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Abstract

Background: Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and
maximizes health risk prediction in human.

Results: Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater
using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the

end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and
pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered

determination in mice and zebrafish, respectively.

observed effects.

pollution, Animal models

gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of
environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis
and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA

Conclusions: In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of
low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice
deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the
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Background

In vitro assays for compound toxicity are commonly
based on the assumption that toxicants exposure results
in changes in gene expression, a biological phenomenon
predictive of successive morphological abnormalities [1-3].
Toxicogenomics, defined as changes in genome function
that occur with toxicant interaction [4], is a sensitive, in-
formative and measurable assay to complement traditional
toxicological endpoints [5-7]. These advantages prompted
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the use of toxicogenomics to test the effect of single mole-
cules or simple chemical mixtures [8,9]. The objectives of
transcriptomics in environmental studies (ecotoxicoge-
nomics) are the accomplishment of classical toxicological
and new molecular endpoints in the identification of
exposure-related alterations, and proper consideration of
the complex nature of anthropogenic pollution and bio-
accumulation events [10-17]. Besides environments are fre-
quently contaminated with multiple classes of compounds,
only a limited number of toxicological studies have re-
cently addressed this problem by using omics approaches
to fish species, in environmental field [11,18-20].
Ecotoxicogenomics is faced with determination of spe-
cific patterns of gene expression elicited by environmental
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samples with known or potential toxicity [12]. Transcrip-
tome analysis has been successfully applied in testing low
doses of environmental stressors in biological systems,
thus leading to the identification of biomarkers that are
easily detectable and related to the observed phenotype,
the so called phenotypic anchoring [21,22]. In this process,
the integration of toxicogenomics data from different
models is pivotal to validate deregulated patterns, to chal-
lenge the low signal to noise ratio and to predict potential
risks for human health [23,24]. Mouse and zebrafish stud-
ies indicate that gene expression profile approaches are
successful in identifying chemical-specific patterns of al-
tered gene expression [2,25-27]; for this reason, and for
their genetics and biology, these models are widely ac-
cepted by the scientific community for environmental
toxicology studies [10,28].

In populations living near waste dumpsites, the correl-
ation between the exposure to chemical mixtures and
health disorders has been monitored with different re-
sults [29-32]. Typically, low-level exposure to pollutant
mixtures is frequently unappreciated and little is known
about the consequences of chronic exposure in infants.
Among people exposed to contaminants, infants and
foetuses are thought to be more susceptible to insults
from toxic chemicals because of the period of rapid devel-
opment [33,34]. This is an important issue since the ad-
verse effects of a long-term corollary of foetal/neonatal
exposure to different pollutants can remain undetected till
diseases develop in the adulthood. Several studies have
investigated the leachate composition [35-37] and related
cytotoxicity/mutagenicity in eukaryotic systems, suggesting
the potential of leachate to cause harmful effects to public
health through seepage into groundwater. Poorly concen-
trated pollutants remain undetected while they are trans-
formed and enter the food chain. Moreover, their toxicity
is underestimated if cocktail effect and bioaccumulation
over long-term exposure is not considered.

In the present study, we investigate the effects of expos-
ure to environmental low-level polluted water for distinct
exposure time and developmental windows, with a focus
on liver toxicity in two model systems, mouse and zebra-
fish. Methodologically, we correlate microarray data with
phenotypic and chemical parameters after short-term
exposure of mice and zebrafish, and long-term exposure
of mice, to environmental low-grade polluted water. Our
findings are a proof that toxicogenomics applied to envir-
onmental toxicology studies permits new biomarker iden-
tification and risk assessment in the common situation of
low-grade pollution and different exposure timing.

Results

Toxicogenomic evaluation of “acute” exposure in mice
To investigate the effects of exposure to environmental
polluted waters, samples were collected from dumps
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located upstream (U) and downstream (D) a sanitary
landfill, both insist on the same aquifer. Analyses aimed
at the definition of aromatic and heavy metal contents in
water samples were carried out by GC-MS and ICP-MS
techniques. Additional file 1 reports results representative
of different samplings, underlining the similarity between
U and D waters compared with control water.

The impact of acute exposure to sampled groundwater
was investigated by treating 21 PND CD1 mice for
3 months. Outbred CD1 mice were chosen to avoid the
influence of genetic background on any phenotypic as-
pect. During the treatment, no differences were recorded
in water/food consumption as well as in mortality and
body weight between the two treatment groups com-
pared with control (data not shown).

Since the liver is highly sensitive to toxicant exposure,
gene expression profiling analysis of the “acute response”
was performed on RNAs obtained from 9 livers/group and
using Affymetrix mouse whole genome. Different probe
sets were retrieved in U- and D-treated mice, as shown in
Volcano Plots and related tables (Additional file 2). The
Heatmap and the Venn Diagram highlight many common
and unique Differentially Expressed Genes highlight many
common and unique Differentially Expressed Genes
(DEGs) in U and D group mice (Figure 1A, B). The
observation of U- and D-specific DEGs suggests that
these waters were similar but not identical (Additional
file 1). Common DEGs were further investigated as
true markers of groundwater exposure. Using the In-
genuity Pathway Analysis program (IPA, see Materials
and Methods section), we identified several biofunc-
tions relevant to the data set, including Hepatic System
Disease (p-value =2,73E-03) and Renal and Urological
Disease (p-value =1,37E-03). The IPA analysis of ca-
nonical pathways suggested that transcriptomics-based
evidence of alterations in liver activity may be related
to perturbation of pathways involved in liver stress re-
sponses (Eif2 signalling), or/and to mitochondrial dys-
function (Figure 1C). In the deregulated mitochondrial
pathway, we found alteration of several genes involved
in the respiratory chain, mostly codifying for compo-
nents of the NADH:ubiquinone oxidoreductase (com-
plex I, Ndufafl, Ndufs5, Ndufabl, Ndufb6, Ndufa3). The
liver alteration is also supported by toxfunction prediction
performed within the IPA analysis (Figure 1D). qRT-PCR
analysis of genes related to the two top impinged toxfunc-
tions confirmed microarray data and other IPA tools bio-
informatics observations (Figure 1E).

We analysed hepatic and renal activity in acutely
treated mice by measuring serum alanine and aspartate
transaminases (ALT, AST), alkaline phosphatase (AP),
and urea levels. Values of urea, AP and AST were sig-
nificantly increased in U and D groups (Figure 2A-C),
in agreement with bioinformatics prediction of liver
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Figure 1 Molecular characterization of acutely exposed mice liver. (A) Heatmap showing the expression profiles in Ctrl, U and D waters
treated mice livers. The expression value of each gene is mapped to a colour-intensity value, as indicated by the colour bar. (B) Venn Diagram
showing the probe sets overlap in U (orange) and D (blue) groups compared to the control. (C) Canonical pathways, identified by IPA analysis,
deregulated in liver of U and D waters exposed mice. The left y-axis value is the negative Ig;o(Benjamini-Hochberg corrected p-value). The orange squares
referred to the right y-axis represent the ratio values indicating the percentage of genes in the pathway that are also deregulated. (D) Toxfunctions
deregulated in U and D exposed animal livers. (E) gRT-PCR validation of some DEGs. Data are reported as the negative inverse of fold change
value calculated as ratio between average expression in U/D and in Ctrl exposed animals (8 animals/group).

suffering. Conversely, ALT levels were higher only in U  Comparing mouse and zebrafish transcriptomes

animals (Figure 2D). However, hematoxylin/eosin stain-  The identification of deregulated genes in common be-
ing of liver sections showed no macroscopic signs of tween mammals and fish may elicit the identification
tissue alteration (data not shown). of reliable biomarkers of environmental exposure. Due
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Figure 2 Biochemical analyses in acutely exposed mice. (A) Serum Urea, (B) AP, (C) AST and (D) ALT levels were measured in Ctrl (black), U
(orange) and D waters (blue) treated mice (20 animals/group). Each sign is a single mouse. Mean and standard deviation is reported. **p-value <0,01.
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to zebrafish susceptibility to groundwater treatment,
3 months old fish were enrolled in each treatment group.
After 3 months exposure, the treatment was stopped to
avoid suffering since animal weight and length were re-
duced relative to control (Additional file 3).
Transcriptome analysis revealed more changes in gene
expression in fish treated with D water (100 genes, 86
down-regulated) than in those exposed to U water (24, 20).
Almost all U-specific altered probes were included in the
D list (Figure 3A). Volcano plots for these experiments are
reported in Additional file 3. Validation by qRT-PCR of
two common DEGs is showed in Figure 3B. Gene Ontol-
ogy analysis has been performed to compare the two acute
exposure profilings in mice and zebrafish. 81 gene ontology
terms were significantly deregulated in mice with a p-value
of 0.05 (Additional file 4). In zebrafish only 3 gene ontology
terms were significantly deregulated (Additional file 5).
Among them the mitochondrion was shared by the two
profilings. Among the 3 genes enrinched in GO mitochon-
drion term in zebrafish, we validated the reduction of
ctp2 transcript, codifying for a protein involved in the
B-oxidation of long-chain fatty acids in the mitochon-
drial inner membrane. Besides the unchanged expres-
sion of respiratory chain genes, lower ctp2 levels can
result in a decrease in the production of ATP. Reduced
cpt2expression, a PPARa-target gene, was implicated in
the development of hepatic steatosis and toxicity in the
livers of both zebrafish exposed to the environmental

contaminant perfluorononanoic acid and high fat diet-fed
mice treated with PCB 15 [38,39]. IPA analysis of common
DEGs highlighted steroid hormone biosynthesis among
deregulated canonical pathways (Figure 3C) but could not
predict any liver function alteration (data not shown).

Comparison of data sets from acutely exposed mouse
and zebrafish revealed two molecular responses in com-
mon, Le. the altered activity of steroid hormones synthesis/
signalling biofunctions, and the prediction of aromatase
(Cyp19A) as upstream regulator (p-value=4,95E-05 in
mouse, p-value = 4,68E-05 in zebrafish), in agreement with
the detection of trace chemicals affecting fertility [40]. To
verify IPA prediction, estradiol synthesis was examined in
both models. Expression of the vitellogenin (vtg) gene,
typically estrogen-dependent, was reduced in treated zeb-
rafish, in line with estrogen findings. Likewise, plasmatic
estradiol levels in acutely exposed mice were in line with
IPA-based prediction (Figure 4B). Thus, data suggest that
the comparison of toxicogenomics data sets in zebrafish
and mouse allows recognition of altered biofunctions.

Toxicogenomic evaluation of chronic exposure started in
utero or at 21 PND

In order to analyse the effects of chronic exposure
(12 months) under different exposure windows, mice
treatment started at 21 PND or in utero (F1 from four
months old exposed CD1 mice) (Figure 5).
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Figure 3 Toxicogenomics analyses in acute exposed zebrafish. (A) Venn Diagram showing the probe set overlap in U (orange) and D (blue)
compared to the control group. (B) gRT-PCR validation of selected genes (LOC794625 and Cpt2) deregulated in exposed zebrafish livers. Data are
reported as the negative inverse of fold change value calculated as ratio between average expression in U/D and in Ctrl exposed animals

(8 animals/group). (C) Canonical pathways identified by IPA analysis on common DEGs in zebrafish livers. See Figure 5 caption for graphic description.

Transcriptome analyses conducted on livers at the end
of treatment showed extreme reduction of deregulated
probes in chronic exposed parents (P) (Figure 6A) and off-
spring (F1) (Figure 7A) compared to the acute treatment.
This reduction could be interpreted as indication of a
compensation effect in chronically exposed mice.

Probe sets deregulated in P mice watered with U and
D water shared several DEGs (Figure 6A). Furthermore,
IPA analysis recognized numerous biofunctions related
to impinged liver function (e.g. delay in initiation of liver
repair; data not shown). Two canonical pathways, in-
volving the complement system, were significantly
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Figure 4 Validation of hormonal alteration in acutely exposed mice and zebrafish. (A) Vtg mRNA level measured by gRT-PCR in liver of
zebrafish females (20 animals/group). Each sign is a single animal. (B) Serum estradiol levels measured by ELISA assay in acute exposed mouse
females (15 animals/group). Each sign is a single animal. Mean and standard deviation is reported. *p-value <0,05, **p-value <0,01.

B Estradiol
200
180 A
160
_ 140 A
£ 120
2 100 A
80
60 ﬁ + %
40 | }
+
20 g @ T .
o A . ,
Ctrl U D

altered (Figure 6B). They were not highlighted by acute
exposure data, suggesting the specificity of chronic expos-
ure effects. For this reason, elements of these complement
system canonical pathways were used to validate micro-
array data by qRT-PCR (Additional file 6).

Bioinformatics analysis indicated seleno-methyl-
selenocysteine (p-value =7.12E-04) and phenol deri-
vative (p-value = 3.44E-03) as upstream regulators of
chemical toxicity. Remarkably, traces of selenium and
phenolic compounds were retrieved in the sampled waters
(Additional file 1). Analysis by toxfunctions (liver damage,
p-value = 3.7E-02; liver cholestasis, p-value = 3.7E-02; liver
necrosis/cell death, p-value = 3.7E-02) evidenced predict-
able signs of hepatic toxicity (Additional file 6), prompting
us to deepen the assessment of liver/renal functionality in
P mice by assaying urea, AP, ALT and AST serum levels.
We found that levels of urea and AP were significantly
increased in the treated mice versus control (Additional
file 6). Histopathology evidenced the alteration of hep-
atic tissue, with the presence of typical signs of micro-
vescicular steatosis in treated mice (Additional file 6).

A high number of U/D-shared deregulated probes was
observed also in chronically treated Flanimals (Figure 7A).

IPA analysis of common DEGs identified many biofunc-
tions related to cell cycle alteration and cancer (Figure 7B)
that were not detected in the P mice analysis. Thus, they
could be considered related to the foetal exposure.

In order to identify exposure-specific signatures, we looked
for common DEGs deregulated by U and D treatment in
both chronic and acute exposure conditions in mice. Among
30 DEGs common to both data sets, the majority codifies for
mitochondrial tRNA (Table 1), in agreement with mitochon-
drial alteration in liver stressing conditions [41]. 15 out of
the 22 mitochondrial tRNAs were strongly up-regulated in
both acute and chronic exposure; the reason for their in-
crease is not clear. However it has been reported that hyp-
oxia induces a similar effect in cardiomyocytes [42].

To identify hallmarks of groundwater chronic toxicity,
we looked for genes deregulated in both P and F1 upon
12 months treatment. As described in Material and
Methods and depicted in Figure 5, P and F1 animals
received the same waters for most of the treatment, the
only difference being the exposure window. However,
only 9 deregulated probes were present in both lists, of
which only two DEGs were similarly regulated (Usmg5,
Ndé6) (Table 2). The reported data suggest that the

Mouse experiment duration (months)

l
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Figure 5 Schematic representation of exposure windows in mice. P generation mice were treated for 3 (acute exposure) and for 12 months
(chronic exposure), starting from 21 PND. F1 generation mice, obtained by crossing 4 months old P mice, were treated for 12 months starting
from embryonic day 0. In black horizontal line the experiment duration; in yellow and orange exposure duration for P and F1, respectively; the
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Figure 6 Transcriptomics analyses in livers of 12 months P
exposed mice. (A) Venn Diagram showing probe set overlap between
U (orange) and D (blue) compared to the control group after 12 months
of treatment started at PND 21. (B) Canonical pathways deregulated in
liver of exposed P mice. See Figure 5 caption for graphic description.

effects of acute vs chronic exposures as well as the ef-
fects of chronic exposure windows were mainly specific,
likely as a consequence of adaptive response.

Discussion
Toxicogenomics aims to identify genes whose altered ex-
pression is associated to observed phenotypes or unpre-
dicted outcomes. Matching high-throughput transcriptional
approaches to traditional toxicological criteria is considered
a powerful method for testing the impact of low-dose pollu-
tant mixtures, particularly in natural settings. Here, we eval-
uated low-level contaminated groundwater toxicity by both
approaches in vertebrate mouse and zebrafish. Determin-
ation of polluted groundwater toxicity in the experimentally
controlled animal facility reduces disturbing factors en-
countered with environmental sampling of wild organisms.
Bioinformatics analyses of liver transcriptomics pro-
files in the acute exposure treatments revealed the effect
of pollutants, whose presence in groundwater was sup-
ported by chemical testing (e.g dibutyl phthalate, p-value =
1.46E-4) (Additional file 1). The alteration of pathways in-
volved in stress response (EIF2-, elF4-, p70S6K- signalling
pathways) suggested their relevance in the evaluation of
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environmental exposure. Phenotypic and molecular data
obtained in the analysis of acutely exposed mice point at
liver toxicity, and advise a particular role for the stress
response and mitochondria related pathways in its de-
velopment. Indeed, the IPA analysis on acutely treated
mice highlighted, among the canonical pathways, the
mitochondrial dysfunction including genes for the mito-
chondrial respiratory chain (Ndufafl, Cox6b10, Ndufs5,
Cox6al, Uqcrll, Ndufabl, Ndufb6, Ndufa3). All of them
are nuclear genes down-regulated in the liver of acutely
exposed mice. This condition could lead to the impair-
ment in the electron transport and ATP synthesis and,
overall, could compromise the health of liver cells. Inhib-
ition of the respiratory and impairment of complexes I as
well as of mitochondrial B-oxidation has been frequently
associated to acute exposure to drugs and hepatocytes
toxicity [43]. Furthermore, down-regulation of electron
transport complex genes as well as mitochondrial alter-
ations has been associated with several diseases, being
chronic liver disease among them [44-49].

Among the genes whose expression level was altered
in the acutely exposed mice, we found downregulation
of Cdknla and Nfe2l2. Cdknla is the gene codifying for
p21, which is a p53-dependent key regulator of cell fate,
as it triggers cell cycle arrest in the G1 phase under vari-
ous stress conditions [50]. It has been recently suggested
that reduced p21 expression can support liver fibrosis
through reduced hepatic stellate cells senescence [51]. It
is relevant to note that in our experimental condition,
hepatic stellate cells activation was one of the disturbed
canonical pathways (p-value = 4,3E-001). As stated in the
Results section, Nfe2/2 is one of the few genes deregulated
also in the chronic exposed mice (Table 1), where we
found evidence of micro-vescicular steatosis (Additional
file 6). The transcription factor Nfe2l2 plays a protective
role in hepatic cells as a key regulator for induction of
detoxifying enzymes, antioxidative stress genes and several
other enzymes involved in cellular protection. Its defi-
ciency leads to exacerbation of chemical hepatotoxicity
and to a considerable increase in micro and macro-
vescicular steatosis [52].

Indeed, chronically exposed mice showed progressive
alteration of liver parenchyma and increased level of al-
kaline phosphatase, as reported in human non-alcoholic
steatohepatitis where it often evolves in hepatocellular
carcinoma, a disease pathway whose alteration was seen
in the present research. A compensation effect was evi-
denced at molecular level by the reduction of DEGs. Sets
of deregulated biofunctions were almost overlapping in
acute and chronic exposure (data not shown). One excep-
tion was the specific alteration of the complement system.
Clqa, clgb and clqc are members of the complement
cascade, a fundamental component in the innate immun-
ity helping in the clearance of pathogens. Recent studies
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demonstrated that complement activation may contribute
to cancer growth by facilitating the dysregulation of mito-
genic signaling pathways [53]. The three complement
system genes were up-regulated in the liver of chronic-
ally exposed mice; in particular, overexpression of Clg
complement system components may be envisaged as
indicative of hetapotoxicity since its transcription in
liver hematopoietic cells was induced in several types of
damage [54,55].

The possibility that exposure during foetal life could
be more harmful than in the adulthood has been ex-
plored [33,34,56]. Here, our results confirm the selective
impact of the exposure window in DEG changes, as only
few genes (Usmg5 and Nd6) were shared among parents
and offspring. Usmg5 was first recognized as a gene
whose mRNA level increased during skeletal muscle
growth in rats [57]. USMG5 protein was shown to be

associated with ATP synthase in the mitochondria [58]
and to contribute to the maintenance of ATP synthase
population, an indication of its importance in cellular
energy metabolism [59]. ND6 is one of the 7 mitochon-
drial DNA (mtDNA) encoded subunits of respiratory
Complex I, again suggesting the alteration of mitochon-
dria biology in the exposed animals also in chronic ex-
posure conditions.

DEGs involved in cancer development (cell cycle and
DNA repair) were specifically observed in offspring.
Even if cancers were not observed in the collected or-
gans, genotype context or longer exposure time could
play a major role in their development. The identified
genes could represent a predictive biomarker of exposure
and effects whose identification is pivotal in monitoring.
Interestingly, increased incidence of cancers has been re-
ported in people leaving in landfill areas, where they are
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Table 1 Genes deregulated in livers of both 3 and 12 months mice exposed to U and D waters
Transcripts Gene name Gene description Fold change
Cluster Id 3 months 12 months
UvsCtrl DvsCtrl UvsCtrl D vsCtrl
10603833 Usmg5 Upregulated during skeletal muscle growth 5 —453 —4.28 -2.83 -2.95
10374476 Rps17 Ribosomal protein S17 -2.96 -3.19 -1.85 -1.89
10357242 Dbi Diazepam binding inhibitor -2.87 -271 -1.84 -2.23
10387816 Rnasek Ribonuclease, RNase K -2.17 -233 -161 -1.78
10344817 Cspp1 Centrosome and spindle pole associated protein 1 -1.75 -1.62 -1.80 -2.38
10483809 Nfe2l2 Nuclear factor, erythroid derived 2, like 2 -166 -1.78 -1.71 -1.81
10500798 =157 -1.78 -2.75 -2.78
10598089 mt-Te tRNA glutamic acid, mitochondrial 212 247 420 5.01
10598087 ND6 NADH dehydrogenase subunit 6 282 337 1.86 373
10598073 mt-Tq tRNA glutamine, mitochondrial 407 5.85 567 7.28
10528191 Speer4d|Speerdc|Speerde| Spermatogenesis associated glutamate (E)-rich 413 467 1.65 1.80
protein 4d/4c/4e
10598083 mt-Ts1 tRNA serine 1, mitochondrial 532 6.71 3.00 483
10598091 mt-Tp tRNA proline, mitochondrial 562 7.62 3.1 385
10598075 mt-Ta tRNA alanine, mitochondrial 593 7.82 16.92 26.75
10598023 mt-Tv tRNA valine, mitochondrial 6.17 6.69 421 575
10519811 Speer8-ps1|Speer7-ps1 Spermatogenesis associated glutamate (E)-rich 6.34 6.92 313 3.88
protein 7/8, pseudogene 1
10598057 mt-Tr tRNA arginine, mitochondrial 6.40 763 10.12 28.13
10436773 Gm7735|Gm9789 6.48 6.90 3.75 3.25
10412517 GmM3002|Gm10021|Gm3512 7.66 10.80 3.88 455
10582888 7.70 9.65 283 5.64
10598081 mt-Ty tRNA tyrosine, mitochondrial 1046 1391 6.51 1049
10598079 mt-Tc tRNA cysteine, mitochondrial 10.88 15.64 4.72 730
10598018 mt-Tf tRNA phenylalanine, mitochondrial 11.56 14.23 14.71 2737
10598062 mt-Th tRNA histidine, mitochondrial 13.20 15.78 27.68 46.30
10598077 mt-Tn tRNA asparagine, mitochondrial 21.72 3204 6.55 9.85
10598041 mt-Tk tRNA lysine, mitochondrial 2414 28.86 3943 66.79
10598071 mt-Tt tRNA threonine, mitochondrial 2751 35.77 7.81 15.37
10598064 mt-TI2 tRNA leucine 2, mitochondrial 58.00 70.56 4483 7091
10353034 Snord87 Small nucleolar RNA, C/D box 87 -3.20 -3.39 2383 277
10398451 Rps25|Gm4963 Ribosomal protein S25 | predicted gene 4963 -1.70 -1.81 1.75 1.80
10465831 5730408K05Rik RIKEN cDNA 5730408 K05 gene -2.26 -2.30 441 4.10

In bold, genes inversely deregulated in the two data sets. mt- stays for mitochondrial.

The arithmetic fold change is reported.

potentially exposed to polluted groundwater used for agri-
culture or other human activities. Further work is neces-
sary to explore this hypothesis.

In toxicogenomics, studies of gene expression alter-
ation in phylogenetically distant species are supposed to
assist in the identification of altered pathways that im-
pinge on human health. To this aim, we investigated the
effects of polluted groundwater exposure on mice and
zebrafish liver by toxicogenomics. Even if no common

DEGs were retrieved in both vertebrates, bioinformatics
analysis and phenotypic assays indicate aromatase and
estrogen biosynthesis changes. These findings agreed
with the suggestion that functional pathways could be
better and reliable markers than single genes. This ob-
servation is consistent with the documented effect of
several water pollutants (metals, plasticizers and others)
on hormonal axes linked to reproductive health outcomes
[60-64], as seen also in our experimental settings



Porreca et al. BMC Genomics 2014, 15:1067
http://www.biomedcentral.com/1471-2164/15/1067

Page 10 of 14

Table 2 Genes deregulated in chronic exposure liver tissue of U and D treated mice in both P and F1

Transcripts Gene name Gene description Fold change
Cluster Id p F1
U vs Ctrl D vs Ctrl U vs Ctrl D vs Ctrl

10572813 Usmg5 Upregulated during skeletal muscle growth 5 -2.89 -3.19 -1.54 -1.66
10598062 NC_005089* 27.68 46.30 5.28 3.63
10598064 NC_005089* 44.83 7091 340 2.29
10598087 ND6 NADH dehydrogenase subunit 6 1.86 373 376 443
10448182 Mir703 microRNA 703 1.61 1.64 -1.74 =173
10507870 3.51 3.20 -1.76 -1.94
10507872 359 332 -1.86 -2.16
10512487 Rmrp RNA component of mitochondrial RNAase P 249 2.66 -2.10 -2.30
10516908 Snora73a 451 4.26 -2.36 -249

*Mitochondrial genome.

In bold, genes inversely deregulated in the two data sets parents (P) and offspring (F1).

The arithmetic fold change is reported.

(manuscript in preparation). Here, toxicogenomics
showed its predictive strength in identifying biomarkers,
steroid hormones, that can be easily detected in blood,
suitable for monitoring the impact of anthropogenic activ-
ities on human and identifying risks for human popula-
tions even if not indicative of specific pollutants.

In all treatment conditions, observed phenotypic ef-
fects can correlate to alterations in the stress response
pathways and, mainly, in mitochondria activities, as
supported by the ability of leachates to induce oxidative
stress in organs [65,66]. These pathways could be effec-
tors of low-dose mixture toxicity, playing a role in the
alteration of liver function and in the regulation of
hormones biosynthesis, as previously shown [14].

Conclusions

The reported data suggest that toxicogenomics analyses
of different animal models and exposure conditions
(timing and window) have the potential to disclose un-
predicted outcomes and, most importantly, pathways
useful for human and environmental health risk assess-
ment also in conditions of low-level exposure. Our study
points to the importance of considering pathways more
than single gene alteration in toxicological assessment. It
also allows the identification of specific pathways, with
mitochondria as key factors of toxicity response, and sex-
ual hormones as biomarker in environmental assessment.

Methods

Geochemical analyses

Water sampling was performed in a landfill located in
southern Italy (Lat 41° 12" 23,54" ‘N; Long 15° 12" 27,63" ‘E,
datum WGS84), with the permission of the municipal local
authority. The present study did not involve endangered or
protected species.

Water samples were collected from five 15 meters
deep piezometers that are located in the saturated por-
tion of an aquifer consisting of poorly permeable litholo-
gies. Piezometers are situated transverse to the axis of
groundwater flow: two upstream and three downstream
the landfill (referring to the water flow direction). The
sampling occurred every 15 days under dynamic condi-
tions by means of a micro pump.

Aliquots of water solution (1 ml) from each sample were
directly analysed by Inductively Coupled Plasma Mass
Spectometry (ICP-MS) with an Agilent 7700 ICP-MS
(Agilent Technologies), as described in detail in Additional
file 1. Upon liquid-liquid extraction with chloroform, hex-
ane and dichloromethane (1:1 v/v, performed 3 times),
organic substances were collected, dried and dissolved
in 200 pl of hexane, before GC-MS analysis performed
on a 5390 MSD quadrupole mass spectrometer (Agilent
Technologies), as detailed in Additional file 7.

Animals and treatments

Groundwater used for animal treatment was filtered
through glass and 0.22 pm (Millipore) filters and stored
at 4°C.

Animal experiments were performed in compliance with
the European Council Directive 86/609/EEC and the Italian
Legislation on Animal Experimentation (D.Lvo 116/92) and
procedures were approved (ID number 21-2009) by the
Ethical committee named CESA (Committee for the
Ethics of the Experimentations on Animals) of the Biogem
Institute of Genetics Research “Gaetano Salvatore” (IRGS).
The project has been communicated to the employed
office of the Ministry of Health following the rules of
the D.Lvo 116/92.

Mice were kept under standard facility conditions
(22 £2°C, 55+ 10% humidity, 12:12 h light-dark cycle)



Porreca et al. BMC Genomics 2014, 15:1067
http://www.biomedcentral.com/1471-2164/15/1067

in a specific pathogen-free facility. Animals received
water and standard diet (4RF21 form Mucedola) “ad
libitum”; type 11 EU cages, in polysulfone, had space to
allow motility and parental care. Mice were sacrificed
by carbon dioxide inhalation.

Fifty 21 Post Natal Days (PND) CD1 mice (outbred, 30
male and 30 female) were randomly recruited for each
of the three FO treatment groups that received drinking
tap-water (control, Ctrl), waters sampled from dumps
upstream (U) or downstream (D) the landfill. Sampling
from two different locations around the landfill area were
undertaken to perform a robust toxicogenomic analyses,
based on different (up and down) data sets whose shared
elements were used for bioinformatics analyses. We chose
this approach in order to eliminate from the analyses
genes whose deregulation could be related to other rea-
sons (noise). After 3 months of treatment (acute exposure,
P generation), twenty mice/group were sacrificed, blood
and several organs collected. Remaining animals were
mated for F1 generation and continuously treated till
sacrifice (12 months, chronic exposure, P generation) for
blood and organ sampling. Thirty F1 mice per group were
treated for 12 months before sacrifice. Schematic repre-
sentation of the mice study design is depicted in Figure 5.

Fish were maintained in 50 I sterile glass tanks with
20 animals each, under standard laboratory conditions
(28 £0.5°C, 14:10 h light: dark cycle). The water was
continuously aerated, filtered and 1/3 of its volume was
manually renewed every three days. Ammonia, nitrate,
nitrite, pH and water hardness was monitored twice a
week using commercial kit (Tetra GmbH). Fish were
daily fed freshly hatched Artemia nauplii once and

Table 3 Genes analysed by qRT-PCR
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granular food (Special Diets Services) twice. Sixty
3 months old zebrafish (AB strain, 30 males and 30
females) were randomly recruited from each Ctrl, U
and D treatment group, distributed in three replicate
tanks for condition. After 3 months treatment, fish
were sacrificed by overdose of tricaine methane sulfon-
ate (MS222, 200-300 mg/l) by prolonged immersion and
their lengths and weight recorded before organ dissection.

Hormone measurements

Serum prepared from collected blood samples was -80°C
frozen until assayed by Estradiol EIA kit (Cayman) follow-
ing manufacturer’s instructions. Each sample was analyzed
in triplicates. p-value was calculated by ¢-student test.

RNA extraction and real-time RT-PCR

RNA was isolated from mouse and zebrafish liver tissues
using Trizol reagent (Invitrogen) and purified by RNeasy
mini kit (Qiagen). cDNA synthesis and qRT-PCR analysis
were set for 8 animals, each carried out in triplicate as pre-
viously reported [40]. Data obtained were normalized on
the relative expression of reference gene Tubulin in mouse
and rpl13a in zebrafish and reported as ratio between U or
D vs Ctrl expression values. Primer sequences are reported
in Table 3. p-value was calculated by z-student test.

Microarray and bioinformatic analysis

Hepatic RNA for microarray was extracted and cleaned as
reported above. Nine animals per group were randomly
divided into three equivalent sets, and a constant amount
of RNA from animals in the same set was pooled into one
single sample in order to eliminate individual differences

Gene name Gene description Forward primer 5'-3' Reverse primer 5'-3’
Cdkn1a Cyclin-dependent kinase inhibitor 1A (P21) atccagacattcagagccacag acgaagtcaaagttccaccgt
Hp Haptoglobin cttccagagagaggcaagaga gcccaactccacagcaaaaag
Lbp Lipopolysaccharide binding protein gcatccagacaaggcacaag cgaggtcgtggagctgaata
Pnrci Proline-rich nuclear receptor coactivator 1 Ccacagacagcccccactc tgtataccatgcacaagctggc
Ppp1r3c Protein phosphatase 1, regulatory (inhibitor) subunit 3C Caatgagctgcaccagaatga gtggtgaatgagccaagcaa
Sox9 SRY-box containing gene 9 tctggaggctgctgaacgag gcttgtccgttcttcaccga
Vtn Vitronectin agtgcaagccccaagtaacy ccgtccgtccgaggatttag
Nfe2l2 Nuclear factor, erythroid derived 2, like 2 gcatgatggacttggagttgc gctcatagtccttctgtegcet
Mavs Mitochondrial antiviral signaling protein tatccgagacaaccacagcaa gtcgatcaagatgactgggtg
Clga Complement component 1, g subcomponent, alpha polypeptide tgtcccaccatcagcaaagg gtctccatggtgteectge
Clgb Complement component 1, g subcomponent, beta polypeptide gacccagacttccgctttct ctcaccccactgtgtcttca
Clqc Complement component 1, g subcomponent, C chain accctcaggatggtegttgg tgagtggtagggccagaaga
Tub-a Tubulin-a Caacaccttcttcagtgagacagg tacatgatctccttgccaatggt
LOC794625 Up-regulated during skeletal muscle growth protein 5 gggcaccagtttgcttgattg cctectgecagtgattgtgt
Cpt2 Carnitine palmitoyltransferase |l aaccgctggtacgacaa ggacgcaggctgagaac

Rpl13a

Ribosomal protein L13A

tctggaggactgtaagaggtatgce

agacgcacaatcttgagagcag
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within group. Three arrays were used for each group.
cRNA was generated by using the Affymetrix One-Cycle
Target Labeling and Control Reagent kit (AffymetrixInc),
following the manufacturer’s protocol, starting from 5 pg
of total RNA. Biotinylated cRNA was hybridized to the
GeneChip Mouse Gene 1.0 ST Array [(MoGene-1_0-st-v1,
Affymetrix) and to GeneChip Zebrafish Gene 1.0 ST
Arrays (Affymetrix). Chips were washed and scanned
on the Affymetrix Complete GeneChip System, gener-
ating digitized image data (DAT) files.

The datasets obtained were analyzed with GeneSpring
GX 12 Software (Agilent Technologies). Robust multi-
chip average (RMA) algorithm [67,68] was used for
summarization and normalization. Hybridization quality
was assessed by spiked-in controls. Principal Component
Analysis (PCA) was performed to check data quality that
resulted adequate for all samples. Transcripts were fil-
tered by their signal intensity values, selecting transcripts
with intensity values between 20 and 100 percentile in at
least 1 out of each set samples for differential analysis.

Differentially expressed transcripts between exposed
livers vs controls were filtered for absolute fold change >
1.5 and corrected p-value <0.05. Statistical analysis was
performed using Oneway ANOVA adjusted for multiple
comparison by the Benjamini-Hochberg method.

Functional annotation for differentially expressed tran-
scripts was performed using Ingenuity Pathway Analysis
(IPA; http://www.ingenuity.com), a web-based tool for the
identification of biological functions, canonical pathways,
transcription factors as well as toxofunctions that are most
significant to the dataset. Fisher Exact test was used to cal-
culate the p-value determining the likelihood that the asso-
ciation between the set of focus genes in the dataset and a
given process or pathway is due to chance alone. Corrected
p-value calculation (based on the Benjamini-Hochberg
method) controlled the error rate in analysis results and
focus in on the most significant biological functions associ-
ated with DEG. Gene ontology (GO) analysis was per-
formed using David software (http://david.abcc.ncifcrf.gov)
[69,70]. The listed GO terms included three or more DEGs
p-value <0.05.

Availability of supporting data

Microarray data are available in the ArrayExpress database
(www.ebi.ac.uk/arrayexpress) under accession numbers
E-MTAB-2905 (for mouse arrays) and E-MTAB-2906
(for zebrafish arrays).

Additional files

Additional file 1: Chemical analysis of Ctrl, U and D waters.

Additional file 2: Transcriptomic analyses in liver of acutely
exposed mice. Volcano plots of microarray data in U (A) and D (B)
compared to Ctrl treated animals. The y-axis value is the negative logarithm
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base 10 of the corrected p-value. A green horizontal line on the plot
represents the user-defined significant threshold for p-value. The x-axis is
shown as the logarithm base 2 of the fold change in expression level
between treated and control livers. The vertical green lines on the plot
represent the user-defined thresholds for fold change. Red dots are
up-regulated probes, green dots down-regulated probes. The number
of down/up-regulated probes for each Volcano plot is reported in the
underlying table.

Additional file 3: Zebrafish phenotypic and molecular changes
induced by groundwater treatment. (A) Body weight and (B) body
length of adult zebrafish exposed for 3 months to Ctrl, U or D waters.
Data are reported separately for female and male fish and, for each point,
20 animals were recorded. Volcano plots of microarray data in U (C) and
D (D) compared to Ctrl treated animals. For plot description see the
caption to the Additional file 1. The number of down/up-regulated
probes for each Volcano plot is reported in the underlying table.

Additional file 4: Gene Ontology analysis of DEGs in acutely
exposed mice.

Additional file 5: Gene Ontology analysis of DEGs in acutely exposed
zebrafish.

Additional file 6: Liver molecular and phenotypic characterization
of chronic exposed mice. (A) gRT-PCR validation of selected genes
(Ciga, Cigb, Ciqgc) deregulated in chronically exposed livers. Data are
reported as fold change value calculated as ratio between average expression
in U/D and in Ctrl exposed animals. 8 animals were analysed for each group.
(B) Toxfunctions deregulated in U and D chronically exposed animal livers.
Serum Urea (C), AP (D), AST (E) and ALT (F) levels measured in mice treated
with Ctrl (black), U (orange) or D (blue). The analysis was conducted on 20
animals per treatment groups. Each sign is a single mouse. For each
treatment group mean and standard deviation is reported. (G) Haematoxylin/
eosin staining of liver sections of Ctrl, U and D chronically exposed mice.
*p-value <0,05, **p-value <0,01.

Additional file 7: Material and methods.

Abbreviations

U: Upstream water; D: Downstream water; gRT-PCR: Quantitative real time PCR;
DEGs: Deregulated expressed genes; P: Parents; F1: Offspring; IPA: Ingenuity
pathway analysis.
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