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Abstract

Background: Genome-wide association studies have been deemed successful for identifying statistically associated
genetic variants of large effects on complex traits. Past studies have found enrichment of trait-associated SNPs in
functionally annotated regions, while depletion was reported for intergenic regions (IGR). However, no systematic
examination of connections between genomic regions and predictive ability of complex phenotypes has been
carried out.

Results: In this study, we partitioned SNPs based on their annotation to characterize genomic regions that deliver
low and high predictive power for three broiler traits in chickens using a whole-genome approach. Additive genomic
relationship kernels were constructed for each of the genic regions considered, and a kernel-based Bayesian ridge
regression was employed as prediction machine. We found that the predictive performance for ultrasound area of
breast meat from using genic regions marked by SNPs was consistently better than that from SNPs in IGR, while IGR
tagged by SNPs were better than the genic regions for body weight and hen house egg production. We also noted
that predictive ability delivered by the whole battery of markers was close to the best prediction achieved by one of

the genomic regions.

Conclusions: Whole-genome regression methods use all available quality filtered SNPs into a model, contrary to
accommodating only validated SNPs from exonic or coding regions. Our results suggest that, while differences
among genomic regions in terms of predictive ability were observed, the whole-genome approach remains as a
promising tool if interest is on prediction of complex traits.
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Background

High-throughput genotyping technology has increasingly
produced more dense sets of genetic markers, e.g., from
tens to hundreds of thousands of SNP variables. Avail-
ability of high-density DNA genotyping chips, such as
770K and 600K SNP arrays in cattle [1] and chickens [2],
respectively, are some recent examples. Also, sequencing
of livestock species and humans (e.g., [3]) has revealed that
coding DNA sequences (CDS) cover only a tiny fraction of
the entire genome. A question of interest is that of estimat-
ing effects of non-coding sequences that are functional
and could potentially influence phenotypes of interest.
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Genome-wide association studies (GWAS) have been
deemed successful for identifying statistically associated
allelic substitution effects in known protein-coding genes.
However, about 90% of trait-associated SNPs reported in
humans do not lie within coding regions [4,5]. Hindorff
et al. [4] found that nonsynonymous sites and 5Kb pro-
moter regions were overrepresented in trait-associated
SNPs, while depletion was observed for intergenic regions
(IGR). Similar reports claiming enrichment within genic
regions can be found in e.g., Knight et al. [6], Kindt
et al. [7] and Schork et al. [8]. On the other hand, a
recent release of the ENCyclopedia of DNA Elements
(ENCODE) includes evidence of biochemical activity of
the human genome [9]. About 62% of the genome is tran-
scribed into RNA, and together with evidence such as
transcription-factor-binding, specific chromatin structure
and histone modification, the picture suggests that 80%
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of the human genome is involved in biochemical activ-
ity [9]. This implies that intergenic regions are likely to
play important roles in complex traits. DNase hypersen-
sitivity sites tagged by open chromatin indicate presence
of an active regulatory role, and these are mostly located
in intergenic and intronic regions (e.g., [10,11]). Further,
a recent study suggests that more than 75% of identi-
fied SNPs are located in regulatory regions or are in
strong linkage disequilibrium (LD) with SNPs in regula-
tory DNA segments [12]. There is also increasing evidence
in animals that many markers found to be associated with
traits of interest in GWAS reside in non-coding regions
or gene deserts (e.g., [13,14]). Presumably these variants
fall within cis-acting regulatory elements of genes residing
nearby. Several authors have found a significant over-
lap between expression quantitative trait loci studies and
genomic regions having effects in GWAS [6,7,15].

The preceding suggests that prediction of phenotypes
from genomic information may not be as straightfor-
ward as commonly thought. For example, many SNPs
not reaching stringent statistical significance criteria do
contribute to additive genetic variance (e.g., [16]). Fur-
ther, Eleftherohorinou et al. [17] reported a case where
non-significant GWAS markers attained a better perfor-
mance than that from use of significant GWAS markers
alone when predicting rheumatoid arthritis. These studies
clearly support the view that complex traits, often char-
acterized as polygenic or as possessing an “infinitesimal”
genetic architecture, are influenced by most genetic vari-
ations in the genome, with effects that may be too small to
be detected with standard GWAS.

In light of the recent availability of SNP annotation
information, it seems worthwhile to investigate genomic
regions playing an important role in prediction of genetic
values or phenotypes using high density SNP arrays.
Whole genome-enabled prediction is currently applied
to a wide range of agricultural species (e.g., [18]) and
more recently to personalized medicine in humans [19].
Here, we used a whole-genome approach to prediction
of phenotypes of commercial broiler chickens. The most
common statistical model employed in this domain incor-
porates all available quality filtered SNPs into a linear
regression model, contrary to accommodating only vali-
dated SNPs from exonic or coding regions. As an alter-
native, we examined partitioning SNPs based on their
annotation, to characterize genomic regions that convey
low or high predictive power. For instance, genic regions
can be classified into CDS, 5’ and 3’ untranslated regions
(UTR), exons, genes, introns, proximal regulatory regions,
and non-genic regions, such as IGR.

The aim of this study was to evaluate and characterize
the relative importance of genomic segments as contribu-
tion to predictive performance of phenotypes in chickens.
The remainder of this paper is structured as follows. In the
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Methods section we present background on three chicken
production traits and of the high dimensional SNP geno-
types assessed on individual birds. This is followed by
a description of SNP annotations and of the genome-
enabled prediction model used in the study. Finally, results
are presented and implications of the findings are dis-
cussed.

Methods

Live animals were not used in this study and required
no ethical approval. A sample from a commercial broiler
chicken line consisting of 1,351 birds was provided by
Aviagen. Three traits, body weight at 35 days (BW), ultra-
sound area of breast meat (BM) and hen house production
(HHP, the total number of eggs laid between weeks 28
and 54) were available for 1,351, 1,336, and 823 animals,
respectively. These animals were genotyped with the pub-
licly available Affymetrix 600K chip, with information
on 580,954 bi-allelic SNPs [2]. The chicken genome is
comprised of 39 pairs of chromosomes: 5 pairs of macro-
chromosomes, 5 pairs of intermediate size chromosomes,
28 pairs of micro-chromosomes, and sex chromosomes,
Z and W [3]. The 600K SNP array includes SNPs mainly
from chromosomes 1-28 and Z. Each SNP genotype was
coded as 0 for homozygotes, 1 for heterozygotes and 2
for the alternative homozygotes. We applied the follow-
ing editing criteria for data preprocessing: all SNPs with a
call rate < 95% and a minor allele frequency < 1% were
removed. Animals with fewer than 90% of SNPs geno-
typed were omitted. Missing genotypes were imputed
independently locus by locus by sampling alleles twice
from a Bernoulli distribution with probability equal to
its observed allele frequency. This imputation strategy
assumes Hardy-Weinberg equilibrium at a locus in ques-
tion, as well as linkage equilibrium. Heritability estimates
of these traits from this dataset were 0.30, 0.33, and 0.19
for BW, BM, and HHP respectively [20].

SNP annotation

Chromosome information and physical positions of SNPs
were obtained using the annotation file downloaded from
the NetAffx website. We mapped the information to
Gallus_gallus_4.0 assembly through Ensembl database
(release 71). Each SNP was examined to see if it resided
in genic or non-genic regions. Five genomic regions
were formed, namely, CDS, Exons (CDS + UTR), Genes
(CDS + UTR + introns), Geneslkb (genes with regula-
tory regions), and intergenic SNPs which lie in remain-
ing regions scattered all over the genome. CDS entail
actual protein-coding sequences, whereas Exons fur-
ther include UTR, Genes represent a combination of
exons and introns, and Geneslkb incorporate nearby
regulatory regions. Therefore, by definition, these genic
regions present a nested structure. Regulatory regions
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were defined as 1kb upstream and downstream of genes,
putatively cis-acting proximal genes. IGR in the present
study consisted of SNPs without any assignment to the
aforementioned annotation categories. Numbers of SNPs
assigned to each of the genomic regions are shown in
Table 1.

Whole-genome prediction models

We posited the phenotype of bird i, y; (i = 1,--- ,n) as a
linear function of an intercept u, a systematic effect s;;, a
genetic effect g;, and a residual €;, so that y; = u + 55 +
gi+e€;. Specifically, s;; for BW and BM entailed a combined
effect of sex, hatch week, contemporary group of parents
and pen in the growing farm, whereas s;; for HHP was
a hatch effect. Here, j denotes the effect of level j of the
corresponding group associated with bird i. If systematic
effects are known to be present, one can fit these simul-
taneously with the genetic effect in the prediction model,
or precorrect phenotype and use the residuals as a newly
obtained phenotype.

The systematic effect on BW and BM had few replicates
in each level. For instance, approximately 40% of the ani-
mals had a unique systematic effect, and 28% of birds had
effects that were assigned only twice in the dataset. The
number of levels for this factor was 908. This is common,
e.g., in genetic evaluation of dairy cattle. A common strat-
egy treats these effects as random by viewing levels as a
random sample from a population (e.g., [21,22]). In this
study, we preadjusted phenotypes for systematic effects by
using a random effects model so that the model fitted was
yf = [ + g; + e where y{e represents precorrected pheno-
types using the random model. The hatch factor for HHP
contained 130 factor levels, and effects were also treated
as random, as several levels were observed only once or
twice.

To explore links between the aforementioned genomic
regions and predictive power, the following comparisons
were carried out. Predictive abilities of SNPs in each of
the four genomic regions (CDS, Exons, Genes, Geneslkb)
were compared with that from randomly sampled SNPs in
IGR with an equal number of SNPs to those in the four
regions. If a large number of regulatory elements is placed

Table 1 Numbers of SNPs assigned to each genomic region

Annotation # of SNPs annotated After filtering
IGR 299,498 193,970
Genes +1kb 281,455 184,047
Genes 266,947 183,768
Exons 29,764 19,511
CcDs 21,975 14,416

IGR and CDS represent intergenic regions and coding DNA sequences,
respectively.
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distantly from the genes that they regulate, or if influen-
tial regions span the entire genome but are not limited to
particular segments, then IGR, devoid of protein-coding
sequences, may have comparable or perhaps even better
predictive power. On the other hand, if this does not hold,
the collection of functionally enriched regions (e.g., CDS
and Exons) would be expected to yield a better prediction
than that delivered by SNPs in IGR. As a benchmark, a
model using all available SNPs was tested as well.

Bayesian ridge regression

Use of a semi-parametric kernel method for genome-
enabled prediction was suggested first by Gianola et al.
[23] and Gianola and van Kaam [24] in a mixed effects
model context. Bayesian kernel ridge regression, a form
of the Reproducing kernel Hilbert spaces methods, was
entertained. Here, we present a succinct description of
the kernel-based Bayesian ridge regression used. We pos-
tulated that the SNP-phenotype mapping for animal i is
given by

¥R = p+g(x) + €, 1)

where x; is a vector of SNP genotypes observed on i. We
assume g is represented as Ka, where K is an n x n ker-
nel matrix indexed by the observed SNP covariates. This
specification mitigates the “curse of dimensionality”, so
that with g = Ka, the original 600K SNP predictors are
reduced to the number of observations, that is 1,351, 1,336
or 823 animals. If we choose the residual sum of squares
and the square of the norm of the coefficient « as a loss
function and penalty, respectively, this is simply Bayesian
ridge regression employing the kernel matrix K instead of
the commonly used # X p genotypes matrix X, where p is
the number of SNPs. We can now rewrite Equation (1) in
matrix form, such thaty = p + K& + €. In order to imple-
ment the procedure under a Bayesian framework, a flat
prior was assigned to i, and € ~ N(0, Iog), o ~ N(O, Ia(f)
were assumed independent vectors. Scaled inverse chi-
square distributions were assigned to the variance param-
eters 02 and o2, each with 3 degrees of freedom and a
scale parameter equal to 1. Although this model makes use
of kernels, it is different from the Bayesian kernel ridge
regression applied by de los Campos et al. [25] and Morota
etal. [26]. In our model, the penality takes the form A||e||?,
contrary to )\||I(ot||%_[. Thus, the kernel matrix K is not
included in the penalty function and optimization is not
carried out under a Hilbert space. Our approach shares
the spirit of that of Long et al. [27], where they regressed
phenotypes on a kernel incidence matrix K by imposing
an L1 regularization.

The kernel used was K o« XX? o« G, where X is a
SNP genotype matrix as before, and G resulted from a
centered and standardized X, followed by division by the
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number of SNP, as proposed by VanRaden [28]. This ker-
nel is expected to capture genetic signals through genomic
relationships under additive inheritance.

The Bayesian model was implemented by Gibbs sam-
pling. For each genomic region, a MCMC chain was run
and the first 20,000 samples were discarded as burn-in.
Subsequently, 40,000 samples were obtained and thinned
at a rate of 10, leaving 4,000 mildly correlated sam-
ples for posterior inference. Convergence of the chain
was checked by visual inspection of trace plots of the
parameters. The predictive ability of our Bayesian ridge
regression model was assessed by a cross-validation (CV).
Specifically, a 10 fold CV scheme was applied by assign-
ing animals randomly to one of 10 disjoint subsets. Of
these 10 subsets, 9 were combined to form a training set,
and the remaining was used as testing set. Each of the
10 subsets was used as a testing set only once. Since the
CV distribution was dispersed because of small sample
size, the above 10 fold CV was replicated 15 times, at ran-
dom. Predictive abilities were evaluated via the Pearson
product-moment correlation between preadjusted phe-
notypes and predicted additive genetic values, that is
cor(yLR, kiT& i), where kiT is the ith row of K.

Hierarchical clustering of predicted genetic values
Dissimilarities among various genomic regions were
assessed using a hierarchical clustering method. For each
trait, a matrix containing the pairwise Euclidean norms
between predicted genetic values (§ = Ka) obtained
from different genomic annotations were calculated. This
distance matrix was subsequently fed to the R function
“hclust” for clustering purposes. Therefore, we classified
genomic regions into hierarchical categories presumably
sharing similar genomic signals captured by the kernel-
based Bayesian ridge regression. At each iteration of the
clustering algorithm, we joined the two most similar clus-
ters, and distances between this newly merged cluster and
each of the old clusters were computed by Ward’s criterion
[29]. In Ward’s minimum-variance method, the distance
between two clusters is defined as the increase in sum of
squares between the two clusters provided that they are
merged. The idea follows Heslot et al. [30], who inves-
tigated dissimilarities between various genome-enabled
prediction models. However, our focus is on dissimilari-
ties between genetic signals captured by several genomic
regions.

Results

Mean and median values of genomic relatedness (off-
diagonals of G) between training and testing animals for
each CV fold were negative or close to 0, regardless of
a genomic region. Figures 1, 2, and 3 display predic-
tive correlations obtained from the 10-fold CV with 15
replications, and these are summarized according to the
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annotation classes. Since CV variation across replicates
was large because of small sample size, results were repre-
sented in boxplots. Figure 1 presents results for BW. Here,
predictive power brought by SNPs in IGR was consis-
tently better than for genic regions. Genetic signals were
well tagged in IGR even when a small number of SNPs
was considered simultaneously, as shown for the case of
CDS. In IGR, performance with respect to prediction was
similar irrespective of the number of SNPs assigned to
classes. The additive genomic relationship kernel con-
structed from all markers attained a similar performance
to that of IGR.

Results for BM presented a distinct pattern (Figure 2).
Unlike BW, predictive abilities delivered by SNPs in genic
regions were consistently better than for SNPs in IGR.
We observed a slightly better predictive performance for
CDS and Exons than for Genes and Geneslkb. The supe-
riority of genic regions over IGR was most pronounced
when their predictive abilities were compared to those
of CDS-IGR and Exons-IGR. This suggests that SNPs
in functionally enriched regions (e.g., exons) provide an
important source of information for prediction of yet-to-
be observed BM phenotypes. The predictive ability from
SNPs in CDS was better than those for Geneslkb-IGR
even though the two additive genomic relationship ker-
nels constructed were from only 14,416 SNPs and 184,047
SNPs, respectively. In other words, close to 190,000 SNPs
from IGR did not attain a similar predictive performance
to that from CDS regions tagged by about 15,000 SNPs.
Predictive ability delivered by all SNPs was similar to that
of genic regions.

Figure 3 shows predictive correlations obtained for
HHP. Results for HHP presented a similar pattern to BW,
that is, IGR seemed able to convey power to the predictive
model, with the corresponding SNPs likely to be scattered
across the genome. This was evidenced by the lower cor-
relations observed for genic regions. These results agreed
with those for BW such that predictive performance of
IGR was fairly constant, regardless of the number of SNPs
considered. For both genic and IGR, the larger the number
of markers, the greater the predictive correlations were.
The picture that emerges is that SNPs in genic regions
may carry genetic variations that are less useful for pre-
diction of HHP than SNPs in IGR. Seemingly, the gain
in prediction observed is not driven solely by functional
genic regions but by IGR as well. Again, this may be partly
attributed to the fact that IGR covers the entire genome.

Results of the hierarchical clustering of predicted
genetic values are in the dendrograms shown in Figures 4,
5, and 6. We took an agglomerative (bottom up) approach
so that the most similar two clusters were combined into
a higher-level cluster at each step until there was only
one cluster left. In Figure 4, the top hierarchy on the den-
drogram for BW was clustered by separating genic with
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All CDS

Predictive correlation

Genomic regions

Figure 1 Predictive correlations comparing genic and non-genic regions for BW using kernel-based Bayesian ridge regression. The results
were based on 10 fold cross-validation with 15 replications for each genomic region. Genic regions were coding DNA sequences (CDS), exons,
genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR” represent intergenic regions that contain
equal SNP numbers to those of genic regions. “All” means all SNPs used for constructing G. Outliers denoted as black dots.

Exons Genes Genes1kb

non-genic regions. This is consistent with the boxplot of
predictive correlations observed in Figure 1, genic and
non-genic classes exhibited contrasting patterns. Genic
and non-genic clusters were further subdivided based
on CDS-Exons and Genes-Geneslkb. The dendrogram
topology reflected the ability of genomic regions of cap-
turing distinct types of genetic signals for prediction.
While all available markers attained a predictive perfor-
mance similar to those for all IGR, genetic values captured
by all markers was clustered next to CDS-IGR.

For BM, the dendrogram had a slightly different struc-
ture as that of BW (Figure 5). Genic and IGR were grouped
into different clusters, and this was in line with the results
depicted in Figure 2, where genic regions consistently out-
performed IGR. CDS-Exons and Genes-Geneslkb clus-
tered with each other within subcategories. The genetic
values obtained from all markers was clustered in the
branch of genic regions, contrary to what was observed
for BW.

Finally, the hierarchical clustering structure for HHP
was similar to that of BW except in the case of CDS-IGR
and Exons-IGR (Figure 6). It is interesting to note that
Exon-IGR was clustered as more similar to Genes-IGR
and Geneslkb than to CDS-IGR. For every comparison,

predictive correlations from SNPs in IGR were larger than
those from genic regions as displayed in Figure 3, and the
dendrogram mirrored this pattern.

Discussion

Advances in high-throughput genotyping technology have
produced immense amounts of genetic data in livestock
species and in humans. This has led to identification of
significant trait-associated SNPs and to enrichment or
depletion of these SNPs in annotated genomic regions.
Seemingly, no systematic examination of links between
genomic regions and predictive ability of complex pheno-
types has been carried out up to date. We set out to asso-
ciate SNP annotations with predictive performance using
a commercial broiler chicken line genotyped with a 600K
SNP array, to shed light on annotated interpretation of
prediction performance. Attention was paid to identifica-
tion of genomic regions that may deliver a high predictive
ability for genome-enabled prediction of complex traits,
with application in breeding and medicine.

There is debate on the role of functional regions in the
genome in connection with what are called complex traits.
Quantitative genetics theory claims that these traits are
influenced by many genetic variations on the genome,
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Figure 2 Predictive correlations comparing genic and non-genic regions for BM using kernel-based Bayesian ridge regression. The results
were based on 10 fold cross-validation with 15 replications for each genomic region. Genic regions were coding DNA sequences (CDS), exons,
genes, and genes with Tkb upstream and downstream. The genomic regions followed by the term “IGR” represent intergenic regions that contain
equal SNP numbers to those of genic regions. “All” means all SNPs used for constructing G. Outliers denoted as black dots.

with each of them having a small genetic effect [31].
Also, Wright [32] argued that pleiotropy is an universal
phenomenon. On the other hand, presence of abundant
biochemical activity at large proportion of the genome
reported by the ENCODE project cannot be taken as solid
evidence for claiming biological functionality [33].

We obtained annotation information from Ensembl to
map SNPs to genic regions, and additionally considered
all SNPs between 1kb upstream and 1kb downstream of
genes. Predictive abilities delivered by genic regions and
IGR varied between traits. It was found that some parts
of the genome provided better predictive power than oth-
ers. In particular, predictive performance for BM from
genic regions marked by SNPs was consistently better
than that of SNPs in IGR. For this trait, genic regions
seemed to be enriched for variants that increase predictive
ability, whereas the reverse was true for IGR. However,
IGR tagged by SNPs were better than genic regions for BW
and HHP. This highlights the importance of SNPs cov-
ering the entire genome, which implies that every allele
may play a role in connecting phenotype with genotypes,
albeit with a small contribution of individual loci. The
usefulness of SNPs as genetic markers is that these span
across the entire genome. This type of marker might be

best suited to capturing genetic signals from widely dis-
tributed IGR. Presumably, structural variation data (e.g.,
copy number variations) in chicken will become available
in the near future, but their contribution towards a bet-
ter predictive performance may be limited for a trait like
HHP, because such variations are observed only at partic-
ular regions in the genome. All genic regions considered
delivered a better predictive performance for BM and an
inferior prediction for BW and HHP.

Similarities between the genomic regions considered
were investigated further using a hierarchical clustering
method. Dendrogram topologies with genomic regions
treated as clusters were consistent with results obtained
in CV correlations. Seemingly, the hierarchical cluster-
ing agreed with the ability of genomic regions to deliver
predictions for complex traits.

Previous studies have shown that many QTN (quanti-
tative trait nucleotides) of large effects in animals tend to
reside in coding regions, e.g., DGAT1 in cattle [34], but
QTN in an intron of IGF2 in swine [35] and in IGR affect-
ing stature in cattle [36] also exist. If a trait is controlled
by SNPs that are not identified by GWAS or QTL analy-
ses due to their small effect sizes, these SNPs are probably
disseminated across the whole genome, potentially away
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Figure 3 Predictive correlations comparing genic and non-genic regions for HHP using kernel-based Bayesian ridge regression. The
results were based on 10 fold cross-validation with 15 replications for each genomic region. Genic regions were coding DNA sequences (CDS),
exons, genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR" represent intergenic regions that
contain equal SNP numbers to those of genic regions. “All” means all SNPs used for constructing G. Outliers denoted as black dots.
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Figure 5 Hierarchical clustering of predicted genetic values obtained from genic and non-genic regions for BM. Genic regions were coding
DNA sequences (CDS), exons, genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR” represent
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from genic regions. On the other hand, if there are loci
of large effect that exceed generally accepted genome-
wide significance thresholds, these are likely to be found
in genic regions. Therefore, it could be argued that, for
prediction purposes, it may be crucial to consider IGR

for complex traits, although this may be less important
for regions with a major effect on phenotypes. If this is
the case, BM may follow an oligogenic inheritance, while
BW and HHP may conform to the assumptions of the
infinitesimal model.
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Figure 6 Hierarchical clustering of predicted genetic values obtained from genic and non-genic regions for HHP. Genic regions were
coding DNA sequences (CDS), exons, genes, and genes with 1kb upstream and downstream. The genomic regions followed by the term “IGR"
represent intergenic regions that contain equal SNP numbers to those of genic regions.
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We conclude that examining sources of predictive
performance aids in interpretation of results. Although
genomic annotations of livestock species are more scarce
than in humans, our approach may be adaptable to other
traits and species as well. A recent study found that the GC
content of CDS and introns was negatively correlated with
gene expression levels in chicken, while 5° UTR presented
a positive association [37]. It is of interest to understand
how the GC content of 5 UTR could influence predictive
performance of complex traits in future research.

Potential limitations of this study include that chro-
mosome 16 was severely underrepresented due to scarce
information on the current reference genome, and SNPs
from chromosomes 29-38 were not available in the cur-
rent SNP panels. Chromosome 16 contains the major
histocompatibility complex, known to influence immune
function [38]. The chicken has chromosomes differing
markedly in length, and it is known that gene density
of micro-chromosomes is much higher than in macro-
chromosomes [3]. Also, note that the kernels constructed
from five genomic regions may be also capturing sig-
nals from other regions because SNP genotypes are not
orthogonal to each other, due to LD. Although presence
of LD should not be ignored, our results indicate genetic
signal tagging ability of SNPs in the genomic regions
considered. In addition, IGR were simply defined as a col-
lection of SNPs not residing in genes or 1kb upstream
and downstream of genes. It may be interesting to fur-
ther exclude known noncoding RNAs, transcription factor
binding sites and microRNA binding sites in a future
study. We also assumed, a priori, that genetic effects act
independently and additively. However, there is growing
evidence that a genetic signal is a product of a synergistic
interplay of biological phenomena [39]. Hence, predictive
models accommodating non-additive effects may pro-
vide additional insights. This work represents a first step
toward examining sources of predictive performance of
complex traits.

Conclusion

Whole-genome prediction methods allow predicting
complex traits, irrespective of knowledge of their molecu-
lar basis. Although this is typically regarded as a black box
approach (e.g., [40]), dissection of available SNPs based
on genomic annotation may be an attractive strategy for
understanding which genomic segments drive higher pre-
dictive performance of yet-to-be observed phenotypes.
We noted that predictive ability delivered by all markers
was close to the best prediction achieved by the individual
genomic regions. While a small difference among genomic
regions in terms of predictive ability was observed, this
suggests that whole-genome prediction methods are able
to capture signals from the most useful genomic regions
among several such sources. Thus, use of all markers
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seems the way to go, if interest is on prediction of complex
traits.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

GM conceived, carried out the study, and drafted the manuscript; RAA and AK
provided critical insights and revised the manuscript; DG supervised the study
and revised the manuscript. All authors read and approved the final
manuscript.

Acknowledgements

Financial support by the Wisconsin Agriculture Experiment Station and by a
Hatch grant from the United States Department of Agriculture to GM and DG
are acknowledged.

Author details

L Department of Animal Sciences, University of Wisconsin-Madison, Wisconsin,
USA. 2Department of Animal Science, University College of Agriculture and
Natural Resources, Karaj, Iran. 3Aviagen, Midlothian, UK. #The Roslin Institute
and Royal (Dick) School of Veterinary Studies, University of Edinburgh,
Midlothian, UK. SDeparm'wem of Biostatistics and Medical Informatics,
University of Wisconsin-Madison, Wisconsin, USA. ®Department of Dairy
Science, University of Wisconsin-Madison, Wisconsin, USA.

Received: 4 September 2013 Accepted: 4 February 2014
Published: 7 February 2014

References

1. Harris BL, Creagh FE, Winkelman AM, Johnson DL: Experiences with the
lllumina high density bovine beadchip. Interbull Bull 2011, 44:37.

2. Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A,
Brew F, Kaiser P, Hocking PM, Fife M, Salmon N, Fulton J, Strom TM,
Haberer G, Weigend S, Preisinger R, Gholami M, Qanbari S, Simianer H,
Watson KA, Woolliams JA, Burt DW: Development of a high density
600K SNP genotyping array for chicken. BMC Genomics 2013, 14:59.

3. International Chicken Genome Sequencing Consortium: Sequence and
comparative analysis of the chicken genome provide unique
perspectives on vertebrate evolution. Nature 2004, 432:695-716.

4. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS,
Manolio TA: Potential etiologic and functional implications of
genome-wide association loci for human diseases and traits. Proc
Natl Acad Sci USA 2009, 106:9362-9367.

5. Kavanagh DH, Dwyer S, O'Donovan MC, Owen MJ: The ENCODE project:
implications for psychiatric genetics. Mo/ Psychiatry 2013, 18:540-542.

6.  Knight J, Barnes MR, Breen G, Weale ME: Using functional annotation
for the empirical determination of Bayes factors for genome-wide
association study analysis. PLoS One 2011, 6:214808.

7. Kindt AS, Navarro P, Semple CA, Haley CS: The genomic signature of
trait-associated variants. BMC Genomics 2013, 14:108.

8. Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF,
Kelsoe JR, O'Donovan MC, Furberg H, Tobacco and Genetics Consortium,
Bipolar Disorder Psychiatric Genomics Consortium, Schizophrenia
Psychiatric Genomics Consortium, Schork NJ, Andreassen OA, Dale AM:
All SNPs are not created equal: genome-wide association studies
reveal a consistent pattern of enrichment among functionally
annotated SNPs. PLoS Genet 2013, 9:21003449.

9. ENCODE Project Consortium: An integrated encyclopedia of DNA
elements in the human genome. Nature 2012, 489:57-74.

10. Felsenfeld G, Boyes J, Chung J, Clark D, Studitsky V: Chromatin structure
and gene expression. Proc Natl Acad Sci 1996, 93:9384-9388.

11. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E,
Sheffield NC, Stergachis AB, Wang H, Vernot B, Garg K, John S, Sandstrom
R, Bates D, Boatman L, Canfield TK, Diegel M, Dunn D, Ebersol AK, Frum T,
Giste E, Johnson AK, Johnson EM, Kutyavin T, Lajoie B, Lee BK, Lee K,
London D, Lotakis D, Neph S, et al.: The accessible chromatin
landscape of the human genome. Nature 2012, 489:75-82.

12. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H,
Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin
T, Stehling-Sun 'S, Johnson AK, Canfield TK, Giste E, Diegel M, Bates D,



Morota et al. BMC Genomics 2014, 15:109
http://www.biomedcentral.com/1471-2164/15/109

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Hansen RS, Neph S, Sabo PJ, Heimfeld S, Raubitschek A, Ziegler S,
Cotsapas C, Sotoodehnia N, Glass |, Sunyaev SR, et al.: Systematic
localization of common disease-associated variation in regulatory
DNA. Science 2012,337:1190-1195.

Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, Franchimont D,
Vermeire S, Dewit O, de Vos M, Dixon A, Demarche B, Gut |, Heath S,
Foglio M, Liang L, Laukens D, Mni M, Zelenika D, Van Gossum A, Rutgeerts
P, Belaiche J, Lathrop M, Georges M: Novel Crohn disease locus
identified by genome-wide association maps to a gene desert on
5p13.1 and modulates expression of PTGER4. PLoS Genet 2007, 3:e58.
Signer-Hasler H, Flury C, Haase B, Burger D, Simianer H, Leeb T, Rieder S: A
genome-wide association study reveals loci influencing height and
other conformation traits in horses. PLoS One 2012, 7:e37282.

Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ:
Trait-associated SNPs are more likely to be eQTLs: annotation to
enhance discovery from GWAS. PLoS Genet 2010, 6:e1000888.
Makowsky R, Pajewski NM, Klimentidis YC, Vazquez Al, Duarte CW, Allison
DB, de los Campos G: Beyond missing heritability: prediction of
complex traits. PLoS Genet 2011, 7:21002051.

Eleftherohorinou H, Wright V, Hoggart C, Hartikainen AL, Jarvelin MR,
Balding D, Coin L, Levin M: Pathway analysis of GWAS provides new
insights into genetic susceptibility to 3 inflammatory diseases. PLoS
One 2009, 4:e8068.

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP:
Whole-genome regression and prediction methods applied to plant
and animal breeding. Genetics 2013, 193:327-345.

Vazquez Al, de los Campos G, Klimentidis YC, Rosa GJ, Gianola D, Yi N,
Allison DB: A comprehensive genetic approach for improving
prediction of skin cancer risk in humans. Genetics 2012,
192:1493-1502.

Abdollahi-Arpanahi R, Pakdel A, Nejati-Javaremi A, Moradi-Shahrbabak M,
Morota G, Valente BD, Kranis A, Rosa GJM, Gianola D: Dissection of
additive genetic variability for quantitative traits in chickens using
SNP markers. J Anim Breed Genet 2014. doi:10.1111/jbg.12079.

Chauhan VPS: Dairy sire evaluation fitting some of the
herd-year-season effects as random. Livest Prod Sci 1987, 16:117-130.
Ugarte E, Alenda R, Carabano MJ: Fixed or random groups in genetic
evaluations. J Dairy Sci 1992, 75:269-278.

Gianola D, Fernando RL, Stella A: Genomic-assisted prediction of
genetic value with semiparametric procedures. Genetics 2006,
173:1761-1776.

Gianola D, van Kaam JB: Reproducing kernel Hilbert spaces regression
methods for genomic assisted prediction of quantitative traits.
Genetics 2008, 178:2289-2303.

de los Campos G, Gianola D, Rosa GJ, Weigel KA, Crossa J:
Semi-parametric genomic-enabled prediction of genetic values
using reproducing kernel Hilbert spaces methods. Genet Res 2010,
92:295-308.

Morota G, Koyama M, Rosa GJM, Weigel KA, Gianola D: Predicting
complex traits using a diffusion kernel on genetic markers with an
application to dairy cattle and wheat data. Genet Sel Evol 2013, 45:17.
Long N, Gianola D, Rosa GJ, Weigel KA: Marker-assisted prediction of
non-additive genetic values. Genetica 2011, 139:843-854.

VanRaden PM: Efficient methods to compute genomic predictions.
JDairy 5¢i 2008, 91:4414-4423.

Ward Jr JH: Hierarchical grouping to optimize an objective function.
JAm Stat Assoc 1963, 58:236-244.

Heslot N, Yang HP, Sorrells ME, Jannink JL: Genomic selection in plant
breeding: a comparison of models. Crop Sci 2012, 52:146-160.
Falconer DS, Mackay TFC: Introduction to Quantitative Genetics. Longmans
Green: Harlow; 1996.

Wright S: Evolution and the Genetics of Populations. Volume 1. Chicago:
University of Chicago Press; 1968.

Niu DK, Jiang L: Can ENCODE tell us how much junk DNA we carry in
our genome? Biochem Biophys Res Commun 2013, 430:1340-1343.
Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P,
Frere JM, Coppieters W, Georges M: Genetic and functional
confirmation of the causality of the DGAT1 K232A quantitative trait
nucleotide in affecting milk yield and composition. Proc Nat/ Acad Sci
2004, 101:2398-2403.

35.

36.

37.

38.

39.

40.

Page 10 of 10

Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L,
Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M,
Andersson L: A regulatory mutation in IGF2 causes a major QTL effect
on muscle growth in the pig. Nature 2003, 425:832-836.

Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis
SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ,
Georges M, Coppieters W: Variants modulating the expression of a
chromosome domain encompassing PLAGT1 influence bovine
stature. Nat Genet 2011, 43:405-413.

Rao YS, Chai XW, Wang ZF, Nie QH, Zhang XQ: Impact of GC content on
gene expression pattern in chicken. Genet Sel Evol 2013, 45:9.

Fulton JE: Genomic selection for poultry breeding. Anim front 2012,
2:30-36.

Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan
L, Jordan KW, Lawrence F, Magwire MM, Warner CB, Blankenburg K, Han
Y, Javaid M, Jayaseelan J, Jhangiani SN, Muzny D, Ongeri F, Perales L, Wu
YQ, Zhang Y, Zou X, Stone EA, Gibbs RA, Mackay TF: Epistasis dominates
the genetic architecture of Drosophila quantitative traits. Proc Nat/
Acad Sci 2012, 109:15553-15559.

Van Der Werf J: Animal breeding and the black box of biology. JAnim
Breed Genet 2007, 124:101.

doi:10.1186/1471-2164-15-109

Cite this article as: Morota et al: Genome-enabled prediction of
quantitative traits in chickens using genomic annotation. BMC Genomics
2014 15:109.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

® Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

® Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolMed Central




	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	SNP annotation
	Whole-genome prediction models
	Bayesian ridge regression
	Hierarchical clustering of predicted genetic values

	Results
	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

