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Abstract
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Background: Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the
etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is
subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of
the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this
pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry

to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/
nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance.

Results: We characterized 835 proteins, representing approximately 41% of the predicted proteome of C.
pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome
of DETA/NO-induced cells, and a further 58 proteins were differentially requlated between the DETA/NO and control
conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress
was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific
nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional

Conclusions: Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In
addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can
influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.
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Background

Corynebacterium pseudotuberculosis is a Gram-positive,
facultative, intracellular pathogen belonging to the Coryne-
bacterium, Mycobacterium, Nocardia, or CMN, group. This
group belongs to the phylum Actinobacteria. The defining
characteristics of the CMN group are a specific cell wall
organization, consisting of peptidoglycan, arabinogalactan,
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and mycolic acids, and a high chromosomal G + C content
[1]. C. pseudotuberculosis ovis is the etiological agent of the
chronic infectious disease caseous lymphadenitis, which af-
fects small ruminants worldwide. As a result, C. pseudotu-
berculosis ovis is responsible for significant economic losses
in the goat and sheep industries, mainly stemming from de-
creased meat, wool, and milk production, reproductive dis-
orders, and carcass contamination [1,2]. Bacterial factors
that contribute to the virulence of C. pseudotuberculosis in-
clude phospholipase D [3], toxic cell wall lipids [4], and the
iron transporter fugABC complex [5].
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In silico analysis of the genome of C. pseudotuberculo-
sis ovis 1002 [6], as well as the pan-genome analysis of
15 other strains of C. pseudotuberculosis [7], identified
genes involved in the response of this pathogen to differ-
ent types of stress. Recently, the functional genome of C.
pseudotuberculosis ovis 1002 was evaluated at the tran-
scriptional level following exposure to different types of
abiotic stress, including heat, osmotic, and acid stresses
[8]. This allowed the characterization of several genes in-
volved in distinct biological processes that favor the sur-
vival of the pathogen under the given stress condition.

However, during the infection process, C. pseudotubercu-
losis encounters nitrosative stress, caused by nitric oxide
(NO), in the macrophage intracellular environment. A re-
active nitrogen species (RNS) found in mammalian sys-
tems, NO is produced from L-arginine by NO synthases
(NOS), and is present in three isoforms: endothelial NOS,
neuronal NOS, involved in blood pressure control and
neural signaling, and inducible NOS, associated with host
defenses [9,10]. The NO produced during bacterial infec-
tion has antimicrobial properties, killing pathogens by caus-
ing damage to DNA, RNA, and proteins [11]. However,
several pathogens contain pathways that allow bacterial sur-
vival under nitrosative stress conditions, including NO-
sensitive transcriptional regulators [12], DNA and protein
repair systems [13], and antioxidant systems [14].

Currently, little is known about the factors involved in
the resistance of C. pseudotuberculosis to nitrosative stress.
Pacheco et al. [15] showed that the alternative sigma (o)
factor, 6", plays a role in the survival of C. pseudotuberculo-
sis in the presence of RNS. A ¢" null strain showed in-
creased susceptibility to nitric oxide compared with the
wild-type, and, in an in vivo assay, was unable to persist in
mice. However, in iNOS-deficient mice, the mutant strain
maintained its virulence [15]. In the same study, the extra-
cellular proteome of C. pseudotuberculosis was analyzed in
response to nitrosative stress, allowing the characterization
of proteins that contribute to the adaptive processes of the
pathogen in this environment [15].

To complement the results obtained in previous stud-
ies, and to identify factors involved in the survival of C.
pseudotuberculosis under nitrosative stress conditions,
we applied high-throughput proteomics using an liquid
chromatograph high definition mass spectrometry (LC-
HDMSF) (data-independent acquisition, in ion mobility
mode) approach to evaluate the global expression of the
functional genome of C. pseudotuberculosis ovis 1002 at
the protein level under nitrosative stress conditions.

Methods

Bacterial strain and growth conditions

C. pseudotuberculosis biovar ovis strain 1002, isolated
from a goat, was maintained in brain heart infusion broth
(BHIL; HiMedia Laboratories Pvt. Ltd., Mumbai, India) at
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37°C. For stress-resistance assays, strain 1002 was culti-
vated in a chemically-defined medium (CDM), containing
Na,HPO,4.7H,O (1293 g/l), KH,PO, (2.55 g/1), NH,Cl
(1 g/1), MgSO,.7H,0O (0.20 g/1), CaCl, (0.02 g/1), 0.05% (v/
v) Tween 80, 4% (v/v) MEM vitamin solution (Invitrogen,
Gaithersburg, MD, USA), 1% (v/v) MEM amino acid solu-
tion (Invitrogen), 1% (v/v) MEM non-essential amino acid
solution (Invitrogen), and 1.2% (w/v) glucose, at 37°C [16].

Nitric oxide assay and preparation of whole bacterial lysates
Diethylenetriamine/nitric oxide adduct (DETA/NO) re-
sistance of C. pseudotuberculosis was characterized as
previously described [15]. When strain 1002 reached ex-
ponential growth phase (ODggo = 0.6) in the chemically-
defined medium, the culture was divided into two ali-
quots (control condition, strain 1002_Ct; NO exposure,
strain 1002_DETA/NO), and DETA/NO was added to
the appropriate aliquot to a final concentration of
0.5 mM. The growth of strain 1002 in the presence of
DETA/NO was then evaluated for 10 h. For proteomic
analysis, protein was extracted after 1 h of exposure to
DETA/NO. Both the control and DETA/NO cultures
were centrifuged at 4,000 x g for 10 min at 4°C. The cell
pellets were washed in phosphate buffered saline and
then resuspended in 1 ml of lysis buffer (7 M urea, 2 M
thiourea, 4% (w/v) CHAPS, and 1 M dithiothreitol
(DTT)). The cells were then sonicated using five 1-min
cycles on ice. The resulting lysates were centrifuged at
14,000 x g for 30 min at 4°C. The extracted proteins
were then submitted to centrifugation at 13,000 x g for
10 min using a spin column with a threshold of 10 kDa
(Millipore, Billerica, USA). Proteins were denatured with
(0.1% (w/v) RapiGEST SF surfactant at 60°C for 15 min
(Waters, Milford, CA, USA), reduced using 10 mM
DTT for 30 min at 60°C, and alkylated with 10 mM
iodoacetamide in a dark chamber at 25°C for 30 min.
Next, the proteins were enzymatically digested with 1:50
(w/w) trypsin at 37°C for 16 hours (sequencing grade modi-
fied trypsin; Promega, Madison, WI, USA). The digestion
process was stopped by adding 10 pl of 5% (v/v) Trifluoroa-
cetic acid (TFA) (Fluka, Buchs, Germany). Glycogen phos-
phorylase was added to the digests to a final concentration
of 20 fmol/ul as an internal standard for normalization
prior to each replicate injection. Analysis was carried out
using a two-dimensional reversed phase (2D RP-RP)
nanoUPLC-MS (Nano Ultra Performance Liquid Chroma-
tography) approach, using multiplexed HDMS" label-free
quantitation as described previously [17].

LC-HDMSF analysis and data processing

Qualitative and quantitative by 2D nanoUPLC tandem
nanoESI-HDMS® (Nano Electrospray High Definition
Mass Spectrometry) experiments were conducted using
a 1-h reversed phase (RP) acetonitrile (0.1% v/v formic
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acid) gradient (7-40% (v/v)) at 500 nl/min on a
nanoACQUITY UPLC 2D RP x RP Technology system
[18]. A nanoACQUITY UPLC High Strength Silica
(HSS) T3 1.8 ym 75 pmx 15 cm column (pH 3) was
used in conjunction with a RP XBridge BEH130 C18
5 um 300 pm x 50 mm nanoflow column (pH 10). Typ-
ical on-column sample loads were 250 ng of the total
protein digests for each of the five fractions (250 ng/
fraction/load). For all measurements, the mass spec-
trometer was operated in resolution mode, with a typical
effective m/z conjoined ion-mobility resolving power of
at least 1.5 M FWHM, an ion mobility cell filled with ni-
trogen gas, and a cross-section resolving power at least
40 Q/AQ. All analyses were performed using nano-
electrospray ionization in the positive ion mode nanoESI
(+), and a NanoLockSpray (Waters) ionization source.
The lock mass channel was sampled every 30 s. The
mass spectrometer was calibrated with a MS/MS
spectrum of [Glu']-fibrinopeptide B (Glu-Fib) human
solution (100 fmol/pul) delivered though the reference
sprayer of the NanoLockSpray source. The double-
charged ion ([M + 2H]?* = 785.8426) was used for initial
single-point calibration, and MS/MS fragment ions of
Glu-Fib were used to obtain the final instrument calibra-
tion. Multiplexed data-independent scanning with added
specificity and selectivity of a non-linear “T-wave” ion
mobility (HDMSF) experiments were performed using a
Synapt G2-S HDMS mass spectrometer (Waters). The
mass spectrometer was set to switch automatically be-
tween standard MS (3 eV) and elevated collision ener-
gies HDMS" (19-45 eV) applied to the transfer “T-wave”
collision-induced dissociation cell with argon gas. The
trap collision cell was adjusted for 1 eV using a millisec-
ond scan time adjusted based on the linear velocity of
the chromatography peak delivered though nanoAC-
QUITY UPLC, to obtain a minimum of 20 scan points
for each single peak at both low-energy and high-energy
transmission, followed by an orthogonal acceleration
time-of-flight from 50-2000 m/z. The radio frequency
(RF) offset (MS profile) was adjusted so that the
nanoUPLC-HDMS" data were effectively acquired from
an m/z range of 400-2000, which ensured that any
masses observed in the high energy spectra of less than
400 m/z arose from dissociations in the collision cell.

Data processing

Protein identification and quantitative data packaging
were generated using dedicated algorithms [19,20], and
by searching against a C. pseudotuberculosis database
with default parameters for ion accounting [21]. The da-
tabases were reversed “on-the fly” during the database
query searches, and appended to the original database to
assess the false positive rate of identification. For proper
processing of spectra and database searching conditions,
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ProteinLynxGlobalServer v.2.5.2 (PLGS) with IdentityE
and Expression” informatics v.2.5.2 (Waters) were used.
UniProtKB (release 2013_01) with manually-reviewed
annotations was also used, and the search conditions were
based on taxonomy (C. pseudotuberculosis), maximum
missed cleavages by trypsin allowed up to one, and vari-
able carbamidomethyl, acetyl N-terminal, phosphoryl, and
oxidation (M) modifications [21,22]. The Identity" algo-
rithm with Hi3 methodology was used for protein quanti-
tation. The search threshold for accepting each individual
spectrum was set to the default value, with a false-positive
value of 4%. Biological variability was addressed by analyz-
ing each culture three times. Normalization was per-
formed using the Expression™ tool with a housekeeping
protein that showed no significant difference in abundance
across all injections. The proteins obtained were organized
by the PLGS Expression® tool algorithm into a statistically
significant list corresponding to increased and decreased
regulation ratios among the different groups. The quanti-
tation values were averaged over all of the samples, and
the quoted standard deviations at p <0.05 in the Expres-
sion® software refer to the differences between biological
replicates. Only proteins with a differential expression log,
ratio between the two conditions greater than or equal to
1.2 were considered [23].

Bioinformatics analysis

The identified proteins were analyzed using the predic-
tion tools SurfG+ v1.0 [24], to predict sub-cellular
localization, and Blast2GO, to predict gene ontology
functional annotations [25]. The PIPS software predicted
proteins present in pathogenicity islands [26]. The
protein-protein interaction network was constructed
using interolog mapping methodology and metrics ac-
cording to Rezende et al. [27]. A preview of the inter-
action network was generated using Cytoscape version
2.8.3 [28], with a spring-embedded layout. CMRegNet
was used to predict gene regulatory networks [29].

Results

Effects of nitric oxide on the growth of C.
pseudotuberculosis

In this study, we examined the exponential growth of C.
pseudotuberculosis strain 1002 under nitrosative stress.
The growth and cell viability of strain 1002 was moni-
tored for 10 h with and without DETA/NO supplemen-
tation (Figure 1). The control culture reached stationary
phase by 5 h post-inoculation, while the culture contain-
ing DETA/NO did not reach stationary phase until ap-
proximately 10 h post-inoculation. However, these
results showed that although DETA/NO (0.5 mM) af-
fected the growth rate, C. pseudotuberculosis likely
contains factors that promote survival in the presence
of RNS.
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Figure 1 Growth and survival profile of C. pseudotuberculosis during NO exposure. (A) Growth of C. pseudotuberculosis after 10 h exposure
to 0.5 mM DETA/NO. (B) Survival of C. pseudotuberculosis evaluated by colony forming units. The results shown in A and B represent an average
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Label-free proteomic analysis of C. pseudotuberculosis
grown under nitrosative stress conditions

Total proteome digests from three biological replicates
of each individual condition were subjected to LC/MSF.
In total, we identified more than 31,000 peptides, with a
normal distribution of 10 ppm error of the total identi-
fied peptides. Peptides as source fragments, peptides
with a charge state of at least [M + 2H]**, and the ab-
sence of decoys were factors considered to increase data
quality. A combined total of 2,063 proteins were present
in at least two of the three biological replicates for the
two conditions tested, with an average of 15 peptides per
protein, and a false discovery rate (FDR) of 0% when
decoy detection was set at agreement of two out of three
replicates. The proteins referred to as exclusive to one
condition or another was only identified in one condi-
tion within the detection limits of the experiment
(LOD). The dynamic range of the quantified proteins is

about 3 logs, and proteins unique to one condition or an-
other were only observed above the LOD of the experi-
ment, which was determined by the sample normalization
prior to injection. Therefore, in our study, all samples were
normalized using “scouting runs” taking into account the
stoichiometry between the intensity and molarity propor-
tion prior to the replicate runs per condition. The dynamic
range was similar for each sample, and the total amount
of sample used in fmol was nearly the same. We generate
a graph of protein amounts of the identified proteins from
all samples against protein ranks (Figure 2A).

After, analysis by PLGS v2.5.2 software, the 2,063 pro-
teins originally identified in two out of three replicates
were narrowed down to 699 proteins with p<0.05.
Among these proteins, 44 were up-regulated in the pres-
ence of DETA/NO, while 14 proteins were down-
regulated (Table 1, Figure 2B and C). The remaining 641
proteins with p <0.05 and log, < 1.2 that were common to
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Figure 2 2D nanoUPLC HDMSE analysis showing: (A) Dynamic range of the method based on protein abundance estimates, data
points derived from LC-HDMSF analysis. (B and C) Proteins that were significantly differentially-regulated during NO exposure. The distribution
of identified proteins with p < 0.05, and differentially-regulated proteins with an I:C log, ratio < 1.2 in relation to the number of peptides identified
for each protein. (B) Proteins with p < 0.05 and an I:C log, ratio < 1.2. (C) Proteins with p < 0.05 and an I:.C log, ratio > 1.2.

the two treatments are summarized in Additional file 1. In
addition to the 699 identified proteins that were present
under both control and stress conditions, 34 proteins were
exclusively expressed under the control conditions, and
102 proteins were exclusively expressed in response to
DETA/NO stress (Additional files 2 and 3). Thus, our final
list of proteins is composed of 835 proteins from C.
pseudotuberculosis.

In silico analysis of LC-HDMSF data

The 835 proteins were then analyzed using the SurfG+
tool to predict sub-cellular localization. According with
SurfG+, our data set included approximately 41% of the
predicted proteome of strain 1002 (Figure 3A). In addition,
we characterized proteins belonging to the following cell
fractions: cytoplasmic (CYT) (668 proteins), membrane

(MEM) (59 proteins), potentially surface-exposed (PSE) (69
proteins), and secreted (SEC) (39 proteins) (Figure 3B).

To evaluate whether the proteins identified in our prote-
omic analysis could represent a protein set expressed by
C. pseudotuberculosis during exposure to nitrosative
stress, we correlated our proteomic data with the pre-
dicted core-genomes of 15 C. pseudotuberculosis strains
[7]. Of the open reading frames (ORFs) coding for the
differentially-regulated proteins and exclusive proteome of
DETA/NO-exposed cells, 86% (50/58 proteins) and 82%
(84/102 proteins) were identified, respectively, in the core-
genome of C. pseudotuberculosis (Figure 3C and D). In
addition, of the 835 total proteins identified from the prote-
ome of strain 1002 following exposure to nitrosative stress,
83% (696 proteins) of the ORFs coding for these proteins
were present in the core-genome of C. pseudotuberculosis,
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this result correspond approximately 46% of the predicted
core-genome of C. pseudotuberculosis (Figure 3E).

Functional classification of the proteome of

C. pseudotuberculosis expressed under exposure to
nitrosative stress

The strain 1002 proteome was functionally classified using
the Blast2Go tool [24]. A large proportion of the
differentially-regulated proteins and those exclusive to one
condition were identified as hypothetical proteins. Accord-
ing to the biological function prediction, 18 biological pro-
cesses were classified as differentially regulated (Figure 4A).
In addition, the analysis of the exclusive proteome of each
condition revealed 12 common processes between the con-
trol and stress conditions (Figure 4B). However, seven bio-
logical processes were identified only in stress-exposed cells.
These processes were antibiotic metabolism (six proteins),
nucleotide metabolism (five proteins), oxidative phosphoryl-
ation (three proteins), translation (three proteins), glycolysis
pathways (one protein), iron-sulfur clusters (one protein),
and starch and sucrose metabolism (one protein). Among
all processes identified, DNA synthesis and repair proteins
(14 proteins) were most common. An overview of the C.
pseudotuberculosis response to nitrosative stress according
with the proteins identified is shown in Figure 5.

The proteins that were grouped into of transcriptional
process were evaluated by CMRegNet and among regu-
lators identified; we identified the GntR- family regula-
tory protein (D9Q5B7_CORP1), genes regulated by
GntR-type regulators are usually involved in carbohy-
drate metabolism. The CMRegNet analysis showed that
of the four genes under the control of this regulator, the
N-acetylglucosamine kinase (D9Q5B6_CORP1) protein
was highly expressed by C. pseudotuberculosis in response
to DETA/NO. We identified other regulator the LexA re-
pressor (D9Q8W2_CORP1) that was down regulated in
the DETA/NO condition. According with CMRegNet, two
proteins regulated by this repressor were detected in the
DETA/NO proteome specific, pyridoxal biosynthesis lyase
(PdxS; D9Q5T9_CORP1) and DNA translocase (D9Q
876_CORP1). Others proteins under the control of this re-
pressor was detected, however not presented significant
differential regulation like RecA protein

Protein-protein interaction network

To investigate the interactions among the proteins iden-
tified as exclusive and differentially regulated in cells ex-
posed to DETA/NO, we generated a protein interaction
network using Cytoscape. The interactome analysis re-
vealed 67 protein-protein interactions (Figure 6). DnaB/
DNA helicase (D9Q578_CORP1), identified in the ex-
clusive proteome for strain 1002_DETA/NO, and PyrE/
orotate phosphoribosyltransferase (D9Q4S2_CORP1),
which was down-regulated in strain 1002_DETA/NO,
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showed the greatest number of interactions with other
proteins (eight interactions each). Moreover, both of
these proteins interact with proteins that are involved in
metabolic processes, DNA processes, antibiotic metab-
olism, cell cycling, and translation.

Discussion

C. pseudotuberculosis is exposed to different forms of
oxidative and nitrosative stress during the infection
process. A previous study showed that C. pseudotubercu-
losis resists nitrosative stress generated by the NO-donor
DETA/NO, and that a low concentration of DETA/NO
(100 uM) induces a change in the extracellular proteome
this pathogen [15]. To better understand the physiology
of C. pseudotuberculosis in response to nitrosative stress,
we analyzed the proteome of whole bacterial lysates of
C. pseudotuberculosis in response to exposure to DETA/
NO (0.5 mM).

The strain 1002 proteome under nitrosative stress reveals
proteins involved in bacterial defense against DNA damage
Proteomic analysis identified proteins involved in DNA
repair systems in both the exclusive proteome of DETA/
NO-exposed cells and in the differentially-regulated prote-
ome. We detected the proteins formamidopyrimidine-
DNA glycosylase (Fpg) (D9Q598_CORP1), RecB (D9Q8
C9_CORP1), and methylated-DNA-protein-cysteine meth-
yltransferase (Ada) (D9Q923_CORP1), the genes for which
were previously identified in a transcriptome analysis of
strain 1002 in response to different abiotic stresses [8].
Activation of these proteins in response to nitrosative
stress confirms that they belong a group of general
stress-response proteins in C. pseudotuberculosis.

The expression of Fpg was up-regulated in response to
acid stress [8]. We also identified endonuclease III (Endo
III) (D9Q615_CORP1), which, in addition to Fpg, is in-
volved in the base excision repair (BER) system of various
bacteria. This system cleaves N-glycosidic bonds from
damaged bases, allowing their excision and replacement. In
Salmonella enterica serovar Typhimurium, the BER system
repairs DNA damaged by exposure to NO. In addition, an
S. Typhimurium strain defective in Fpg demonstrated re-
duced virulence in a murine model [30]. Our interactome
analysis showed that Endo III had one of the highest num-
bers of interactions with other proteins, including interac-
tions with proteins involved in DNA replication such zinc
metalloprotease (D9Q378_CORP1) and DNA translocase
(D9Q8Z6_CORP1), suggesting that this protein could play
an important role in the defense pathway against RNS.

The Ada and RecB protein were up-regulated in re-
sponse to osmotic stress [8]. Ada is involved in the re-
pair of DNA-methylation damage, this protein have
plays important in the pathway DNA damage [31]. RecB
is a component of the RecBC system, which is part of
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Table 1 Proteins identified as differentially-expressed following exposure to nitrosative stress
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(b)

Uniprot access Proteins Score Peptides log, DETA: p-value® Subcellular Gene name Genome
cT® localization'®

Transport

FOY273_CORP1 Cell wall channel 5321.88 4 142 1 (@7} porH Shared

Cell division

D9Q7G2_CORP1 Hypothetical protein 2417.8 21 1.34 1 CYT Cp1002_0716 Core

DNA synthesis

and repair

D9Q5V6_CORP1 Nucleoid-associated protein 2327.08 5 1.52 1 YT ybaB Core

D9Q923_CORP1 Methylated-DNA-protein-cysteine 6332.83 8 1.22 1 YT ada Core
methyltransferase

D9Q4P0_CORP1 7,8-dihydro-8-oxoguanine- 1640.23 8 -1.97 0 CYT mutT Core
triphosphatase

Transcription

DoQ8W2_CORP1 LexA repressor 800.31 6 -1.37 0.04 [@7) lexA Shared

D9Q5L4_CORP1 ECF family sigma factor k 364.82 8 —-1.58 0 YT sigk Core

Translation

D9Q753_CORP1 Fkbp-type peptidyl-prolyl 711334 3 243 1 [@g) fkbP Core
cis-trans isomerase

D9Q830_CORP1 50S ribosomal protein L35 2271.66 1 1.36 1 YT roml Core

D9Q7W1_CORP1 Aspartyl glutamyl-tRNA 3100.8 7 1.24 0.99 (@2} gatC Core
amidotransferase subunit C

D9Q582_CORP1 50S ribosomal protein L9 4108246 10 -1.25 0 [@7) oll

D9Q6H6_CORP1 30S ribosomal protein S8 45333.23 9 -1.34 0 YT rpsH Core

Cell communication

D9Q559_CORP1 Hypothetical protein 1402.27 6 1.99 1 PSE Cp1002_2005 Core

D9Q5U9_CORP1 Thermosensitive gluconokinase 206835 7 1.96 0.99 YT gntk Core

D9Q668_CORP1 Sensory transduction protein 254092 13 145 1 YT regX3 Core
RegX3

Detoxification

D9Q7U6_CORP1 Thioredoxin 1835.7 1M 1.50 1 (@7} trxA Core

D9Q4E5_CORP1 Glutathione peroxidase 142627 10 147 1 [@7) Cp1002_1731 Core

D9Q5T5_CORP1 Glyoxalase bleomycin 2417.77 1 1.28 1 CYT Cp1002_0124  Shared
resistance protein
dihydroxybiphenyl dioxygenase

D9Q5N2_CORP1 NADH dehydrogenase 703094 12 1.25 1 YT noxC Shared

D9Q680_CORP1 Glutaredoxin-like domain protein 292.69 2 -1.91 0 (@73 Cp1002_0272 Core

Glycolysis

pathways

D9Q5B6_CORP1 N-Acetylglucosamine kinase 228.69 6 1.74 0.98 YT nankK Core

D90Q4U9_CORP1 Alcohol dehydrogenase 236.02 17 1.22 1 YT adhA Shared

Iron-sulfur clusters

DOQ7L6_CORP1 Ferredoxin 36927.57 7 210 1 YT fdxA Core

Antibiotic

resistance

D9Q827_CORP1 Metallo-beta-lactamase 657.33 6 -2.95 0 YT Cp1002_0937 Core

superfamily protein
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Table 1 Proteins identified as differentially-expressed following exposure to nitrosative stress (Continued)

Amino acid
metabolism

D9Q622_CORP1
D9Q4N1_CORP1
D9Q6H4_CORP1
Lipid metabolism
D9Q520_CORP1

Oxidative
phosphorylation

D9Q8I5_CORP1

Specific metabolic
pathways

D9Q5M9_CORP1
D9Q721_CORP1
D9Q689_CORP1

D9Q4X1_CORP1

Nucleotide
metabolism

D9Q4S2_CORP1
Unknown function
D9Q6Y9_CORP1
D9Q6C7_CORP1
D9Q3P3_CORP1
D9Q5V4_CORP1
D9Q610_CORP1
D9Q8D8_CORP1
D9Q6eW1_CORP1
D9Q6V5_CORP1
D9Q5R7_CORP1
D9Q917_CORP1
D9Q3P5_CORP1
D9Q7U5_CORP1
D9Q7L1_CORP1
D9Q3P6_CORP1
D9Q6Z7_CORP1
D9Q8V8_CORP1
D9Q6C8_CORP1
D9Q5H0_CORP1
D9Q4D5_CORP1
Others
D9Q5N5_CORP1
D9Q922_CORP1

Phosphoserine phosphatase
Carboxylate-amine ligase

L-serine dehydratase |

Glycerophosphoryl
diester phosphodiesterase

Cytochrome aa3 controlling
protein

Inositol-3-phosphate synthase
Hypothetical protein

3-Hydroxyisobutyrate
dehydrogenase

Urease accessory protein UreG

Orotate phosphoribosyltransferase

Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein
Hypothetical protein

Iron-regulated MEM protein

CobW/HypB/UreG,
nucleotide-binding

949.15
205.54
284.11

2417.8

676.2

7473.38
46029
2137.24

1532.39

2618.52

491.89
689.6
5703.38
994.52
27217.36
232412
930391
1346.2
2090.7
555.89
1121.7
517.06
15693.97
1729.59
1835.7
293.23
413.31
12376.2
10161.64

992.54
1771.22

16

21

18
17
12

10
25

N I Te IS, B o N e B o W= o B N N N

EENeN

20

098

0.99

o O o o

PSE
YT
MEM

PSE

MEM

YT
SEC
CYT

(@2}

YT

(@7}
PSE
YT
(@2}
YT
YT
(@7}

YT
PSE
SEC
YT
SEC
YT
YT

PSE
CYT
(@7}

PSE
(@2}

serB
Cp1002_1819
sdaA

glpQ

Cp1002_1095

inol
Cp1002_0573

mmsB

ureG

pyrE

Cp1002_0540
Cp1002_0320
Cp1002_1474
Cp1002_0143
Cp1002_0202
Cp1002_1048
Cp1002_0512
Cp1002_0506
Cp1002_0105
Cp1002_1281
Cp1002_1476
Cp1002_0852
Cp1002_0766
Cpl002_1477
Cp1002_0548
Cp1002_1221
Cp1002_0321
Cp1002_0007
Cp1002_1721

piuB
Cp1002_1286

Core
Core

Core

Core

Core

Core
Core

Core

Core

Core

Core
Core
Core
Core
Core
Shared
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Core
Shared

Core

Core
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Table 1 Proteins identified as differentially-expressed following exposure to nitrosative stress (Continued)

D9Q8C4_CORP1 Prokaryotic ubiquitin-like 2194.86 1 1.84 1 YT pup Core
protein Pup

D9Q7B8_CORP1 Ribosomal-protein-alanine 27911 10 134 1 [@7) rimJ Shared
n-acetyltransferase

D9Q7K9_CORP1 Arsenate reductase 514754 8 132 1 [@72) arsC Core

(a) Ratio values to: strain 1002_DETA/NO:strain 1002_Ct, Log(2) Ratio > 1.5, p > 0.95 = up-regulation, p < 0.05 = down-regulation.
(b) Core-genome analysis of 15 strains of C. pseudotuberculosis: shared = present in two or more strains; core = present in 15 strains of C. pseudotuberculosis.
(c) CYT =cytoplasmic, MEM = membrane, PSE = potentially surface-exposed, SEC = secreted.

the SOS response the more regulatory network encoded
by prokaryotic involved in DNA repair [32]. The RecBC
system acts in the recombination or degradative repair
of arrested DNA replication forks. Studies in S. Typhi-
murium showed that recBC mutant strains are more at-
tenuated than recA mutants in a murine model of
infection [33]. In addition, unlike recA mutants, recBC

which forms part of the general SOS system along with
RecA [35], was down-regulated in C. pseudotuberculosis
cells exposed to DETA/NO. We also detected the RecA
protein (D9Q8Y3_CORP1); however, despite having a p-
value <0.05, the fold-change of —0.50 showed that this pro-
tein was not activated under the experimental conditions.
Studies performed in Mycobacterium tuberculosis showed

that recA was not induced until cells had been exposed to
DETA/NO (0.5 mM) for 4 h, but that hydrogen peroxide
induced the immediate expression of recA [36], suggesting

mutants were susceptible to RNS [34], indicating that
RecBC is highly important in the bacterial response to
nitrosative stress. The LexA repressor (D9Q8W2_CORP1),

o 80 |
£
S
2
g 60 | W Differential proteome
E B Not differential proteome
ok
‘,:, a0 | W Proteome predicted (in silico)
a
g

20 |

0 L

YT MEM PSE SEC

(€) (D) (E)

Shared
genome Shared
14% enome
p . 18% > Not differential
core genome
DETA/NO
37%
Exclusive core Differentially
Differentially regulated proteome Exclusive proteome DETA/NO genome DETA/NO regulat;:.rcaolr;o
6% genome
DETA/NO e

Figure 3 Correlation of in silico predicted data with proteome results. (A) Percentage of coverage of the C. pseudotuberculosis 1002 in silico
proteome. (B) Prediction of the subcellular localization of the proteins identified by LC/MS. (C) Analysis of the differentially-regulated proteins of
cells exposed to DETA/NO in relation to the core genome of C. pseudotuberculosis (shared genome: present in only two strains; core genome:
present in 15 strains of C. pseudotuberculosis). (D) Analysis of the exclusive proteome of cells exposed to DEA/NO in relation to the core-genome
of C. pseudotuberculosis (shared genome: present in only two strains; core genome: present in 15 strains of C. pseudotuberculosis). (E) Percent
coverage of the core-genome of C. pseudotuberculosis in relation to the characterized proteome in vitro.
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relation to a set list of proteins identified as (A) differentially-regulated in DETA/NO-stressed cells and (B) comparison of exclusive biological
process between the two test conditions.

that RecA is involved in the later stages of the nitrosative  transcriptional family is composed of iron-sulfur (Fe-S) clus-
stress response. Nevertheless, CMRegNet analysis identified  ter proteins. These proteins are O,- and NO-sensitive, and
other proteins that are regulated by LexA in the DETA/ allow the sensing of both external environmental signals
NO-specific proteome, including pyridoxal biosynthesis and the redox state for intracellular bacteria [37,38]. In M.
lyase (PdxS; D9Q5T9_CORP1) and DNA translocase  tuberculosis, the reaction of the iron-sulfur cluster of WhiB3

(D9Q8Z6_CORP1). with NO generates a dinitrosyl iron complex (DNIC), which

activates a sensing mechanism in response to the NO, con-
NO-sensitive transcriptional regulators are activated in sequently activating a system of defense against nitrosative
the presence of NO stress [12]. In addition, other in vivo and in vitro studies

To activate these DNA repair systems, it is essential that have also demonstrated that WhiB regulators play a role in
bacteria can detect ROS and RNS, and concomitantly acti-  the adaptation and survival of M. tuberculosis during expos-
vate the transcriptional regulators needed for the expression  ure to redox environments [12,39-41].

of genes involved in protection against these compounds. In We identified other regulators that are activated in re-
the DETA/NO-specific proteome, we detected the transcrip-  sponse to environmental stimuli, such as a MerR-family
tion factor WhiB (D9Q6Y2_CORP1). The WhiB transcriptional regulator (D9Q889_CORP1) and a LysR-
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Figure 5 Overview of C. pseudotuberculosis response to nitrosative stress. All proteins detected by proteomic analysis are marked in red
(differentially-regulated proteins or exclusive to the proteome of DETA/NO-stressed cells).

type transcriptional regulator (LTTR) (D9Q7H8_CORP1).
This regulator was also highly expressed in the transcrip-
tional response of C. pseudotuberculosis 1002 to acid
stress [8]. MerR-type regulators have been described in
the detoxification of toxic metal in several pathogenic and
non-pathogenic bacteria [42]. Other studies have shown
that this class of regulator plays a role in bacterial resist-
ance to oxidative and nitrosative stress [43,44]. LTTRs are
associated with the regulation of several biological pro-
cesses, as well as in the adaptive response of bacteria to
different types of stress [45]. In Vibrio cholerae, LT'TRs are
associated with efflux pump regulation, which contribute
to antimicrobial resistance, and are involved in
colonization of the human host [46]. In pathogens like E.
coli [47], Enterococcus faecalis [48], S. enterica [49], and
Pseudomonas aeruginosa [50], LT'TRs are involved in re-
sistance to oxidative stress.

The detoxification pathways of C. pseudotuberculosis
following NO exposure

Our proteomic analysis identified proteins specifically
expressed by cells exposed to DETA/NO that are involved

in the detoxification process. Two of these proteins were
thioredoxin (trxA) (D9Q7U6_CORP1) and glutathione per-
oxidase (D9Q4E5_CORP1). The thioredoxin and glutathi-
one systems play major roles in thiol and disulfide balance,
respectively [14]. In pathogens such as Helicobacter pylori,
Streptococcus pyogenes, and M. tuberculosis, this system is of
great importance in combating the presence of ROS/RNS
[36,51,52]. A glyoxalase/dioxygenase (D9Q5T5_CORP1)
was identified in the differential proteome of cells exposed
to DETA/NO. This protein was previously detected in the
proteome of C. pseudotuberculosis strain 1002 in response
to 0.1 mM DETA/NO [15]. The presence of this protein
suggests that glyoxalase/dioxygenase plays a role in the re-
sistance of this pathogen to nitrosative stress.

Nevertheless, unlike P. aeruginosa, which contains a
complete denitrification pathway [53], the predicted genome
of C. pseudotuberculosis ovis 1002 revealed a truncated de-
nitrification pathway. However, we detected the nitric-oxide
reductase cytochrome b (NorB) (D9Q5T6_CORP1) in
the exclusive proteome of DETA/NO-stressed cells.
norB, which codes for this nitric-oxide reductase, is or-
ganized into the norCBQDEF operon in Paracoccus
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networks were visualized using Cytoscape.

Figure 6 Protein-protein interactions. Protein-protein interactions of the proteins identified in DETA/NO-exposed cells. Exclusive proteome,
circle; up-regulated, square; and down-regulated, rhombus. The sizes of the nodes represent the degree of interaction for each gene/protein; the
major nodes demonstrate greater interactions. The colors of nodes and lines are in an increasing gradient scale from yellow to green to blue. The

denitrificans [54], and into the norCBD operon in P. aer-
uginosa [55]. The C. pseudotuberculosis genome was
predicted to only contain norB. Moreover, norB is lo-
cated in the CpIl002PiCpl2 pathogenicity island, sug-
gesting horizontal acquisition of the gene by this
pathogen. Nitric-oxide reductase is an important protein
in the denitrification process of some bacteria [56]. In P.
aeruginosa, NorB plays a role in both the growth of the
pathogen in the presence of NO, and in its survival in
macrophages [55]. The flavohemoglobin Hmp is involved
in the NO detoxification pathway in S. Typhimurium, and
levels of Hmp are increased approximately two-fold in

macrophages [57]. Interestingly, in N. meningitidis, NorB
levels are increased ten-fold in macrophages [58], demon-
strating the great power of this protein in the detoxifica-
tion process.

Metabolic profile of C. pseudotuberculosis in response to
nitrosative stress

In addition to the presence of proteins involved in bac-
terial defense and detoxification pathways, strain 1002
needs to undergo metabolic adaptation to favor bacterial
survival. We observed a metabolic readjustment in this
pathogen in the proteomic analysis. Of the proteins
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involved in central carbohydrate metabolism, we de-
tected only phosphoglycerate mutase (D9Q533_CORP1)
and N-acetylglucosamine kinase (D9Q5B6_CORP1) in
the proteome of DETA/NO-exposed cells. Other essen-
tial proteins involved in glycolysis (the Embdem-
Meyerhof pathway), the pentose phosphate pathway, and
the citric acid cycle were not detected. Similar results
were found in a metabolomic study of V. cholerae in re-
sponse to nitrosative stress [59].

However, we hypothesized that C. pseudotuberculosis
uses oxidative phosphorylation to obtain energy. This is
supported by the presence of cytochrome C oxidase
polypeptide I (D9Q486_CORP1), succinate dehydrogen-
ase cytochrome b556 subunit (D9Q650_CORP1), and
ubiquinol-cytochrome C reductase cytochrome C subunit
(D9Q3J7_CORP1) in the exclusive proteome of DETA/
NO-stressed cells, and by the up-regulation of the cyto-
chrome oxidase assembly protein (D9Q8I5_CORPI1)
under the same conditions. However, this oxidative phos-
phorylation may be associated with the bacterial culture
conditions used in this work, in which C. pseudotuberculo-
sis was cultivated in the presence of DETA/NO under aer-
obic conditions. Studies have shown that growing M.
tuberculosis in a low concentration of NO with low levels
of O, can induce anaerobic respiration as a result of
the inhibition of the respiratory proteins cytochrome ¢
oxidase and NADH reductase by irreversible ligation
of NO. The ligation of NO to the respiratory proteins
is an effect that may be both short-term reversible and
long-term irreversible [60]. Thus, we suggest that acti-
vation of the oxidative phosphorylation system may be
a more effective pathway for this pathogen to obtain
energy [61].

Another metabolic adjustment was observed in rela-
tion to amino acid biosynthesis. Transporters and en-
zymes involved in the synthesis of methionine,
tryptophan, and serine were identified. However, the
presence of these proteins can be associated with the
bioavailability of these amino acids during exposure to
NO. In addition, we detected two oligopeptide trans-
port ATP-binding proteins (OppD) (D9Q6G5_CORP1/
D9Q3X0_CORP1) that compose the oligopeptide permease
system (Opp). This complex is associated with the internal-
ization of peptides from the extracellular environment to
be used as a source of carbon and nitrogen in bacterial nu-
trition [62]. We also identified proteins that are cofactors
of metabolism, such as CoaBC (D9Q8L2_CORP1), phos-
phopantetheine adenylyltransferase (D9Q809_CORP1),
and 2-dehydropantoate 2-reductase (D9Q7J9_CORP1).
The presence of these proteins demonstrates activity in
pantothenic acid metabolism and the biosynthesis of coen-
zyme A (CoA). Studies performed in species such as Cor-
ynebacterium diphtheriae [63], Streptococcus haemolyticus
[64], and M. tuberculosis [65] showed that pantothenic

Page 13 of 15

acid and CoA could have an important role in the growth
and viability of these pathogens.

Conclusions

In this work, we applied high-throughput proteomics to
characterize the proteome of C. pseudotuberculosis ovis
1002 following exposure to NO. Our proteomic analysis
generated two profiles, which together validated findings
from previous in silico analyses of C. pseudotuberculosis
ovis 1002. The proteomic profile generated after the
addition of the NO-donor, DETA/NO (0.5 mM), re-
vealed a set of proteins that are involved in distinct bio-
logical process. We detected proteins related to both the
general stress response and to a more specific nitrosative
stress response, which together form a network of factors
that promote the survival of this pathogen under stress
conditions. However, more detailed studies are needed to
assess the true role of these proteins in response to nitro-
sative stress in C. pseudotuberculosis. In conclusion, this
functional analysis of the genome of C. pseudotuberculosis
shows the versatility of this pathogen in the presence of
NO. Moreover, the results presented in this study provide
insights into the processes of resistance of C. pseudotuber-
culosis during exposure to nitrosative stress.

Additional files

Additional file 1: Table S1. Complete list of proteins identified as
significantly altered (p < 0.05).

Additional file 2: Table S2. Unique proteins identified in strain
1002_DETA/NO.

Additional file 3: Table S3. Unique proteins identified in strain 1002
control condition.
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