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Abstract

Background: Small RNA-guided transcriptional silencing (nuclear RNA)) is fundamental to genome integrity and
epigenetic inheritance. Despite recent progress in identifying the capability and genetic requirements for nuclear
RNAI in Caenorhabditis elegans, the natural targets and cellular functions of nuclear RNAi remain elusive.

Methods: To resolve this gap, we coordinately examined the genome-wide profiles of transcription, histone H3
lysine 9 methylation (H3K9me) and endogenous siRNAs of a germline nuclear Argonaute (hrde-1/wago-9) mutant
and identified regions on which transcription activity is markedly increased and/or H3K9me level is markedly
decreased relative to wild type animals.

Results: Our data revealed a distinct set of native targets of germline nuclear RNAI, with the H3K9me response
exhibiting both overlapping and non-overlapping distribution with the transcriptional silencing response. Interestingly
LTR retrotransposons, but not DNA transposons, are highly enriched in the targets of germline nuclear RNAi. The
genomic distribution of the native targets is highly constrained, with >99% of the identified targets present in
five autosomes but not in the sex chromosome. By contrast, HRDE-1-associated small RNAs correspond to all
chromosomes. In addition, we found that the piRNA pathway is not required for germline nuclear RNAI activity on
native targets.

Conclusion: Germline nuclear RNAIi in C. elegans is required to silence retrotransposons but not DNA transposon.
Transcriptional silencing and H3K9me can occur independently of each other on the native targets of nuclear
RNAI in C. elegans. Our results rule out a simple model in which nuclear Argonaute protein-associated-small
RNAs are sufficient to trigger germline nuclear RNAi responses. In addition, the piRNA pathway and germline
nuclear RNAI are specialized to target different types of foreign genetic elements for genome surveillance in
C. elegans.
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Background

RNA interference (RNAi) was originally discovered as a
biochemical pathway triggered by double-stranded RNA
(dsRNA) that leads to degradation of target mRNA with
the corresponding sequence [1,2]. RNAi is initiated by
cutting dsRNA into small RNAs of 20-30 nucleotides
(called small interfering RNAs, or siRNAs) by the RNase
I1I-like enzyme dicer [3]. The resulting siRNAs are loaded
into the highly conserved Argonaute (AGO) family of
RNA-binding proteins, defined by the PIWI and PAZ
domains [4]. Target mRNAs, through their base-pairing
interactions with siRNAs, can then be degraded by the en-
donucleolytic activity (‘slicer’) of Argonaute proteins [5-7].
In plants, fungi, and C. elegans, dicer-produced siRNAs
(named primary siRNAs) can also trigger de novo synthe-
sis of additional small RNAs (called “secondary siRNAs”)
through recruitment of RNA-directed RNA polymerases
(RdRPs) that use the mature target mRNA as a template
[8-10]. Endogenous small RNAs that are antisense to tran-
scripts also exist in a variety of eukaryotic species. These
so-called endo-siRNAs modulate a diverse set of cellular
processes, such as gene expression, genome surveillance,
chromosome transmission, and behavior adaptation [11-19].

In addition to mRNA degradation, RNAi has been
found to function in the nucleus of plants and Schizosac-
charomyces pombe. Nuclear siRNAs in these organisms
guide Argonaute proteins and other protein factors to si-
lence transcription and form a repressive chromatin
state on target genes [reviewed in [20-23]]. This process
has been termed “nuclear RNAi” (reviewed in [24]), as
distinguished from the RNA-triggered mRNA degrad-
ation mechanism, referred to as “classical RNAi”".

Recent studies in Drosophila and C. elegans demonstrated
that nuclear RNAi mechanisms play crucial functions in an-
imals as well. In Drosophila, three PIWI subfamily mem-
bers of Argonaute proteins, AGO3, Aubergine, and Piwi, in
concert with PIW1I-associated small RNAs (piRNAs) guide
molecules, silence transposons in both somatic and germ
cells [25,26]. Gene silencing mediated by AGO3 and Auber-
gine occurs at the post-transcriptional level [26], while the
Piwi protein leads to transcriptional silencing and hetero-
chromatin response on its target transposons [27-29].

Nuclear RNAi in C. elegans was initially suggested by
the reduction of target transcripts in the nucleus when an-
imals were treated with exogenous dsRNA (exo-dsRNA)
[30]. Recent studies using genetics, biochemistry, and
whole-genome approaches demonstrated that exo-dsRNA
triggers transcriptional silencing as well as H3K9 methyla-
tion (H3K9me), a histone mark associated with the repres-
sive chromatin state [31-34], on the target loci [35-39]. A
diverse set of protein-coding genes was found to be sus-
ceptible to exo-dsRNA-induced nuclear RNAi [36,39].
These features, combined with powerful genetics, make
C. elegans a highly attractive system to study the mechanisms
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of nuclear RNAI. Several genes, including nrde-1, -2, -3,
and -4, have been recently identified for their essential
roles in the nuclear RNAi pathway [35-37].

Nuclear RNAI in C. elegans is a bona fide epigenetic
process. For a number of germline-expressed genes, the
exo-dsRNA-induced silencing state, as well as target-
specific H3K9 trimethylation, can last for several genera-
tions [39]. The epigenetic inheritance of the RNAI effects
is dependent on the nuclear RNAi pathway. Recent stud-
ies identified HRDE-1, a nucleus-localized Argonaute
protein, for its essential role in heritable RNAi [38,40,41].
HRDE-1 is one of several worm-specific AGO pro-
teins and was initially named as WAGO-9 [42]. The name
HRDE-1 is used in this work to reflect the /heritable RNAi-
deficient phenotype of the mutant. HRDE-1 is highly
expressed in the C. elegans germline and appears to be
absent in somatic cells, so it is considered as a germline-
specific nuclear Argonaute protein. In contrast, another
nuclear Argonaute protein NRDE-3 appears to work solely
in the somatic cells. Single-mutant animals hrde-1, nrde-1,
nrde-2, and nrde-4 all exhibit reduced viability of germ
cells at elevated temperatures, indicating a crucial function
mediated by nuclear RNAI in germline development [38].

Despite recent progress in identifying the genetic re-
quirements for nuclear RNA|, its cellular functions in C.
elegans remain elusive. Previous studies have shown that
a large population of endo-siRNAs are loaded into the
germline nuclear Argonaute protein HRDE-1 [38], sug-
gesting that many regions of the genome can potentially
be targeted by nuclear RNAi. In addition, mutations in
nrde-2 and nrde-4 lead to loss of H3K9 trimethylation in
distinct loci [38]. While these studies clearly indicate im-
portant roles of nuclear RNAi in regulating chromatin
structures, the global impact of nuclear RNAi on gene
transcription has not been examined. Resolving this crit-
ical gap will identify the native targets of nuclear RNAi
and delineate its endogenous functions in regulating gene
expression and epigenetic response during animal devel-
opment. To this end, we combined genetic, biochemical,
and whole-genome computational approaches to iden-
tify and characterize transcriptional silencing events that
are dependent on the germline nuclear Argonaute protein
HRDE-1.

Results and discussion

The germline nuclear Argonaute protein HRDE-1 is
required for the exclusion of RNA Polymerase Il (Pol Il) in
a distinct set of genomic regions

To identify native targets of germline nuclear RNAi, we
performed Pol II ChIP-seq using C. elegans wild-type
populations and animals carrying a hrde-1 mutation. For
this work, we used the hrde-1(tm1200) mutant allele,
which has a 376-bp deletion in exon 3 and results in a
premature stop codon before the essential PAZ and



Ni et al. BMC Genomics 2014, 15:1157
http://www.biomedcentral.com/1471-2164/15/1157

PIWI domains. This allele was also used in previous stud-
ies as a loss-of-function mutation [38,40,41]. To enrich for
germline material, we used young adult hermaphrodites
for both samples, in which germline contributes much of
total chromatin content [43].

To minimize non-specific ChIP signal resulting from
a single antibody, we used three different anti-Pol II
C-terminal domain (CTD) YSPTSPS peptide antibodies,
each corresponding to a different phosphorylation state
of the peptide: unphosphorylated [8WG16], phosphor-
ylated at the Ser2 residue [S2], and phosphorylated at the
Ser5 residue [S5]. For this analysis, we constructed and
sequenced a total of six Pol II ChIP-seq libraries, as
well as two ChIP input libraries using the Illumina
platform. An average of 2.1 million reads that perfectly
aligned to the C. elegans genome were obtained (approxi-
mately 4x coverage).

Our assay was validated by the strong relative enrich-
ment of Pol II ChIP signals at both the 5" and 3" ends of
a set of “H3K4 di- or tri-methylation-anchored” genes,
which represent actively transcribed genes in C. elegans
[44] (Figure 1A). In each of the three Pol II ChIP-seq ex-
periments (8WG16, S2, and S5), the averaged Pol II oc-
cupancy for the actively transcribed genes in the hrde-1
mutant showed only modest differences from the one in
the wild type (modest decrease for 8WG16 and S5 and
modest increase for S2 in the /rde-1 mutant). The differ-
ences were even smaller in a similar metagene analysis
for all annotated protein-coding genes (data not shown).

To expand our analysis at a higher resolution for the
entire genome, we divided the genome into 100,257 1-
kb segments and determined the Pol II ChIP-seq signal
for each segment. Sequenced reads that were aligned to
repetitive regions in the genome were normalized by the
frequency that a non-unique read aligns to a different
position in the genome. For most of the genome, the
wild type and hrde-1 mutant exhibited similar levels of
Pol II occupancy (Figure 1B). By using a 3-fold cutoff,
the hrde-1 mutant animals showed consistent increases
in Pol II occupancy at 191 1-kb regions in all three sets
of Pol II ChIP samples (8WG16, S2, and S5) (Figure 1B
and Additional file 1: Table S1). The median fold of in-
crease in Pol II occupancy for these loci was 5.3
(8WG16), 5.8 (S2), and 9.0 (S5), indicating HRDE-1's
prominent role in transcriptional silencing for at least
0.2% of the C. elegans genome. We provisionally refer to
these 191 1-kb regions as the exemplary germline nu-
clear RNAi-dependent transcriptional silencing (GRTS)
loci. Regions with a minimal 2-fold and 1.5-fold increase
in the Pol II ChIP signals (hrde-1 vs. wild type) were
listed in Additional file 1: Table S1. We found a much
smaller number of 1-kb regions (15) which showed de-
creased levels of Pol II ChIP-seq signals in the hrde-1
mutant animals. Most of these changes were modest
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(Figure 1B) and most likely corresponded to experimen-
tal noise or indirect effects of the hrde-1 mutation. They
were not further analyzed in this work.

The genomic distribution of the GRTS loci is not ran-
dom; many GRTS loci are in proximity to each other. By
setting a proximity cutoff of 5 kb, we found that 161 of
the 191 exemplary GRTS loci (84.2%) are clustered in 35
different regions, here after referred to as GRTS clusters
(Figure 2C). Eight of these 35 clusters were at least
10 kb, a size three times larger than the median size of
C. elegans genes. In addition, all of the exemplary GRTS
loci are located in five autosomes and strikingly absent
in the sex chromosome (X) (Figure 2C). C. elegans has
two sexes: hermaphrodite (XX) and male (X). Previous
studies have shown that the entire X chromosome, with
the exception of the left tip, is in a repressive chromatin
state in C. elegans germ cells [45,46]. Therefore, the de-
pletion of GRTS loci in the X chromosome may reflect a
paradox in the nuclear RNAI field [24], which states that
the target locus needs to be at least transiently tran-
scribed in order to be targeted for transcriptional silen-
cing. Alternatively, the X chromosome in C. elegans
germ cells may lack certain DNA sequences or chroma-
tin components that are necessary for nuclear RNAi.

Germline nuclear RNAi-dependent heterochromatin
(GRH) loci and transcriptional silencing (GRTS) loci are
in proximity to each other

We then asked to what extent the germline nuclear RNAi-
dependent transcriptional silencing events are correlated
with the heterochromatic responses on the native tar-
gets. In a previous study, we identified a set of nuclear
RNAi-dependent heterochromatic regions (marked by
H3K9 trimethylation) that are dependent on two dif-
ferent nuclear RNAI protein factors NRDE-2 and NRDE-4
[38]. To augment the previous study, we performed the
H3K9me3 ChIP-seq analysis using the hrde-1(tm1200)
mutant adult animals in this study. We found that the
hrde-1 mutant had very similar H3K9me3 defects to
the nrde-2 and nrde-4 mutants. Using a 3-fold cutoff,
we found that 215 out of the 358 NRDE-2/NRDE-4-
dependent H3K9me3-enriched regions (60%) were
dependent on the HRDE-1 activity as well. We refer
to these 215 1-kb regions as exemplary germline nuclear
RNAi-dependent heterochromatic (GRH) loci (Figure 2A)
(listed in Additional file 2: Table S2). Similarly to GRTS
(listed in Additional file 3: Table S3), nearly all of the GRH
regions are located in the five autosomes and only three
1-kb GRH regions (1.4%) were located in the X chromo-
some (Figure 2C).

We compared the genomic distributions of the exem-
plary 215 GRH and 191 GRTS 1-kb loci and found that
35% of the GRH loci were within 10 kb distance of a GRTS
locus (Figure 2B and 2C, p-values <1x10~*?). Furthermore,
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Figure 1 Loss of HRDE-1 increases RNA polymerase Il (Pol Il) occupancy at specific genomic loci. (A) Comparison of averaged Pol Il occupancy
levels in the wild type and hrde-1(tm1200) mutant animals around the 5 and 3’ ends of 3903 “H3K4me2/3-anchored” genes [44]. Left panels:
Pol Il ChIP or ChIP input signal was plotted as a function of distance to the dyad of the “plus-one” nucleosome, defined by peak H3K4me2/3
nucleosomes near transcription start sites for the 3903 ‘H3K4me2/3-anchored’ genes. Right panels: Pol Il ChIP or ChIP input signal was plotted as
a function of distance to the annotated ends of 3’ UTR. (B) Pol Il ChIP or ChIP input signals for the wild type and hrde-1(tm1200) mutant
animals on 100,257 1-kb regions in the C. elegans genome. Each dot corresponds to a 1-kb region. Dotted lines indicate no-changes (the

middle line) and three-fold differences (the flanking lines).
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Figure 2 Germline nuclear RNAi-dependent heterochromatic (GRH) regions. (A) H3K9me3 ChIP-seq signals for the wild type (N2) and hrde-1
(tm1200) mutant on 100,257 1-kb regions in the C. elegans genome. GRH and GRTS loci were indicated by blue and red dots, respectively. (B) Blue
curve: the percentage of the 215 1-kb GRH regions that are nearby to or overlap with any GRTS as a function of the proximity cutoff. Red curve:
the minimal percentage to reject the null hypothesis that the 215 1-kb GRH regions have no tendency to overlap with or nearby to GRTS regions
(p-values =1 x 107"?, binomial distribution) as a function of the proximity cutoff. (C) Genomic distribution of GRTS (red bars) and GRH (blue bars)
regions in each of the six chromosomes in C. elegans, with prominent GRTS clusters and GRH clusters (at least 10 kb) indicated with solid circles.
Numbers on the right of each chromosome are the percentages of the chromosome in GRTS (red) and GRH (blue) regions. (D) Scatter plots of
the whole-genome Pol Il ChIP-seq signals for the wild type and hrde-1(tm1200) mutant animals with the GRH regions highlighted (otherwise the
same data as used in Figure 1B). Dotted lines (A and D) indicate no-changes (the middle line) and three-fold differences (the flanking lines).

approximately 50% of these GRH loci either overlapped of native targets at which germline nuclear RNAI triggers
with or were adjacent to a GRTS locus. These overlapping  robust responses in both transcriptional silencing and
or proximally located GRTS and GRH loci represent a set ~ H3K9 trimethylation.



Ni et al. BMC Genomics 2014, 15:1157
http://www.biomedcentral.com/1471-2164/15/1157

Intriguingly, many of the GRTS loci, at which the
hrde-1 mutation leads to a dramatic transcriptional desi-
lencing, had fewer H3K9me3 defects than the GRH loci
(Figure 2A). In the hrde-1 mutant, the median fold-of-
reduction of H3K9me3 for GRH was 6.1, while the re-
duction for GRTS was only 2.5. Conversely, the hrde-1
mutation had a much weaker effect on Pol II exclusion
in the GRH loci than the GRTS loci. The median folds-
of-increase of Pol II for GRH loci were 1.3, 1.9, and 2.0
for 8WG16, S2, and S5, respectively. In contrast, the in-
creases for GRTS loci were 5.3, 5.8, and 9.0 for 8W@G16,
S2, and S5, respectively. In addition, many GRH loci ex-
hibited no changes in Pol II occupancy between the wild
type and hrde-1 mutant animals (Figure 2D). These re-
sults indicate that the responses of germline nuclear
RNAIi may differ among the native targets. Furthermore,
these results ruled out a simple model in which the level
of H3K9 methylation is the sole determinant of tran-
scription silencing at the native targets of germline nu-
clear RNAI.

Impact of germline nuclear RNAi on the primary
transcriptome

To further characterize the transcription activity, par-
ticularly its directionality, we decided to characterize
pre-mRNA at the whole genome level. Previously, a nas-
cent transcript sequencing method was developed to
globally analyze pre-mRNA in Saccharomyces cerevisiae
[47]. In this method, pre-mRNA was enriched by Pol II
immunoprecipitation (IP) from DNase I-treated nuclear
extract without crosslinking. We applied this method for
C. elegans and found that >99% of Pol II remained insol-
uble even after extensive DNase I treatment of the crude
nuclear extract (data not shown). We subsequently learned
from previous works that, in metazoans, the ternary
complex of RNA polymerase II, DNA, and nascent RNA
is resistant to high concentrations of detergents, chao-
tropes, salt, and polyanions [48,49]. So we modified the
standard Pol II (S2) ChIP procedure and extracted RNA
from the final IP product (see Methods for details), followed
by RNA-seq analysis. We will refer to this method as pre-
mRNA-seq in this work.

To verify that pre-mRNA, not mRNA, was indeed
enriched by this method, we searched for intronic se-
quences in the pre-mRNA-seq reads. We found that
intronic reads were largely increased in the pre-mRNA-
seq samples when compared with the matching mRNA-
seq samples (Figure 3A). The [intron/exon] ratio of the
pre-mRNA-seq was 19.3-fold higher than the ratio of the
mRNA-seq for the wild type and 17.6-fold higher for
the hrde-1 mutant. This verifies an efficient enrichment
of primary transcripts by the pre-mRNA-seq method. We
also observed regions with abundant pre-mRNA-seq reads
but very low mRNA-seq reads (e.g, Figure 4B, comparing
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pre-mRNA and mRNA for the hrde-I mutant sample),
evidencing a unique power of pre-mRNA-seq in revealing
gene expression activity. In addition, pre-mRNA-seq com-
pliments the Pol II ChIP-seq analysis by indicating the dir-
ectionality of transcription activity.

We examined the pre-mRNA-seq signals from the wild
type and hrde-1 mutant animals for all 1-kb segments
throughout the genome (Figure 3B). Among the 191 ex-
emplary GRTS loci, 61.8%, 35.1%, and 17.3% showed at
least 10, 50, and 200-fold increase in pre-mRNA-seq
signals in the /rde-1 mutant over the wild type animals
(p-values < 0.0005, Monte Carlo simulation), evidencing a
large increase in nascent transcripts in the GRTS regions.
Consistent with Pol II ChIP-seq analysis, pre-mRNA-seq
analysis revealed a generally weaker transcription de-
silencing response in the GRH regions than in the GRTS
regions. Among the 164 GRH loci, 25.6%, 10.9%, and 5.1%
of them showed 10, 50, and 200-fold increases, respectively,
in pre-mRNA-seq signals in the hrde-1 mutant compared
to the wild type animals (p-values: 0.92, 0.72, and 0.002,
Monte Carlo simulation). A weaker desilencing in the
hrde-1 mutant in GRH regions was also evident from the
mRNA-seq analysis (Figure 3C).

To test whether HRDE-1-dependent silencing events
also require other nuclear RNAi pathway genes, we per-
formed mRNA-seq analysis for mutants of three other
core nuclear RNAi factors [nrde-2(gg91), nrde-3(gg66)
and nrde-4(gg129)]. For the mRNA-seq analysis, we
defined a set of exemplary HRDE-1 targets as the com-
bined GRTS and GRH regions with increased mRNA-seq
signals in /rde-1 mutant animals (a minimal of 3-fold in-
crease in the hrde-1 mutant compared with the wild type
mRNA-seq samples). We found that both the nrde-2 mu-
tant and the nrde-4 mutant showed strong de-silencing of
the exemplary HRDE-1 target regions: 77.2% and 69.0% of
the exemplary HRDE-1 targets showed at least 3-fold in-
creases in mRNA-seq signals in the nrde-2 mutant and
nrde-4 mutant, respectively, when compared with the wild
type (Figure 3D and E). By contrast, only 22.3% of the ex-
emplary HRDE-1 targets showed at least 3-fold increases
in mRNA-seq signals in the nrde-3 mutant (Figure 3F).
We previously found that the soma-specific nuclear
Argonaute protein NRDE-3 is not required for the en-
dogenous H3K9me3 responses mediated by NRDE-2 and
NRDE-4 [38]. Taken together, these results further con-
firm that NRDE-3 has little or no function in germline nu-
clear RNAI

Germline nuclear RNAi primarily targets retrotransposons
for transcriptional silencing

To gain insight into the physiological role of germline
nuclear RNAi in C. elegans, we examined the top sixteen
largest GRTS clusters (5-19 kb) for their genomic anno-
tations. Although protein-coding genes in these clusters
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Figure 3 Loss of HRDE-1 increases the levels of pre-mRNA and mRNA transcribed from the GRTS regions. (A) Percentages of sequenced
tags (pre-mRNA-seq or mRNA-seq) that match to sequences of exons or introns. Scatter plots of the pre-mRNA-seq (B) or mRNA-seq signals
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were not associated with any obvious common feature, we
found that LTR retrotransposons were highly enriched in
the GRTS clusters. 10 of these 16 GRTS clusters contain
either full or partial LTR retrotransposon-type elements
(p-value = 0.0005, Monte Carlo simulation) (Table 1). This
strong association was further evidenced by a close corres-
pondence between the locations of target LTR retrotran-
sposons and the local profiles of endo-siRNAs in both the
wild type and hrde-1 mutant (see next section), H3K9me3
in the wild type, and Pol II occupancy/pre-mRNA in the
hrde-1 mutant (two examples were shown in Figure 4A
and 4B). We note that the top 16 largest GRTS clus-
ters were used for this analysis because (1) full-length
LTR retrotransposons in C. elegans are usually larger
than 8 kb and (2) these larger clusters represent a high-
confidence reference data set of HRDE-1 targets. Some of
the smaller GRTS regions also contain retrotransposon
fragments (data not shown). Within each of these LTR

retrotransposons, nearly all of the pre-mRNA reads in the
hrde-1 mutant sample were mapped to the sense strand of
the protein-coding genes within the targets (e.g, Figure 4A
and 4B). Together with profiles of Pol II-ChIP-seq and
pre-mRNA-seq in the hrde-1 mutant, the strong tran-
scription directionality strongly suggests that transcription
of these LTR retrotransposons initiates from the upstream
LTR (relative to the sense strand of protein-coding se-
quence within the transposons) and terminates within or
near the downstream LTR.

In contrast to mammals and plants, retrotransposons
in the C. elegans are sparse and occupy only approxi-
mately 0.4% of the genome [50-52]. Furthermore, retro-
transposition in C. elegans has never been reported [52].
However, DNA transposons, which are active in trans-
position in C. elegans, occupy a much larger fraction
(approximately 10%) of the C. elegans genome [52]. We
found that there was only one GRTS cluster that had
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a DNA transposon (Tcl), which is embedded in an
LTR retrotransposon in this case (Table 1). These re-
sults indicate that LTR retrotransposons, but not DNA
transposons, are a major class of germline nuclear RNAi
targets.

The native targets of germline nuclear RNAi are
associated with abundant endo-siRNAs

To examine endo-siRNAs associated with native targets
of germline nuclear RNAi, we performed small RNA se-
quencing analyses using wild-type adult animals and
hrde-1 mutant adults. We used a 5'-mono-phosphate
(mono-Pi)-independent method to capture small RNAs
with mono-Pi or tri-Pi at their 5" ends. As expected for
RNAi-regulated loci, we found that the native target re-
gions of germline nuclear RNAi were associated with
abundant endo-siRNAs (Figures 4A-C and 5A). Small
RNAs that were mapped to these regions measured pre-
dominantly 21 or 22 nucleotides long, began with a G at

the 5° end (Figure 5B), and were antisense to the pri-
mary transcripts (Figure 4A-C). These features indicate
that these endo-siRNAs belong to the so-called 22G
RNA family and are products of RdRPs [9,10,53].

We also compared the endo-siRNA profiles between
the wild type and hrde-1 mutants. The overall abun-
dance of GRTS- or GRH-corresponding endo-siRNAs
were similar between these two samples (Figure 5A).
This result indicates that HRDE-1 does not directly
function in the endo-siRNA biogenesis pathway. Never-
theless, some differences were observed between the wild
type and the /rde-1 mutant when endo-siRNA profiles
were examined in detail along the target sites. Possibly
these differences correspond to a secondary effect of tran-
scriptional de-silencing caused by the krde-1 mutation.

Non-retrotransposon GRTS regions
In addition to LTR retrotransposons, we also identified
several GRTS clusters that do not contain any annotated



Table 1 Top sixteen largest germline nuclear RNAi-dependent transcriptional silencing (GRTS) clusters

Genomic position (WS190) Length LTR retrotransposon LINE Tc/mariner-type  Other types of DNA repeat Protein-coding genes GRH
(kb) DNA transposon
chrl:226000-239000 13 A Cer13 fragment (656 bp) with homology - - Y48G1BM.5, Y48G1BM.6, +
to the PAO family retrotransposon integrase. Y48G1BM.7
No LTR at this target.
chrl:4456000-4464000 8 - - - Two ~930 bp DNA repeats that are 1.9 kb apart and 99% i eri-7, eri-6, C41D11.6, +
dentical (chrl:4456382-4457314 and chrl:4459215-4460136). T01A4.3
One of the two repeats is located between eri-6 and eri-7
and contains the promoter active for the two genes.
chrl:11438000-11449000 " Cer16-2 (9.3 kb) with LTR in both ends - - Qr7Cr1 +
chrll:2150000-2163000 13 Cer9-1 (9.5 kb) with LTR in both ends - - C40A11.8 math-18 +
chrll:2516000-2521000 5 - - - Two ~430 bp DNA repeats that are 3.5 kb apart and 98%  bath-12, bath-13 +
identical to each other (chrll:2,520,235-2,520,670 and
chrll:2516272-2516702)
chrll:13245000-13250000 5 - - - F15D4.5, F15D4.6 +
chrlV:915000-922000 7 An extensive Cer3-1 (8.7 kb) with LTR in - - F58H7.5, F58H7.6 +
both ends
chrlV:4124000-4138000 14 A solo LTR (Cer2) with four other Cer2 - - F49F1.7, F49F1.8 +
fragments (275 bp-412 bp)
chrlV:13633000-13639000 6 - LINE2C1 - CO8F11.5, CO8F11.7 +
fragment
chrV:5182000-5201000 19 Cer9-1 (11.5 kb) with LTR in both ends - - CO3A7.12, CO3A7.2, +
CO3A7.13, abu-8, Y47A7.2
chrV:5482000-5487000 5 - - - s1g-66, srg-65, grl-18 +
chrV:8826000-8837000 11 Mixed Cer8 and Cer9 sequence (19.8 kb) - - F09B7.3, W09B7.2 (FO7B7.2), +
with LTR (cer9) in both ends, WO09B7.1 (FO7B7.1), FO7B7.7,
FO7B7.8
chrV:8868000-8879000 1 Mixed Cer8 and Cer9 sequence (19.8 kb) - - FO9B7.3, W09B7.2 (FO7B7.2), +
(identical sequence to with LTR (cer9) in both ends, WO09B7.1 (FO7B7.1), FO7B7.7,
chrV:8826000-8837000) FO7B7.8
chrV:14039000- 14055000 16 - LINE2H - T08G5.9, TO8GS.8, TO8GS.7, -
F58D12.5, T08G5.19
chrV:17568000-17573000 5 A Cer8-1 fragment (68 bp) - - (38D9.2 +
chrV:18439000- 18457000 18 Cer8-1 (19.4 kb) with LTR in both ends - Tc1 embedded ZK262.8, ZK262.9, 7K228.1, +

in the Cer8-1
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retrotransposons. One prominent example covers the
C41D11.6 gene (Figure 4C), which exhibits strong in-
creases in Pol II occupancy, pre-mRNA levels, and mRNA
levels in the hrde-1 mutant animals. C41DI11.6 also
exhibits a high degree of HRDE-1-dependent H3K9
trimethylation, which extends into a neighboring, di-
vergently transcribed gene (T01A4.3). These two genes
appear to be nematode-specific genes with unknown
functions.

On the other side of C41D11.6 is a locus encoding the
eri-6 and eri-7 genes (Figure 4C). Despite the divergent
transcription of eri-6/eri-7, their mRNAs are joined
together by an unusual trans-splicing event [54]. Intri-
guingly, by performing qRT-PCR using primers specific to
the eri-6/7 trans-spliced product, we observed a 50% re-
duction in the eri-6/7 mRNA level in the hrde-1 mutant,
suggesting the existence of a local effect of germline nu-
clear RNAi on the expression of a neighboring gene.
We found that loss of eri-6/7 had no silencing defects
on the natural targets of germline nuclear RNAi [data
not shown].

The piRNA pathway is not required for germline nuclear
RNAi responses at the native targets

The piRNA pathway in C. elegans plays an important
role in silencing certain pseudogenes, DNA transposons,
and other types of foreign DNA such as transgenes in the
germline [55-59]. The broad targeting capability comes
from the highly diverse repertoire of sequences encoded
by piRNAs (also called 21U RNAs) in C. elegans. piRNA-
mediated silencing of transgenes was previously shown to
be dependent on HRDE-1 [40,41].

To investigate whether the piRNA pathway is required
for germline nuclear RNAI activity on the native targets,
we performed genome-wide analyses using a piRNA path-
way mutant. The C. elegans genome encodes two PIWI
family proteins, PRG-1 and PRG-2. Previous studies found

that PRG-1 is required for the stability of piRNAs and
essential for piRNA activity. By contrast, PRG-2 has very
little or no function in the piRNA pathway [11,56,60]. Pre-
vious studies found that a subset of the endogenous 22G
RNA population is dependent on the piRNA pathway
[57,58]. To ask whether regions with PRG-1-dependent
endo-siRNAs overlap with the exemplary GRH and GRTS
regions, we examined two sets of published small RNA-
seq data for the prg-1(n4357) mutant and matching wild
type animals [58,61]. By using a 3-fold cutoff, we found
that only 7.5% and 20.6% of the exemplary GRTS and
GRH regions, respectively, had reduced levels of endo-
siRNAs in the prg-1 mutants. The reduction for most of
these regions was modest (Figure 6A). These results indi-
cate that endo-siRNA levels for the majority of the natural
targets of germline nuclear RNAi are not dependent on
the piRNA pathway.

We then asked whether loss of prg-1 had any effect on
the germline nuclear RNAi-mediated heterochromatin
response and transcriptional silencing at the native tar-
get sites. For this we performed H3K9me3 and Pol II
(S2) ChIP-seq experiments using the prg-1(n4357) mu-
tant animals. The results showed that loss of PRG-1 had
virtually no effect on the H3K9me3 or Pol II occupancy
profiles on the native targets of germline nuclear RNAi
(Figure 6B and C), indicating that germline nuclear RNAi
in C. elegans does not require the piRNA pathway.

Conclusions

Retrotransposon silencing

By taking a combined genetic, biochemical, and compu-
tational approach, we identified a distinct set of genomic
regions that are naturally targeted by germline nuclear
RNA:I for transcriptional silencing and/or heterochromatin
formation in C. elegans. The enrichment of retrotrans-
poson elements in these regions suggests that germline
nuclear RNAi evolved as a genome defense mechanism
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against this type of mobile DNA. Our detailed whole-
genome profiling of Pol IT occupancy and pre-mRNA indi-
cates that, first, the HRDE-1-targeted retrotransposons in
C. elegans are intrinsically active in transcription. Second,
germline nuclear RNAi-mediated transcriptional silen-
cing at these regions occurs prior to (or at) the formation
of the transcriptional preinitiation complex. Taken to-
gether, these findings indicate that one function of germ-
line nuclear RNAI is to silence the retrotransposons in the
C. elegans genome.

piRNA

Studies using Drosophila, zebrafish, and mice have re-
vealed that the piRNA pathway plays a central role in si-
lencing retrotransposons at both the transcriptional and
post-transcriptional levels. piRNAs in C. elegans (also called
21U RNA) have been shown to silence Tc3 (a mariner-type
DNA transposon), certain pseudogenes, and transgenes
in the germline [56-58]. Previous studies indicated that
HRDE-1 is required for the silencing of piRNA-targeted
reporter genes [40,41]. In this study, we showed that the
piRNA pathway in C. elegans is not required for germline
nuclear RNAi activity at LTR retrotransposons. These
findings suggest that the HRDE-1-mediated nuclear RNAi

and the piRNA pathway evolved to have distinct target
specificity in genome surveillance.

Triggers of nuclear RNAI

The triggering mechanisms that initiate RNAi-mediated
transcriptional silencing appear to be quite diverse in
different organisms. In plants, nuclear RNAi can be trig-
gered in trans by dsRNA produced from an infecting virus
or transgene [62,63]. Cryptic splicing, aberrant transcrip-
tion products, and transcription-blocking activities (such
as DNA replication) have been shown to play important
roles in triggering RNAi-mediated chromatin silencing in
cis in fission yeast [64-66].

The native targets of germline nuclear RNAi in C. ele-
gans identified in this study often contain DNA repeats
that are associated with promoter activities (e.g, LTRs).
It is possible that certain unusual nucleic acid interac-
tions (RNA-RNA, RNA-DNA, or DNA-DNA) associated
with transcriptionally active DNA repeats are recognized
by the host as signals for unwanted genetic elements. In
the case of the eri-6/eri-7 locus, although no DNA trans-
poson or retrotransposon can be found nearby, there are
several unusual features of gene structures: (1) an approxi-
mately 0.9 kb DNA sequence that includes the promoters
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for eri-6 and eri-7 is duplicated 3 kb away in the same
orientation (Figure 4C), which resembles of LTRs; (2) the
partially overlapped genes C41D11.6 and eri-6 are tran-
scribed in convergent directions; (3) and the C41D11.6
gene is an intron-less gene. We are currently investigating
whether nuclear RNAI at this region is caused by any of
these features.

A previous study found that at least one of the LTR ret-
rotransposons, namely Cerl, is actively transcribed in
germ cells of wild type C. elegans [67]. We observed the
active expression of CerI in the wild type in our data set
as well (data not shown). This suggests that DNA repeats,
such as LTR, may not be sufficient to trigger silencing.
Other genetic activities or molecular structures that are
intrinsic to retrotransposons may be required as well. Al-
ternatively, the triggering mechanism may involve inter-
ference between genetic activities (e.g, transcription and
DNA replication) that originates from foreign DNA and
neighboring host genes. Such interference may be absent
in the Cerl locus. We consider these models to be valid
hypotheses for further study.

Absence of response in the X chromosome

With a few exceptions, GRTS and GRH regions are situ-
ated in all five autosomes but not on the X chromosome.
What are the possibly explanations for their absence in
the X chromosome? Our previous study showed that
abundant small RNAs from both types of chromosomes
are associated with HRDE-1 [38]. Therefore, this position-
ing cannot be due to the lack of X-chromosome endo-
siRNAs. LTR retrotransposons themselves are not absent
in the X chromosome either. Some of the X-located LTR
elements are nearly identical to ones located in the GRTS
regions. At this point we cannot rule out the lack of
certain intrinsic triggering sequences in the X-located
LTR retrotransposons. It is also possible that the lack of
X-located GRTS or GRH regions is due to the global silen-
cing of the X chromosome in the germ cells of C. elegans.
Previous studies found that the entire X chromosome in
C. elegans germ cells, with the exception of one tip of the
X chromosome, is in a repressive chromatin state [45,46].
It is conceivable that a brief period of transcription is
needed to provide nascent transcripts as binding sites for
targeting siRNA-associated silencing complex. Transient
transcription may even be required to generate the trig-
gering signals, for example, by providing nascent tran-
scripts recognized as improperly spliced or terminated
transcripts, or providing nascent transcripts as templates
or substrates for siRNA biogenesis.

Methods

Worm strains

C. elegans strain N2 was used as the standard wild-type
strain. Mutant alleles used in this study were hrde-1
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(tm1200) [38,40,41], nrde-2(gg91) [36], nrde-3(gg66) [35],
nrde-4(gg129) [37] and prg-1(n4357) [56]. Synchronized
animals were cultured on NGM plates at 19°C and fed
on E. coli OP50 [68].

Chromatin Immunoprecipitation (ChIP)-seq, pre-mRNA-
seq, mRNA-seq, and small RNA-seq procedures are de-
scribed in Additional file 4.

Availability of supporting data
All sequencing data used in this study have been depos-

ited in GEO (Accession Number: GSE58031).
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Additional file 1: Table S1. GRTS and GRH regions identified with
cutoffs of 1.5, 2, or 3-fold differences.

Additional file 2: Table S2. GRH clusters identified using data from
Additional file 1: Table S1. Each of these regions has at least one 1-kb
region with a minimal 3-fold decrease in H3K9me3 in all three nuclear
RNAi mutants (nrde-2, nrde-4, and hrde-1) and also includes nearby regions
with at least 1.5-fold decreases. Each cluster was indicated whether
it overlaps with any GRTS cluster. Genes in each GRH cluster were listed.

Additional file 3: Table S3. GRTS clusters identified using data from
Additional file 1: Table S1. Each of these regions has at least one 1-kb
region with a minimal 3-fold increase in Pol Il ChIP-seq signal in hrde-1
and also includes nearby regions with at least 1.5-fold increases. Each
cluster was indicated whether it overlaps with any GRH cluster. Genes in
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Additional file 4: Supplementary Methods.

Abbreviations
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