts, expected
counts and adjusted p-values of the test.

Additional file 13: R Code for Generating Bootstrap P-value. The R
code used to generate the bootstrap p-value for the overlap between
three rat tissues.

Additional file 14: Figure S7. Differential Power Analysis: Rat, Adipose.
To assess the effect of removing one L-E outlier (RAE2302_083106W_AO07.
CEL) on statistical power, one array from the H/W group was systematically
removed and the data re-normalized and re-fitted. Similar patterns of
q-value densities were observed following each removal, justifying
proceeding with subsequent analyses using all H/W arrays.

Additional file 15: Figure S8. Transcription Factor Binding Analysis:
Rats, Motif Counts. Kernel densities of counts for AHRE-I (Core), AHRE-I
(Extended), AHRE-I (Full) and AHRE-II motifs are shown for significant (A)
and non-significant (B) genes in rat tissues. The median is represented by
the circular point while the 90th percentile is represented by the diamond
point.

Additional file 16: Figure S9. Transcription Factor Binding Analysis:
Mice, Motif Counts. Kernel densities of counts for AHRE-I (Core), AHRE-I
(Extended), AHRE-I (Full) and AHRE-II motifs are shown for significant (A)
and non-significant (B) genes in mouse tissues. The median is represented
by the circular point while the 90th percentile is represented by the
diamond point.

Additional file 17: Figure S10. Transcription Factor Binding Analysis:
Rats, Motif Scores. Kernel densities of scores for AHRE-I (Core), AHRE-I
(Extended), AHRE-I (Full) and AHRE-II motifs are shown for significant
(A) and non-significant (B) genes in rat tissues. The median is represented
by the circular point while the 90th percentile is represented by the
diamond point.
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Additional file 18: Figure S11. Transcription Factor Binding Analysis:
Mice, Motif Scores. Kernel densities of scores for AHRE-I (Core), AHRE-I
(Extended), AHRE-I (Full) and AHRE-II motifs are shown for significant
(A) and non-significant (B) genes in mouse tissues. The median is represented
by the circular point while the 90th percentile is represented by the
diamond point.

Additional file 19: Table S7. GO Analysis: Mouse, Kidney. A list of
significantly enriched GO terms (FDR < 0.01) with reported enrichment,
statistical significance, GO term definition, list of changed genes and
parent GO term information.

Additional file 20: Table S8. GO Analysis: Mouse, Liver. A list of
significantly enriched GO terms (FDR < 0.01) with reported enrichment,
statistical significance, GO term definition, list of changed genes and
parent GO term information.

Additional file 21: Table S9. GO Analysis: Rat, Adipose. A list of
significantly enriched GO terms (FDR < 0.01) with reported enrichment,
statistical significance, GO term definition, list of changed genes and
parent GO term information.

Additional file 22: Table S10. GO Analysis: Rat, Liver. A list of
significantly enriched GO terms (FDR < 0.01) with reported enrichment,
statistical significance, GO term definition, list of changed genes and
parent GO term information.

Additional file 23: Figure S12. p-Value Sensitivity: count. The counts of
significant genes after linear fitting and multiple testing correction were
determined to be threshold-independent based on p-value sensitivity
analysis.

Additional file 24: Figure S13. p-Value Sensitivity: direction. p-value
sensitivity analysis revealed that the results were equally sensitive for
detection of up- and down-regulated genes.

Additional file 25: Figure S14. Raw Counts of Overlapping Genes. The
counts of genes common to two tissues are shown for every tissue pair,
with the magnitude of overlap represented by spot size and background
shade denoting q-values calculated from hypergeometric testing.

Additional file 26: Figure S15. Gene Overlap Between Datasets.
Overlapping genes are shown for mouse liver vs. mouse kidney (A),
mouse liver vs. rat hypothalamus (B), mouse kidney vs. rat adipose (C), rat
adipose vs. rat hypothalamus (D), mouse kidney vs. rat hypothalamus (E),
rat adipose vs. rat liver (F), mouse kidney vs. rat liver (G), rat liver vs. rat
hypothalamus (H) and mouse liver vs. rat adipose (I). Blue and red
represent mouse and rat tissues respectively. Dotted, solid, dashed and
no lines are used to visually differentiate liver, adipose, hypothalamus and
kidney tissues.

Additional file 27: Figure S16. Raw Counts of Overlapping GO terms.
The counts of GO terms common to two tissues are shown for every
tissue pair, with the magnitude of overlap represented by spot size and
background shade denoting q-values calculated from hypergeometric
testing.

Additional file 28: Figure S17. GO Term Overlap Between Datasets.
Overlapping GO terms are shown for mouse liver vs. mouse kidney (A),
mouse kidney vs. rat liver (B), mouse liver vs. rat adipose (C), mouse
kidney vs. rat adipose (D), mouse kidney vs. rat hypothalamus (E), mouse
liver vs. rat hypothalamus (F), mouse liver vs. rat liver (G), rat adipose vs.
rat hypothalamus (H), rat liver vs. rat adipose (I) and rat liver vs. rat
hypothalamus (J). Blue and red represent mouse and rat tissues
respectively. Dotted, solid, dashed and no lines are used to visually
differentiate liver, adipose, hypothalamus and kidney tissues.

Additional file 29: Figure S18. Fraction of genes with TFBS motifs. A
comparison of genes differentially-abundant across multiple tissues and
their fractions of observed AHRE-I (Core) (A), AHRE-I (Extended) (B) and
AHRE-II (C) motifs.
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