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RNA-seq analysis of broiler liver transcriptome
reveals novel responses to high ambient
temperature
Derrick J Coble1*, Damarius Fleming1, Michael E Persia1, Chris M Ashwell2, Max F Rothschild1, Carl J Schmidt3

and Susan J Lamont1*
Abstract

Background: In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency,
impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million
in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient
temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight
into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq
study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a
platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek
methods to ameliorate the negative impacts of heat.

Results: Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in
138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were
differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week
of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks
were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes:
“Cell Signaling” and “Endocrine System Development and Function”. The gene expression differences in the
liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal
temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential
gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can
result from high ambient temperature exposure.

Conclusions: Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic,
and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers.
The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to
high ambient temperature. This information provides a foundation for future investigations into the gene networks
involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on
animal production and welfare.
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Background
Heat-related stress is a key concern for the poultry in-
dustry, especially with climate change and the expansion
of poultry production into regions of the world that
experience extreme temperatures [1]. Heat-related stress
occurs when a negative balance exists between the net
energy released by a chicken into the environment, and
the amount of heat energy produced [2]. This negative
balance results in reduced feed consumption, digestion
inefficiency, impaired metabolism, and death in broiler
chickens [3-5]. St. Pierre et al. [6] estimated the annual
heat-related economic loss incurred by broiler, layer, and
turkey producers in the U.S. to be approximately $125-
165 million [6]. The annual heat-related losses incurred in
the broiler sector alone were estimated at $51.8 million
[6]. In the past few decades, genetic selection for broiler
performance has resulted in remarkable improvements in
growth rates [7,8]. The deleterious effects of high ambient
temperature on growth rate are greater in broilers with
higher growth rates than those with lower growth rates
[9]. Thus, understanding the genetic basis of the physio-
logic response to heat is critical for improved production
efficiency and welfare of poultry.
Few experiments reported to date have investigated

the effects of heat on the transcriptome of chicken
tissues [10,11]. Li et al. [10] investigated the transcriptome
of broiler breast tissue in response to cyclic high ambient
temperature (6-hour daily cycles of 33°C, day 28 to 49
post-hatch) [10]. Of the 110 genes that were differentially
expressed in response to high ambient temperature, four
(PM20/PM21, ASB2, USP45, and TFG) were novel heat-
related stress genes. Gene ontology analysis suggested
involvement of the mitogen-associated protein kinase
(MAPK), ubiquitin-proteasome, and nuclear factor kappa-
light-chain-enhancer of activated B cells (NFKB) path-
ways in the response of broilers to high ambient temperature.
Exposing L2 Taiwanese roosters to high ambient temperature
(4-hour heat stress at 38°C) resulted in the up-regulation
of 169 genes and the down-regulation of 140 genes in
testis tissue [11]. These genes were primarily involved
in response to stress, transport, signal transduction, and
metabolism.
The objective of the current study is to characterize

the effects of cyclic high ambient temperature on the
transcriptome of a highly metabolically active organ in
broiler chicks, the liver. This is the first reported study
to use RNA-seq to characterize the transcriptome of
metabolic-related tissue in broilers exposed to high
ambient temperature, thus providing novel insight into
the effects of heat on metabolism in broilers. This in-
formation provides a platform for future investigations
into the gene networks relevant to the production of
commercial broilers resilient to the negative impacts
of heat.
Results
Sequencing the transcriptome, aligning and mapping
reads to the genome
Approximately 138 million, 100 base pair single-end reads
were generated using Illumina HiSeq 2000 technology to
sequence the cDNA libraries. This yielded 13.8 gigabases
of total sequence and provided on average 17,249,597 reads
per sample. Using the Genomic Short-Read Nucleotide
Alignment Program (GSNAP) [12], 83% or more of the reads
from each sample mapped back to the reference genome
after alignment. Full length (100 bp), single-end reads
were used for this analysis to preserve as much sequence
information as possible.

Counting mapped reads
On average, each sample had a total of 11,695,581 uniquely
mapped reads. Of these reads, 2,375,095 were classified as
“no feature”, meaning that the reads could not be assigned
to any feature in the genome. Additionally, 332,309 reads
per sample were classified as ambiguous, meaning that the
reads were assigned to multiple genomic features.

Testing for differential expression and pathway analysis
Forty genes were differentially expressed at a significance
level of P-value < 0.05 and a fold-change ≥ 2 in response
to cyclic high ambient temperature. Of these 40 genes,
27 were down-regulated and 13 up-regulated. The fold-
changes induced by high ambient temperature ranged
from −12.5 to 20.0 (Table 1). Two gene networks were
created from the Ingenuity Pathway Analysis (IPA) of
these genes: “Cell Signaling” and “Endocrine System
Development and Function”.
The differentially expressed gene products in the “Cell

Signaling” network included BRCA1/BRCA2-containing
complex, subunit 3 (BRCC3), ELKS/RAB6-interacting/
CAST family member 2 (ERC2) isoform X1, fibroblast
growth factor 14 (FGF14), FMOD (fibromodulin), G protein-
coupled receptor 133 (GPR133), LIM and senescent cell
antigen-like domains 2 (LIMS2 ) isoform X2, nidogen-1
(NID1), ORM1-like 3 (Saccharomyces cerevisiae) (ORMDL3),
regulatory factor x-box binding family transcription fac-
tor member 6 (RFX6 ) isoform X2, ring finger protein
220 (RNF220), sodium channel, voltage-gated, type III,
beta subunit (SCN3B), spondin 1, extracellular matrix pro-
tein (SPON1), splA/ryanodine receptor domain and SOCS
box containing 4 (SPSB4) isoform X3, and tripartite motif
containing 50 (TRIM50) (Figure 1).
The “Endocrine System Development and Function”

network included aldo-keto reductase family 1, member
C3 (AKR1C3), angiopoietin-like 4 (ANGPTL4 ), bradykinin
receptor B1 (BDKRB1), basonuclin 1 (BNC1) isoform X4,
cholecystokinin (CCK), deiodinase, iodothyronine, type II
(DIO2), deiodinase, iodothyronine, type III (DIO3), keratin
14 (KRT14), myosin VIIA and Rab interacting protein



Table 1 Significance levels of differentially expressed
hepatic genes in response to high ambient temperature

Gene P-value Fold change Q-value

RFX6 0.01 −12 0.6

LOC100857 0.007 −11 0.6

SPSB4 0.001 −11 0.3

GPR133 0.0005 −11 0.2

TRPC5 0.02 −11 0.7

LOC427426 0.02 −11 0.7

BNC1 0.004 −11 0.5

LOC423425 0.02 −10 0.7

ANGPTL4 0.0006 −3 0.2

LOC100859 0.03 −2 0.7

LOC420770 0.04 −2 0.7

LOC100858 0.01 −2 0.7

KRT14 0.009 −2 0.6

FMOD 0.001 −2 0.3

LOC419500 0.004 −2 0.5

LOC100858 0.01 −2 0.7

SCN3B 0.03 −2 0.7

S100A4 0.005 −2 0.5

LOC100858 0.04 −2 0.7

TRIM50 0.05 −2 0.7

BRCC3 0.02 −2 0.7

LOC771141 0.08 −2 0.7

PDGFD 0.03 −2 0.7

AKR1C3 0.05 −2 0.7

SPON1 0.03 −2 0.7

DIO2 0.006 −2 0.5

NID1 0.01 2 0.6

HFM1 0.01 2 0.6

BDKRB1 0.04 2 0.7

CCK 0.04 2 0.7

MYRIP 0.007 2 0.5

ORMDL3 0.05 2 0.7

RNF220 0.03 2 0.7

LIMS2 0.02 2 0.7

ERC2 0.02 2 0.7

S100A1 0.005 2 0.5

FGF14 0.008 2 0.5

DIO3 0.00009 3 0.1

LOC395159 0.001 5 0.3

LOC100857 0.0008 20 0.3
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(MYRIP), platelet derived growth factor D (PDGFD), S100
calcium binding protein A1 (S100A1), S100 calcium bind-
ing protein A4 (S100A4 ), and transient receptor po-
tential cation channel, subfamily C, member 5 (TRPC5)
(Figure 2).
To determine the biological pathways elicited in the

liver by exposure of the birds to heat, the differentially
expressed genes were categorized by function. Cell signal-
ing, endocrine system development and function, molecu-
lar transport, small molecule biochemistry, and vitamin
and mineral metabolism were the most significant func-
tions elicited in response to heat (Figure 3).

qPCR (quantitative polymerase chain reaction)
Five up-regulated and 4 down-regulated genes were se-
lected for qPCR analysis (P-value ≤ 0.05, fold-change ≥ 2)
(Table 2). All samples represented in the RNA-seq ana-
lysis, plus samples from 8 additional broilers exposed to
the same treatments were included in the qPCR analysis,
resulting in 8 samples per treatment. Data from 8 of the
9 genes were in concordance between RNA-seq and qPCR
analyses. For 4 genes, the qPCR differential expression
between groups was in agreement with the results of the
RNA-seq, and was significant. For an additional 4 genes,
the relative ranking of the treatment means was the same
for both qPCR and RNA-seq, but the differences were not
significant for qPCR. There was discordance between
RNA-seq and qPCR in the relative expression levels
between the temperature treatments for only one of the
nine genes (LIMS2).

Discussion
The number of differentially expressed genes detected in
the current study (n = 40) is not high, which may be
because of several factors. Applying thresholds of both
significance level and a minimum fold-change may have
reduced the total number of genes that were declared as
differentially expressed. Using four replicates of full-sib
pairs of heat-exposed and control chickens reduced
random genetic variation between treatment groups, and
therefore may have reduced the number of differentially
expressed genes occurring at random. The low number
of detected differentially expressed genes is not, however,
likely to be attributable to the animal number because
the sample number used in this experiment is compar-
able to other RNA-seq experiments. Wolf and Bryk [13]
used four replicates of male and female chickens to
study dosage compensation in chickens using RNA-seq
analysis; Ayers et al. [14] used two male and two female
chickens to incorporate RNA-seq analysis to examine
the sexual dimorphic gene expression before gonadal
differentiation. The method used to estimate the data
variance determines the level of detection of differential
expression in RNA-seq data [15]. The current study has



Figure 1 Cell signaling. Pathway analysis of gene functions in broiler liver transcriptome in response to cyclic high ambient temperature. Red
color shows up-regulation and green color shows down-regulation (IPA). White molecules are not differentially expressed, but are included to
illustrate associations with significantly up- and down-regulated genes.
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increased power to determine differential expression be-
cause of the advantages of the QuasiSeq package over
other methods, such as DESeq and EdgeR.
The differential expression of two genes (BRCC3 and

FGF14) from the “Cell Signaling” network and five genes
(CCK, TRPC5, DIO2, DIO3, and ANGPTL4) from the
“Endocrine System Development and Function” network
indicate that birds use specific physiologic mechanisms
to regulate their internal temperature in response to high
ambient temperature. CCK, DIO3, BRCC3, and FGF14
were up-regulated, while TRPC5, DIO2, and ANGPTL4
were down-regulated. CCK inhibits feed intake in chick-
ens by promoting gastric emptying, stimulating the release
of pancreatic digestive enzymes, and signaling the brain-
stem to depress appetite [16-18]. During exposure to heat,
animals experience a negative balance in the amount of



Figure 2 Endocrine system development and function. Pathway analysis of gene functions in broiler liver transcriptome in response to cyclic
high ambient temperature. Red color shows up-regulation and green color shows down-regulation (IPA). White molecules are not differentially
expressed, but are included to illustrate associations with significantly up- and down-regulated genes.
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heat energy released and produced [2]. The inhibition
of feed intake may be a mechanism to reduce the add-
itional heat that is produced from digestive metabolism.
Although the intestines are responsible for most of the
body’s CCK production, CCK mRNA expression has also
been detected in the liver [19]. Wang et al. [20] suggested
that transient receptor potential channels (TRPC) are
responsible for cellular CCK signaling. The differential
expression of TRPC5 supports TRPC involvement in
CCK signaling. DIO2 and DIO3 encode for members of
an enzyme family, deiodinases, which is involved in thy-
roid hormone regulation [21]. Silva [22] demonstrated
that thyroid hormone is involved in aerobic metabolism
and thermal control. DIO2 is involved in the preservation
of thyroid hormone [23], while DIO3 is associated with
the inactivation of thyroid hormone [24]. Taken together,



Figure 3 Significance levels of functions of differentially expressed hepatic genes in response to high ambient temperature. Threshold
was set at P = 0.05 and indicated as -log (P-value) on the Y-axis. X-axis shows functions of differentially expressed genes.
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the contrasting regulation of DIO2 and DIO3 is predicted
to decrease thyroid hormone levels. Past studies have
shown increases in hepatic DIO3 mRNA expression and
activity levels in broilers after feed removal [25-27]. The
expression patterns of CCK, TRPC5, DIO2 and DIO3
observed in the current study highlight a direct interaction
between feed intake, deiodinase activity, and temperature
regulation in response to the heat.
Exposure to high ambient temperature results in a redis-

tribution of blood flow from internal organs to peripheral
tissues, reducing the internal temperature of chickens [28].
BRCC3, FGF14, and ANGPTL4 are all involved in regula-
tion of blood vessel development [29-31]. Their differential
expression, therefore, may be a host response to modulate
internal temperature by regulating blood capillary develop-
ment and distribution.
Table 2 P-values from RNA-seq and qPCR validation

Gene RNA-seq qPCR

SPSB4 0.001 0.008

TRPC5 0.02 0.2

BNC1 0.004 0.1

ANGPTL4 0.0006 0.02

LIMS2 0.02 0.4

ERC2 0.02 0.8

S100A1 0.005 0.008

FGF14 0.008 0.7

DIO3 0.00009 0.02
The differential expression of three genes (SCN3B,
SPON1, and ORDML3) from the “Cell Signaling” net-
work and MYRIP from the Endocrine System Development
and Function” network reflects a response to hyperthermia-
induced apoptosis. SCN3B, SPON1, and MYRIP were
down-regulated, while ORDML3 was up-regulated in re-
sponse to heat. SCN3B has been identified as a TP53-
inducible proapoptotic gene in mouse embryonic cells
[32]. The down-regulation of SCN3B reduces the capabil-
ity of apoptosis through the TP53 pathway. SPON1 en-
codes for a secreted adhesion molecule that attaches
to the extracellular matrix (ECM) of cells and inhibits
amyloid β (A4) precursor protein (APP) cleavage into
β-secretase [33-35]. The cleavage of APP results in amyloid
β fibril formation, and induces apoptosis in yeast through
mitochondrial dysfunction [36,37]. In the current study,
the down-regulation of SPON1 may be a mechanism to
return to homeostatic SPON1 mRNA levels following a
transient up-regulation. Haughey et al. [38] suggested that
amyloid β fibril accumulation occurs within the lipid rafts,
which are specialized membrane domains mainly consist-
ing of sphingolipids and cholesterol. ORMDL3 belongs to
a family of genes (ORM) that has been implicated in
sphingolipid homeostasis [39]. In yeast, heat results in a
transient accumulation of sphingolipid that can lead to
apoptosis through sphingolipid signaling [40,41]. The up-
regulation of ORMDL3 reflects a cellular mechanism to
regulate sphingolipid levels in response to heat, thus pre-
venting apoptosis. MYRIP encodes for an actin motor that
drives vesicle and organelle motility, and participates in
endosome recycling [42]. The up-regulation of MYRIP
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may lead to enhanced ability of phagocytic cells to engulf
and recycle the cellular particles after hyperthermia-
induced apoptosis.
The down-regulation of three genes (FMOD, GPR133,

and TRIM50) from the “Cell Signaling” network reflects
the latter stages of a host-regulated tissue repair re-
sponse. As a liver proteoglycan, FMOD regulates ECM
organization by fibrogenic stimuli in mouse liver cells
and has been described as essential for tissue repair [43].
Hepatic fibrogenesis results from damage to hepatocytes
by inflammatory reactions, which alter their ECM [44].
Ruddell et al. [45] suggested that hepatic fibrogenesis was
enhanced by cross-talk between hepatic lipocytes and
hepatic progenitor cells (HPC), resulting in chemotaxis
and cell migration. As an adhesion G protein-coupled
receptor (GPR), GPR133 is thought to participate in cell-
to-cell and cell-matrix interactions [46,47]. TRIM50
participates in inflammation suppression, fibroblast mi-
gration, and lymphocyte chemotaxis in mouse embryo
fibroblasts [48,49].
The up-regulation of ERC2 from the “Cell Signaling”

network and the differential expression of three genes
(S100A1, S100A4, and BDKRB1) from the “Endocrine
System Development and Function” network reflect a dis-
ruption in hepatocyte calcium levels in response to heat.
ERC2, S100A1, and BDKRB1 were all up-regulated, while
S100A4 was down-regulated. ERC2 encodes for a pro-
tein that localizes at voltage dependent calcium channels
(VDCC) [50]. The S100 family of proteins function in the
regulation of calcium homeostasis, cell growth and differ-
entiation, protein phosphorylation, and the inflammatory
response [51]. The differential expression of an S100
family member (S100A11) and other genes involved in
calcium-related transport and signaling was observed in
catfish exposed to high ambient temperature [52]. Texel
and Mattson [53] reported that excess amyloid β fibril
formation perturbed calcium homeostasis in mouse neur-
onal cells, possibly triggering apoptosis from calcium over-
load. BDKRB1 encodes for a bradykinin receptor that
belongs to the rhodopsin-like GPRs that function in the
regulation of inflammation [54]. The activation of BDKRB1
increases cytosolic calcium levels [55]. The up-regulation
of BDKRB1 is a component of an inflammatory re-
sponse that contributes to perturbed cellular calcium
levels. The up-regulation of ERC2 and S100A1 represents
calcium transport through calcium channels and calcium-
dependent cellular signaling. The down-regulation of
S100A4 may compensate for the calcium-related transport
and signaling that is carried out by the proteins encoded
by ERC2 and S100A1. The differential expression of ERC2,
S100A1, and S100A4 illustrates the dynamic mechanisms
that regulate cellular calcium levels in response to heat.
In summary, the liver transcriptome of broilers ex-

posed to high ambient temperature indicates specific
host responses to decrease internal temperature, reduce
hyperthermia-induced apoptosis, and promote tissue re-
pair. Additionally, differential expression occurred in genes
that regulate the perturbed cellular calcium levels that
result from exposure to heat.

Conclusions
Cyclic high ambient temperature causes metabolic, physio-
logic, and cellular-level changes that can be characterized
through RNA-seq analysis of the liver transcriptome. The
current findings suggest that these changes induce specific
mechanisms by which broilers can reduce the negative
physiologic effects of heat exposure. These novel insights
into the effects of high ambient temperature on the meta-
bolic transcriptome of broilers provide a foundation for
future investigations into the gene networks involved in
the response to heat, and for development of strategies to
ameliorate the negative impacts of hot climates on animal
welfare and productivity.

Methods
Tissue collection
From 22 to 28 days of age, heat-treated broilers were ex-
posed to daily 7-hour cycles of 35°C, while a control group
was kept at 25°C throughout this time. The experiment
was replicated with birds from different hatches. Liver
samples were harvested from 4 sets of full-sibs at the mid-
point of the last heat cycle on day 28, with one bird of each
pair from the high ambient temperature treatment and
one from the control temperature group; these 8 samples
were used for transcriptome sequencing. Liver samples
were also harvested from 8 additional broilers (4 control
and 4 heat-treated) from the same study, and included with
the 8 samples used for RNA-seq for the qPCR validation of
the transcriptome sequencing. All animal experiments
were approved by the Iowa State University Institutional
Animal Care and Use Committee: Log #4-11-7128-G.

Sequencing the transcriptome
Total RNA was isolated from the liver samples following
previously described procedures [56]. The RNA quality
was assessed using an Agilent 2000 Bioanalyzer. Seven
was the threshold RNA Integrity Number (RIN) score
for cDNA library construction. The RNA was submitted
to the Iowa State University DNA Facility, where librar-
ies from each of the 8 individuals were generated and
the individual liver transcriptomes were sequenced using
Illumina HiSeq 2000 technology (http://www.illumina.
com/systems/hiseq_2000_1000.ilmn). All 8 samples were
sequenced on one lane.

Quality control of RNA-seq reads
Read quality was controlled using the FastQC suite version
0.10.1. (https://preview.iplantcollaborative.org/de/#workspace).

http://www.illumina.com/systems/hiseq_2000_1000.ilmn
http://www.illumina.com/systems/hiseq_2000_1000.ilmn
https://preview.iplantcollaborative.org/de/#workspace
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A Phred score of 28 was used to control for read quality.
The adaptor sequences were removed from the reads using
the fastx_clipper software of the fastx_toolkit (version
0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/).

Mapping reads to genome
The RNA-seq reads were aligned using GSNAP [12], a
program that can be used to align single- or paired-end
reads. The authors chose to employ GSNAP over other
programs because of the sequencing platform used and
the advantages of using GSNAP to map RNA-Seq reads.
In the current study, Illumina HiSeq 2000 technology
was used to perform sequencing, resulting in 138 million,
100 bp reads. Both Illumina platforms, HiSeq 2000 and
Genome Analyzer, use sequencing-by-synthesis (SBS)
technology, but HiSeq 2000 has a two- to five-fold higher
rate of data acquisition [57]. The ability to detect exon-
intron boundaries and the connections between exons
is very important when assigning RNA-Seq reads to their
molecules of origin. This requires the use of programs
called spliced-mappers. These programs are splice-site
aware and incorporate intron-like gaps. GSNAP is a
splice-mapper that uses a seed-and-extend method that
maps part of the gene as substrings, and then uses algo-
rithms to extend candidate matches and locate potential
splice sites [58]. This method tends to be less dependent
on coverage and more likely to recover novel splice sites.
The compatibility of GSNAP to the sequencing platform,
the good balance between computing speed and accuracy,
the availability of a reference genome, and the wide
acceptance of the method are all reasons for which the
authors chose GSNAP for mapping the RNA-Seq reads in
the current study.
The RNA-seq reads were mapped back to the genome

based on the NCBI Gallus gallus Build 4.0 reference
genome. The data were run using “32 worker threads”
to optimize computational efficiency. The output was
set to “split” and put into a SAM format for convenient
Table 3 Number of reads before and after FastQC filtering, an

cDNA library Reads (Pre-filter) Reads (Post

2145 14,518,971 14,102,129

2146 16,435,957 16,079,777

2153 16,143,847 15,893,619

2154 12,443,771 12,157,917

2162 13,121,981 12,695,265

2163 19,905,505 19,516,053

2169 22,161,153 21,786,920

2170 15,633,924 15,633,924

Total 130,365,109 127,865,604

Standard error ±816.15 ±820.30
downstream analysis. During the alignment, the “-m” set-
ting for mismatches was set at default to allow GSNAP to
auto set the number of allowed mismatches based on read
length, which allowed for the best alignment across
intron-exon boundaries GSNAP “soft-trims” reads during
the alignment process, so that only portions of the reads
above the quality threshold are aligned. Table 3 details the
number of mapped and non-mapped reads, along with
the number of reads before and after FastQC quality filter-
ing (Phred 28).

Counting mapped reads
Raw reads were calculated and annotated using the HT-
seq package (version 4.7) in Python (http://www-huber.
embl.de/users/anders/HTSeq/), which is an open source
program that allows the input of raw counts from aligned
reads to be annotated with gene names based on gen-
omic features. The parameters “m<mode>”, and “--mode =
<mode >=” were set to “intersection non-empty”. The
stringency of these settings allows HT-seq to identify as
many genes as possible based on overlap resolution. The
parameter “-stranded” was set to “no” because the cDNA
library preparation was not strand specific. The par-
ameter “–a <minaqual” was set to “default (0)” because
the read quality threshold was cutoff at Phred 28. The
feature type was set at “-- type = exon” so that the reads
would be counted based on exons. The GFF attribute used
as the feature ID (“--idattr = <id attribute>”) was set to
“gene_id”, allowing the NCBI GFF file to output gene
names. For unmapped reads, special categories were pro-
vided that explained why the reads were not mapped back
to the reference genome.

Testing for differential expression
To account for the over-dispersion associated with
RNA-seq data, the QuasiSeq [59] package developed in
R [60] was used to analyze the data for differential expres-
sion. The QuasiSeq package was chosen for differential
d number of mapped and non-mapped reads

-filter) Mapped reads Non-mapped reads

10,786,983 3,315,146

11,966,390 4,113,387

10,958,652 4,934,967

9,162,608 2,995,309

8,949,977 3,745,288

14,835,601 4,680,452

15,456,927 6,329,993

11,468,175 4,165,749

93,585,313 34,280,291

±245.41 ±179.13

http://hannonlab.cshl.edu/fastx_toolkit/
http://www-huber.embl.de/users/anders/HTSeq/
http://www-huber.embl.de/users/anders/HTSeq/


Table 4 Forward and reverse primers used for qPCR validation of RNA-seq

Gene Forward primer Reverse primer

SPSB4 5′ AATGGACTTGACCCGGAAC 3′ 5′ TTTCAGAGACAGAGGCAAAGG 3′

TRPC5 5′ CTGCCCTGGGTTCTAGGTTT 3′ 5′ GGGAGTTCATTGCAAAATCC 3′

BNC1 5′ TGGATATGTGCTGCAGGATG 3′ 5′ TGCCATTAACTCCACAATGG 3′

ANGPTL4 5′ TGTGACATGACTGCAGAAGG 3′ 5′ CAGCCAGAAGTCACCATGAA 3′

LIMS2 5′ CAGATGGGCTTTTCTATGAGTT 3′ 5′ GAAACATTCTGGGTGCCAGT 3′

ERC2 5′ GTCTTGCCTCAACACAGCAA 3′ 5′ GGCAATGTTTGCATCCTTTT 3′

S100A1 5′ AGCTGAGCAAGAAGGAGCTG 3′ 5′ GGTCCTGCATGATCTTCTCC 3′

FGF14 5′ TACCCAAGCCATTGGAAGTT 3′ 5′ GTTTGCCGCCATTCATTATT 3′

DIO3 5′ GCTCTCTTCCTTCGGGATCT 3′ 5′ CCCATTTCAAAATCGGTCAT 3′

Table 5 Primer set r2 values and efficiencies, along with
the length of each amplicon and primer

Primer Length Product size r2 Efficiency

SPSB4 For 20 bp 120 bp 1 100%

SPSB4 Rev 21 bp

TRPC5 For 20 bp 112 bp 1 104%

TRPC5 Rev 20 bp

BNC1 For 20 bp 133 bp 1 109%

BNC1 Rev 20 bp

ANGPTL4 For 20 bp 126 bp 1 91%

ANGPTL4 Rev 20 bp

LIMS2 For 20 bp 143 bp 1 100%

LIMS2 Rev 20 bp

ERC2 For 20 bp 149 bp 1 104%

ERC2 Rev 20 bp

S100A1 For 20 bp 120 bp 1 95%

S100A1 Rev 20 bp

FGF14 For 20 bp 129 bp 1 109%

FGF14 Rev 20 bp

DIO3 For 20 bp 143 bp 1 104%

DIO3 Rev 20 bp
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expression analysis because of its advantages over DESeq
in detecting differentially expressed genes. Upon estimat-
ing negative binomial dispersion parameters, DESeq treats
the resulting estimates as constants, which can result in a
non-uniform distribution of P-values and inaccurately
estimates false discovery rates [59]. When estimating
dispersions, the QuasiSeq package allows gene-specific
estimates to vary around a central estimated trend and
shares information across genes. When testing for differ-
ential expression, the QuasiSeq package employs a quasi-
likelihood method that incorporates uncertainty in the
estimated variances and provides a self-tuning approach
to shrinking gene-specific dispersion estimates [59]. Dif-
ferential expression was declared at a significance level of
P-value < 0.05 and a fold-change ≥ 2.

Gene network analysis
Upon selecting Gallus gallus in the settings, gene networks
were constructed using Ingenuity Pathways Analysis [61].
Statistically significant networks were considered with a
P-value cut-off of 0.0001. This analysis was used to iden-
tify gene interactions within these networks.

qPCR primer design
The full cDNA sequences for each gene were obtained
from NCBI. The cDNA sequences were uploaded into
the NCBI Splign database and Gallus gallus was selected
as the reference genome. This allowed the authors to
view only the exonic regions of each gene. Sequences of
20–22 nucleotides (nt) were chosen for forward primers.
These sequences were in 5’-3’ (sense) orientation to the
cDNA sequences and spanned exon junctions. Along
with the NCBI RefSeq numbers for each gene; these
forward sequences were input into Primer3, a primer
design program. Primer3 is open-source software that
has been widely used for primer design for over a decade
[62]. It was used to select reverse sequences that were in
3’-5’ (antisense) orientation to the cDNA sequences and
also spanned two exons. Using primers that span exon
junctions prevents the amplification of genomic DNA [63].
Primer3 allowed assessment of the quality of the primer set
(melting temperature, GC%, and self-complementarity).
The output also included the product size, the sequence
in FASTA format, and where the primers will anneal to
the sequence. Primer3 thresholds were set to ensure a
product size of 60–150 nt, a GC content of 50-60%, a
primer length of 18–24 nt, and a melting temperature of
60-63°F. Primer sets that didn’t span exon junctions, con-
tained primers that were too complementary to one
another, or didn’t meet these specifications were rejected.
Sequencing and NCBI Primer-BLAST, which checks the
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specificity of a primer set with all possible regions of the
genome, were used for primer target detection.

qPCR and statistical analysis
Total RNA was isolated and quantitative PCR was per-
formed according to previously described procedures
[56]. All reactions were run in triplicate. The forward
and reverse primers used for qPCR are listed in Table 4.
The amplicons were verified for specificity and reaction
quality using the melting curves of the reactions. The
cycle threshold (Ct) line was adjusted to fit the standard
curve with an acceptable r2 value, 0.96-1. The efficiency
of each primer set was calculated using the following
formula: 10^[(−1/slope)-1] × 100. Table 5 shows the r2

values, efficiencies, and NCBI RefSeq number for each
primer set, along with the product length and the length
of each primer. Adjusted Ct values for statistical analysis
were calculated as follows: 40 − [(sample mean Ct) +
(median 28S Ct – mean 28S Ct) × (sample gene slope/
28S slope)] [64]. The mRNA expression levels as mean
adjusted Ct values of each triplicate sample were analyzed
using the ANOVA analysis of JMP 8.0.2 software on com-
bined data (control and temperature-exposed broilers) for
each gene separately, using the following model:

Y ¼ μþ challengeþ replicateþ e:

Challenge and replicate were considered fixed effects.
Student’s t test of JMP 8.0.2 software was used to deter-
mine significant differences (P-value < 0.05) between high
ambient temperature and control treatments.

Data deposition
The data discussed in this publication have been deposited
in NCBI's Gene Expression Omnibus [65] and are accessible
through GEO Series accession number GSE51035 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE51035).
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