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Abstract

Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether
DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then
DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a
consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until
now, these two possibilities have been supported only by non-systematic evidence and they have not been tested
on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results
suggested that methylation of individual cytosines can also be important.

Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring
transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such
cytosines “traffic lights”. We observed a strong selection against CpG “traffic lights” within TFBSs. The negative
selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional
TFs as well as for core TFBS positions as compared with flanking TFBS positions.

Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is
restricted to special cases and cannot be considered as a general regulatory mechanism of transcription.

Keywords: DNA methylation, Transcription factor binding sites, Transcriptional regulation, CAGE, RRBS, CpG “traffic
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Background
DNA methylation is one of the most studied epigenetic
modifications. In differentiated cells in higher animals,
methylated cytosine is almost always followed by guanine,
associating methylation of 60-90% of all cytosines in a
CpG context [1,2]. Although recent evidence showed that
cytosine methylation in embryonic stem cells may also
occur as CpHpG and CpHpH (where H corresponds to A,
C, or T) [3-5], genome-wide distributions of cytosine
methylation in CpHpG and especially in CpHpH have
great variability between individuals, contrary to methy-
lation in the CpG context, which demonstrates stable
cell-type-specific methylation [4]. Thus, cell-type-specific
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regulatory patterns most likely depend on methylation in
the CpG context.
Various methodologies have been developed to study

DNA methylation at different genomic scales (for a re-
view, see, for example, [6-8]) with direct sequencing of
bisulfite-converted DNA [9] continuing to be the method
of choice. However, the analysis of a single CpG site or a
few CpG sites as surrogate indicators of DNA methylation
status of the surrounding region is the most prevalent
strategy in epigenetic studies at different scales, due to the
assumption of the relatively homogeneous distribution of
DNA methylation within genomic regions. This assump-
tion is supported by multiple pieces of evidence of
unmethylated CpGs closely co-located within CpG islands
(CGIs) and methylated CpGs in repetitive elements. In
addition, the level of methylation of the HpaII sites
(CCGG) within CGIs demonstrates a correlation with
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average CGI methylation levels [10]. At the same time,
methylated CpGs have been found in unmethylated
CGIs [4]. It was also shown that a single differentially
methylated CpG might affect transcription of the ESR1
gene [11]. Moreover, it was hypothesized that DNA
methylation of CpG-rich and CpG-poor regions might
be involved in different regulatory programs [12]. In
short, whether or not the distinct methylation status of
a single CpG affects specific transcription-related func-
tions remains an open question.
It is widely accepted that cytosine methylation is a cru-

cial regulatory mechanism in both normal and pathological
processes. DNA methylation is involved in development
[13,14], cellular differentiation [15], maintaining cellular
identity [16], pluripotency [17], aging [18,19], memory
formation [20], responses to environmental changes [21,22]
and reactions to diet [23]. Several pathological conditions,
including cancer [22,24], diabetes [25], Alzheimer’s and
Parkinson’s diseases [26], also show aberrant DNA methy-
lation. Profiles of DNA methylation can be inherited
through cell division [16] and in some cases through
generations [21]. However, recent studies of dynamic
DNA methylation/de-methylation in vivo [27,28] chal-
lenge the conventional view that DNA methylation is a
permanent epigenetic mark and suggest the possibility
of exploring DNA methylation as a promising target
for non-invasive therapies for diseases linked with ab-
errant methylation.
DNA methylation of gene promoters is tightly associ-

ated to the repression of transcription, yet the mecha-
nisms are still unclear [29]. In the last four decades,
multiple studies have shown that the level of DNA
methylation in promoters is negatively correlated with
the expression of downstream genes [30-35]. It was also
hypothesized that ubiquitous, low-density cytosine methy-
lation in vertebrate genomes can contribute to reduction
of the transcriptional "noise" from inappropriate pro-
moters [36]. Recently, multiple pieces of evidence arguing
against the paradigm that DNA methylation always re-
presses transcription have started to appear. Transcription
of some genes was found to be independent of methyla-
tion [37]. Promoters with low CpG content are usually
methylated, yet they still may be transcriptionally active
[38,39]. Although intergenic and gene terminal CGIs are
frequently methylated, they demonstrate a pervasive tran-
scription [40]. Sparse DNA methylation of promoters may
repress transcription, but this effect could be overcome by
an enhancer [41]. Genes exhibiting high levels of pro-
moter methylation during normal development remain
suppressed in Dnmt1-deficient mouse embryos, sug-
gesting that developmental gene control does not glo-
bally rely on cytosine methylation and that the effects of
DNA methylation are limited to specialized processes
such as imprinting and mobile elements repression [29].
Alternative promoter usage in different regions of the
aged brain seems to be independent of promoter methy-
lation [42]. Promoter sequences are able to recapitulate
correct DNA methylation autonomously and demon-
strate proper de novo methylation during differentiation
in pluripotent cells independently of the transcriptional
activity of corresponding downstream promoters [43].
Furthermore, in some cases, methylation is required for
activation of transcription and therefore is positively
correlated with gene expression [44].
Despite the various controversies, evidence that DNA

methylation as an important step in regulation remains
solid. The mechanisms of the interplay between methy-
lation and expression are therefore critically important.
It remains unclear whether DNA methylation is the cause
or the consequence of altered gene expression. If DNA
methylation causes gene repression, then there are several
possible outcomes (Figure 1a). Cytosine methylation may
directly affect the affinity of transcription factors (TFs) to-
wards their binding sites (TFBSs) [45]. Non-systematic ex-
perimental evidence that DNA methylation can prevent
binding of some TFs to particular TFBSs [45,46] supports
this hypothesis. For example, methylation of the E-box
(CACGTG) prevents n-Myc from binding to promoters of
EGFR and CASP8 in a cell-specific manner [47]; methyla-
tion of the YY1-binding site in the promoter of the Peg3
gene represses the binding activity of YY1 in vitro [48].
It is also worth noting that experimentally determined
TFBSs usually show low levels of DNA methylation
[4,49,50] and that TF-TFBS recognition is often associ-
ated with the lack of methylation [51,52]. Furthermore,
certain positions within CTCF binding sites are more
sensitive to methylation than are others [53]. Methylated
cytosine can also attract TFs, both activators [44,54]
and repressors [55]. Methylation of the CRE sequence
enhances the DNA binding of C/EBPα, which in turn
activates a set of promoters specific for adipocyte differ-
entiation [44,54]. Methyl-binding domain (MBD) pro-
teins bind methylated CpG dinucleotide and induce
histone deacetylation, subsequent chromatin condensa-
tion and gene repression [55].
The opposite scenario implies that chromatin modifi-

cations [56-58] reduce the accessibility of TFs and the
transcriptional machinery to gene promoters, therefore
leading to gene repression. DNA methylation in this
model is not a cause, but a consequence of repression
and serves to fix the repressed state of the chromatin
(Figure 1b). In this case, cytosine methylation accumu-
lates passively as a consequence of the independent ab-
sence of TF binding [50,53] or it appears as a result of
direct DNA methyltransferase recruitment by transcrip-
tion repression proteins such as the Polycomb group
(PcG) protein EZH2 [59]. This model is supported by nega-
tive correlation of TF expression and average methylation



Figure 1 Schematic representation of the interaction between promoter methylation and transcription of the gene. In the absence of
DNA methylation, TFs can bind DNA allowing RNA polymerase to bind and to start the transcription. Panel a shows the following scenario: if
DNA becomes methylated, TFs are blocked from binding to DNA and therefore RNA polymerase is unable to bind and to initiate transcription.
Panel b shows the following scenario: chromatin modifications reduce the ability of TFs to bind DNA and therefore RNA polymerase is unable to
bind; the repressed condition of the chromatin is maintained by subsequent DNA methylation. PolII is shown as a maroon pie; nucleosome is
shown as a blue cylinder. Plain (solid) lollipops represent unmethylated (methylated) cytosines. TF is shown as an orange octagon. The green
hexagon and purple trapezoid are a methyl-binding domain and Policomb-group proteins, respectively. The brown triangle represents
an unknown repressor.
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of their TFBSs [50]. Besides, it was reported that binding
of some TFs, including Sp1 and CTCF, is sufficient for
maintaining a local unmethylated state [60-65]. Neverthe-
less, this scenario (Figure 1b) does not explain the sensi-
tivity of certain TFs to methylation of their TFBSs.
In this study, we explore the evidence that supports

one of these two scenarios. To achieve this, we first test
whether methylation of a particular cytosine correlates
with transcription. This effect may provide a basis for
regulation of transcription through methylation of spe-
cific TFBSs. Second, we investigate whether some TFs
are more sensitive than others to the presence of such
cytosines in their TFBSs and what features of TFBSs
can be associated with this sensitivity. To this end, we
employed ENCODE [66] data on DNA methylation ob-
tained by reduced representation bisulfite sequencing
(RRBS) [67]. RRBS allows us to identify both methylated
and unmethylated cytosines quantitatively at a single
base pair resolution in the CCGG context in regions
with high densities of rarely methylated cytosines, usu-
ally co-located within gene promoters [68]. To evaluate
genome-wide expression across different cell types, we
used FANTOM5 [69] data obtained by cap analysis of
gene expression (CAGE) [70]. FANTOM5 provides
quantitative estimation of expression in several hun-
dreds of different cell types.
Our study shows that a fraction of single CpGs within
promoters exhibits a significant negative correlation of
their methylation profiles with the expression profiles of
neighboring transcriptional start sites (TSSs) considered
across various samples. Moreover, we observe a strong
negative selection against the presence of such cytosines
within TFBSs, especially in their core positions. Interest-
ingly, we find that repressors are more sensitive to the
presence of such cytosines in their binding sites.
This work is part of the FANTOM5 project. Data

downloads, genomic tools and co-published manuscripts
are collected at http://fantom.gsc.riken.jp/5/.
Results and discussion
Only a fraction of cytosines exhibits significant
correlation between methylation and expression profiles
of a corresponding TSS
It is well known that the level of cytosine methylation of
promoters is negatively correlated with gene expression
[71]; the role of methylation of particular CpGs in the
regulation of gene expression has been demonstrated in
the case of ESR1 [11]. The crucial role of the location of
methylated regions relative to TSSs is also widely ac-
cepted. The question whether methylation of a particular
cytosine may affect expression remains unanswered.

http://fantom.gsc.riken.jp/5/
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As the first step of this study, we studied whether the
methylation level of a particular cytosine within a pro-
moter region is correlated with the expression of the
corresponding TSS, since such cytosines may serve as a
basis for the regulation of transcription through TF
binding. Table 1 demonstrates that among 237,244 cyto-
sines analyzed in the study, only 16.6% (0.8%) have sig-
nificantly (P-value ≤ 0.01) negative or positive Spearman
Correlation Coefficients (SCCM/E) between methylation
and expression profiles of a closely located TSS (see
Methods). This sheds different light on the common
perception of a link between methylation and gene ex-
pression. We call cytosines demonstrating significantly
negative SCCM/E CpG “traffic lights” (see Methods). In
this study, we mostly focus on such cytosines.
Out of 50 cell types analyzed in this study, 14 were

malignant. Genome-wide DNA methylation in cancer
cells is dramatically different from that in normal cells
(for the review see, for example [72-75]). Although we
believe that the basic mechanism of interaction between
DNA methylation and expression should be the same in
cancer and non-cancer cells, we repeated the experi-
ments on the 36 normal cell types and obtained similar
results (Additional file 1): only a small fraction (9.5%
and 1.5%) of cytosines have significant (P-value ≤ 0.01)
negative and positive SCCM/E, respectively.
CAGE tags are often found within gene bodies [76]

and methylation of a gene body may have a positive cor-
relation with gene expression [77-79]. It was also sug-
gested that the cytosines within gene bodies are often
not methylated (5mC) but hydroxymethylated (5hmC)
[80]. However, bisulfite-based methods of cytosine modifi-
cation detection (including RRBS) are unable to distin-
guish these two types of modifications [81]. The presence
of 5hmC in a gene body may be the reason why a fraction
of CpG dinucleotides has a significant positive SCCM/E

value. Unfortunately, data on genome-wide distribution of
5hmC in humans is available for a very limited set of cell
types, mostly developmental [82,83], preventing us from a
direct study of the effects of 5hmC on transcription and
TFBSs. At the current stage the 5hmC data is not available
for inclusion in the manuscript. Yet, we were able to per-
form an indirect study based on the localization of the
studied cytosines in various genomic regions. We tested
whether cytosines demonstrating various SCCM/E are co-
located within different gene regions (Table 2). Indeed,
Table 1 Total numbers of CpGs with different SCCM/E between

SCCM/E

sign
SCCM/E, SCCM/E, SCCM/E,

P-value ≤ 0.05 P-value ≤ 0.01 P-value ≤ 0.00

Negative 73328 39414 1703

Positive 5750 1832 47

The total number of CpGs in the study is 237,244.
CpG “traffic lights” are located within promoters of GEN-
CODE [84] annotated genes in 79% of the cases, and
within gene bodies in 51% of the cases, while cytosines
with positive SCCM/E are located within promoters in 56%
of the cases and within gene bodies in 61% of the cases.
Interestingly, 80% of CpG “traffic lights” are located within
CGIs, while this fraction is smaller (67%) for cytosines
with positive SCCM/E. This observation allows us to
speculate that CpG “traffic lights” are more likely methyl-
ated, while cytosines demonstrating positive SCCM/E may
be subject to both methylation and hydroxymethylation.
Cytosines with positive and negative SCCM/E may there-
fore contribute to different mechanisms of epigenetic
regulation. It is also worth noting that cytosines with in-
significant (P-value > 0.01) SCCM/E are more often located
within the repetitive elements and less often within the
conserved regions and that they are more often poly-
morphic as compared with cytosines with a significant
SCCM/E, suggesting that there is natural selection protect-
ing CpGs with a significant SCCM/E.

Selection against TF binding sites overlapping with CpG
“traffic lights”
We hypothesize that if CpG “traffic lights” are not induced
by the average methylation of a silent promoter, they may
affect TF binding sites (TFBSs) and therefore may regulate
transcription. It was shown previously that cytosine
methylation might change the spatial structure of DNA
and thus might affect transcriptional regulation by
changes in the affinity of TFs binding to DNA [47-49].
However, the answer to the question of if such a mech-
anism is widespread in the regulation of transcription
remains unclear. For TFBSs prediction we used the re-
mote dependency model (RDM) [85], a generalized ver-
sion of a position weight matrix (PWM), which eliminates
an assumption on the positional independence of nucleo-
tides and takes into account possible correlations of nucle-
otides at remote positions within TFBSs. RDM was shown
to decrease false positive rates effectively as compared
with the widely used PWM model.
Our results demonstrate (Additional file 2) that from

the 271 TFs studied here (having at least one CpG “traf-
fic light” within TFBSs predicted by RDM), 100 TFs had
a significant underrepresentation of CpG “traffic lights”
within their predicted TFBSs (P-value < 0.05, Chi-square
test, Bonferoni correction) and only one TF (OTX2) had
methylation and expression profiles

SCCM/E, SCCM/E, SCCM/E,

1 P-value ≤ 0.05,
fraction

P-value ≤ 0.01,
fraction

P-value ≤ 0.001,
fraction

1 0.309 0.166 0.072

9 0.024 0.008 0.002



Table 2 Fraction of cytosines demonstrating different SCCM/E within genome regions

CGI Gene promoters Gene bodies Repetitive elements Conserved regions SNP DNase sensitivity regions

CpG “traffic lights” 0.801 0.793 0.507 0.095 0.203 0.008 0.926

SCCM/E > 0 0.674 0.556 0.606 0.095 0.210 0.009 0.829

SCCM/E insignificant 0.794 0.733 0.477 0.128 0.198 0.010 0.897
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a significant overrepresentation of CpG “traffic lights”
within the predicted TFBSs. Similar results were obtained
using only the 36 normal cell lines: 35 TFs had a significant
underrepresentation of CpG “traffic lights” within their
predicted TFBSs (P-value < 0.05, Chi-square test, Bonferoni
correction) and no TFs had a significant overrepresenta-
tion of such positions within TFBSs (Additional file 3).
Figure 2 shows the distribution of the observed-to-expected
ratio of TFBS overlapping with CpG “traffic lights”. It is
worth noting that the distribution is clearly bimodal with
one mode around 0.45 (corresponding to TFs with more
than double underrepresentation of CpG "traffic lights" in
their binding sites) and another mode around 0.7 (corre-
sponding to TFs with only 30% underrepresentation of
CpG “traffic lights” in their binding sites). We speculate
that for the first group of TFBSs, overlapping with CpG
“traffic lights” is much more disruptive than for the sec-
ond one, although the mechanism behind this division is
not clear.
To ensure that the results were not caused by a novel

method of TFBS prediction (i.e., due to the use of RDM),
Figure 2 Distribution of the observed number of CpG “traffic lights”
The expected number was calculated based on the overall fraction of sign
in the experiment.
we performed the same analysis using the standard
PWM approach. The results presented in Figure 2 and in
Additional file 4 show that although the PWM-based
method generated many more TFBS predictions as com-
pared to RDM, the CpG “traffic lights” were significantly
underrepresented in the TFBSs in 270 out of 279 TFs
studied here (having at least one CpG “traffic light”
within TFBSs as predicted by PWM), supporting our
major finding.
We also analyzed if cytosines with significant positive

SCCM/E demonstrated similar underrepresentation within
TFBS. Indeed, among the tested TFs, almost all were de-
pleted of such cytosines (Additional file 2), but only 17 of
them were significantly over-represented due to the overall
low number of cytosines with significant positive SCCM/E.
Results obtained using only the 36 normal cell lines were
similar: 11 TFs were significantly depleted of such cyto-
sines (Additional file 3), while most of the others were also
depleted, yet insignificantly due to the low number of total
predictions. Analysis based on PWM models (Additional
file 4) showed significant underrepresentation of such
to their expected number overlapping with TFBSs of various TFs.
ificant (P-value < 0.01) CpG “traffic lights” among all cytosines analyzed



Table 3 Expected sign of SCCM/E depending on TF binding
preferences and function

TF binding preferences

TF function Unmethylated DNA Methylated DNA Both

Activator (1) negative
SCCM/E

(2) positive
SCCM/E

insignificant
SCCM/E

Repressor (3) positive
SCCM/E

(4) negative
SCCM/E

insignificant
SCCM/E

Both insignificant
SCCM/E

insignificant
SCCM/E

There are four possible scenarios of interaction of DNA methylation and
TF functions:
(1) TF can bind unmethylated DNA and cannot bind methylated DNA. TF acts
as a transcription activator. The methylation profile of cytosines within TFBS
should be negatively correlated with TSS expression.
(2) TF can bind methylated DNA and cannot bind unmethylated DNA. TF acts
as a transcription activator. The methylation profile of cytosines within TFBS
should be positively correlated with TSS expression.
(3) TF can bind unmethylated DNA and cannot bind methylated DNA. TF acts
as a transcription repressor. The methylation profile of cytosines within TFBS
should be positively correlated with TSS expression.
(4) TF can bind methylated DNA and cannot bind unmethylated DNA. TF acts
as transcription repressor. The methylation profile of cytosines within TFBS
should be negatively correlated with TSS expression.
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cytosines for 229 TFs and overrepresentation for 7 (DLX3,
GATA6, NR1I2, OTX2, SOX2, SOX5, SOX17). Interest-
ingly, these 7 TFs all have highly AT-rich binding sites
with very low probability of CpG.
It was previously shown that cytosine methylation can

prevent binding of several TFs (such as Sp1 [60], CTCF
[53] and others) and, therefore, methylation may serve
as a global regulatory mechanism for cell-specific TF
binding. Yet, we observe that most of TFs avoid CpG
“traffic lights” in their binding sites, suggesting a poten-
tially damaging effect of CpG “traffic lights” to TFBS
and therefore a natural selection against TFBS overlap-
ping with CpG “traffic lights”.
Computational prediction of TFBSs identifies DNA re-

gions of potential binding, which may not be available
for a TF in a particular cell type due to chromatin modi-
fications. To avoid a bias caused by potential TFBSs that
are not functional in particular cell types, we used ex-
perimentally obtained regions of TF binding. Chromatin
immunoprecipitation followed by parallel DNA sequen-
cing (ChIP-seq) is an effective experimental technique
for the identification of regions for DNA-protein inter-
action [86]. Yet, regions where TFs most likely bind
DNA (ChIP-seq peaks) in a particular cell type are rela-
tively long, usually longer than several hundreds of base
pairs, while real TFBSs are on average a dozen base pairs
long. Therefore, we combined experimental and compu-
tational approaches and filtered out the predictions of
TFBSs outside of ChiP-seq peak regions. We tested our
results on ChIP-seq data for CTCF as it is the only TF
in ENCODE with experimental binding information in
as many as 22 cell types out of the 50 cell types we used
in our study (14 of the 22 were normal cell types). Re-
sults in Additional file 5 support our initial finding:
CTCF binding sites avoid CpG “traffic lights”. ChIP-seq
data for other TFs are available only for the cancer cell
lines included in our study, making it impossible to draw
conclusions about normal cell functioning. At the current
stage the ChiP-seq data for other TFs is not available for
inclusion in the manuscript. Our findings suggest that
changing a TF’s affinity to DNA or even blocking TF bind-
ing sites by direct and selective methylation is limited
to certain TFBSs within a few promoters and thus is
not likely to be a general mechanism of methylation-
dependent regulation of gene expression.

TFBSs of repressors are especially sensitive to the
presence of CpG “traffic lights”
Overlapping of TFBS with CpG “traffic lights” may affect
TF binding in various ways depending on the functions
of TFs in the regulation of transcription. There are four
possible simple scenarios, as described in Table 3. How-
ever, it is worth noting that many TFs can work both as
activators and repressors depending on their cofactors.
Moreover, some TFs can bind both methylated and
unmethylated DNA [87]. Such TFs are expected to be
less sensitive to the presence of CpG “traffic lights” than
are those with a single function and clear preferences for
methylated or unmethylated DNA.
Using information about molecular function of TFs

from UniProt [88] (Additional files 2, 3, 4 and 5), we com-
pared the observed-to-expected ratio of TFBS overlapping
with CpG “traffic lights” for different classes of TFs. Fig-
ure 3 shows the distribution of the ratios for activators,
repressors and multifunctional TFs (able to function as
both activators and repressors). The figure shows that
repressors are more sensitive (average observed-to-
expected ratio is 0.5) to the presence of CpG “traffic
lights” as compared with the other two classes of TFs
(average observed-to-expected ratio for activators and
multifunctional TFs is 0.6; t-test, P-value < 0.05), sug-
gesting a higher disruptive effect of CpG “traffic lights”
on the TFBSs of repressors. Although results based on
the RDM method of TFBS prediction show similar dis-
tributions (Additional file 6), the differences between
them are not significant due to a much lower number of
TFBSs predicted by this method. Multifunctional TFs
exhibit a bimodal distribution with one mode similar to
repressors (observed-to-expected ratio 0.5) and another
mode similar to activators (observed-to-expected ratio
0.75). This suggests that some multifunctional TFs act
more often as activators while others act more often as
repressors. Taking into account that most of the known
TFs prefer to bind unmethylated DNA, our results are
in concordance with the theoretical scenarios presented
in Table 3.



Figure 3 Distribution of the observed number of CpG “traffic lights” to their expected number overlapping with TFBSs of activators,
repressors and multifunctional TFs. The expected number was calculated based on the overall fraction of significant (P-value < 0.01) CpG
“traffic lights” among all cytosines analyzed in the experiment.
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“Core” positions within TFBSs are especially sensitive to
the presence of CpG “traffic lights”
We also evaluated if the information content of the posi-
tions within TFBS (measured for PWMs) affected the
probability to find CpG “traffic lights” (Additional files 7
and 8). We observed that high information content in
these positions (“core” TFBS positions, see Methods) de-
creases the probability to find CpG “traffic lights” in these
positions supporting the hypothesis of the damaging effect
of CpG “traffic lights” to TFBS (t-test, P-value < 0.05). The
tendency holds independent of the chosen method of
TFBS prediction (RDM or RWM). It is noteworthy that
“core” positions of TFBS are also depleted of CpGs having
positive SCCM/E as compared to “flanking” positions (low
information content of a position within PWM, (see
Methods), although the results are not significant due to
the low number of such CpGs (Additional files 7 and 8).

Conclusions
We found that the methylation profiles and expression
profiles in 16.6% of single CpG dinucleotides in CAGE-
derived promoters were significantly negatively corre-
lated with neighbouring TSS, supporting the argument
that single cytosine methylation is involved in the regu-
lation of transcription. In a way, the current common
perception of the link between methylation and gene ex-
pression is seen in a different light. Unexpectedly, we
observed a strong selection against the presence of CpG
“traffic lights” within the TFBSs of many TFs. We dem-
onstrated that the selection against CpG “traffic lights”
within TFBS is even more pronounced in the case of
“core” positions within TFBSs as compared to “flanking”
positions. These observations allow us to suggest that
blocking of TFBSs by selective methylation is unlikely to
be a general mechanism of methylation-dependent tran-
scription regulation and that such a mechanism is lim-
ited to special cases. We conclude that the regulation of
expression via DNA methylation and via TF binding are
relatively independent regulatory mechanisms; both mecha-
nisms are thus not in a direct causal relationship. Known
cases of interaction between these mechanisms appear
mostly because they operate on the same target regions
(promoters) and require intermediate partners, for ex-
ample, modification of chromatin.

Methods
Cell types
We manually selected 137 FANTOM5 samples (cell types)
matching 50 ENCODE samples. We grouped them into
50 classes of identical or similar biological cell types. To
reduce the noise coming from inexact matching of cell
types between FANTOM5 and ENCODE data, we aver-
aged the expression/methylation values for different
technical or biological replicas, donors and cell types
within the same class. Detailed information is provided
in Additional file 9.
All human samples used in the FANTOM5 project

were either exempted material (available in public col-
lections or commercially available), or provided under
informed consent. All non-exempt material is covered
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under RIKEN Yokohama Ethics applications (H17-34
and H21-14) and collected in compliance with the
Helsinki Declaration.

TSSs and promoter regions
We used TSSs found by the CAGE method in FAN-
TOM5. The relative log expression normalization method
(RLE [89]) was applied to CAGE-tags in each sample
[69]. For a particular TSS, we referred to a set of expres-
sion values across the selected 50 classes of cell types as
an expression profile. Low expressed CAGE-tag clusters
may be non-robust to sequencing errors or heterogeneity
of the cell population. To reduce the effect of such
CAGE-tag clusters, we excluded TSSs with all RLE-
normalized expression values less than 1. For each
CAGE-tag cluster, we selected a promoter region of
1500 bp upstream and 500 bp downstream of the ends
of reported CAGE-tag clusters. Overlapping promoters
were considered independently.

Cytosine methylation data
We used cytosine methylation data obtained by RRBS
(http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wg
EncodeHaibMethylRrbs). All data included cytosine me-
thylation only in the CCGG context. We excluded cyto-
sines covered by less than 10 reads. For a particular
cytosine, we referred to a set of methylation values (the
proportion of methylated reads relative to all reads)
across the selected 50 cell types as a methylation profile.
We excluded cytosines having methylation data for less
than 50% of samples (25 when using all 50 cell types
and 18 when using the 36 normal cell types) in the
methylation profiles.
While each particular cytosine may be either methylated

or unmethylated, the RRBS technique measures the aver-
age methylation of a particular cytosine in the cell popula-
tion, which results in a 0 to 100% range of values.
Although methylation values of most of the cytosines tend
to be 0 or 100%, intermediate values are also possible.
Low (but not 0) levels of cytosine methylation may appear
as a result of experimental errors, and these levels can
affect further analysis. To avoid any bias caused by such
cytosines, we used only positions differentially methylated
between cell types. We defined a CpG as differentially
methylated if the amplitude (the difference between the
maximum and minimum values in the normalized profile)
of the methylation profile for a particular CpG was greater
than 50%.

Correlation of cytosine methylation and TSS expression
For all cytosines located within promoter regions, we
calculated the Spearman Correlation Coefficient between
methylation profiles of the cytosine and the expression
profiles of the corresponding TSS (referred to as SCCM/E).
We estimated the statistical significance of SCCM/E based
on transformation to a Student’s t-test distribution:

t ¼ SCCM=E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−2

1−SCC2
M=E

s

Here n is the length of the methylation/expression
profile for a given position. In our analysis (if not stated
otherwise), we referred to positions with P-values
(SCCM/E) ≤ 0.01 as positions with significantly negative
or positive correlations between the methylation and the
expression profiles. It is noteworthy that due to the over-
lapping of promoter regions for different TSSs, one cyto-
sine may have several SCCM/E. In the case of overlapping
promoters, it is difficult to estimate which TSS is affected
by the methylation of a particular cytosine. We therefore
considered that a particular CpG affects transcription if it
has at least one SCCM/E above (or below) the significance
level (see Table 1).

CpG “traffic lights”
To avoid bias in estimating SCCM/E for low methylated
cytosines caused by experimental errors, we introduced
differentially methylated cytosines based on the differ-
ence between the highest and lowest value (amplitude)
in the normalized methylated profile when it was greater
than 50% of the maximum possible value. In the analysis
of TFBSs affected by cytosine methylation, we considered
only CpGs differentially methylated across cell types. We
introduced the term CpG “traffic lights” to describe differ-
entially methylated cytosines with significantly (P-values
(SCCM/E) ≤ 0.01) negative SCCM/E.
We also looked for co-localization of CpG “traffic

lights” and several genomic features (data downloaded
from http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
database/): known gene promoters (1500 bp upstream
of TSS and 500 bp downstream) and gene bodies (500 bp
downstream TSS to the end of the gene) (wgEncodeGenco-
deBasicV140); CpG islands (cpgIslandExt); DNase sensitiv-
ity regions (wgEncodeRegDnaseClusteredV2); repetitive
elements (rmsk); SNPs (snp137Common); and conserved
elements (phastConsElements46wayPrimates).

Prediction of TFBSs using the remote dependency models
To create RDMs, we used binding site alignments from
HOCOMOCO [90]. This collection of TFBS models was
selected due to the low level of redundancy of TFBS
models per single TF. Binding sites having scores less than
PWM thresholds were excluded. PWM thresholds were
selected according to the P-value < 0.0005 (i.e., when 5 of
10,000 random words had scores no less than the thresh-
olds). P-values were computed by the MACRO-APE soft-
ware (http://autosome.ru/macroape) [90] that implements
the strategy presented in the work of Touzet and Varre

http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeHaibMethylRrbs
http://genome.ucsc.edu/cgi-bin/hgFileUi?db=hg19&g=wgEncodeHaibMethylRrbs
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/
http://autosome.ru/macroape


Medvedeva et al. BMC Genomics 2013, 15:119 Page 9 of 12
http://www.biomedcentral.com/1471-2164/15/119
[91]. Due to the large number of parameters in RDM
models as compared to PWM models provided in HOCO-
MOCO, the minimal number of sequences in the align-
ment was increased from 8 to 15. Filtered alignments of
fewer than 15 binding sites were discarded, which reduced
the initial set of 426 TFBS models available in HOCO-
MOCO to 280 TFBS models (Additional file 4, column 1).
Using the frequency of each dinucleotide with one nu-

cleotide being at position i and the other at position j,
where i = 1, …, L-1, j = i + 1, …, L, in the set of aligned
binding sites, the dinucleotide frequency matrix with re-
mote dependencies was constructed and normalized
similar to PWM normalization in Bajic et al. [92]:

RDMa;i;j ¼
f a;i;jXL−1

i¼1

XL

j¼iþ1
maxa f a;i;j

� �

Here fa,i,j is the frequency of dinucleotide a formed of
nucleotides at positions i and j, and L is the length of
the aligned TFBSs. We predicted TFBSs using the RDM
models across the whole promoter set.

Prediction of TFBSs using position weight matrices
To check if the TFBS prediction method affects the re-
sults, we also predicted TFBS using widely accepted
PWM models. We took the same PWMs from HOCO-
MOCO as used for RDM construction. PWM thresholds
were selected according to the P-value of 0.0005 (Add-
itional file 10).

TFBSs potentially affected by DNA methylation
We selected all cytosines for which SCCM/E were avail-
able and checked whether they were located within pre-
dicted TFBSs. The total number of predicted TFBSs is
available in Additional files 2, 3 and 4 (column D). It is
noteworthy that average GC-content of the RDM hits
was undistinguishable from that of the binding sites in
the initial alignments.

“Core” and “flanking” CpG positions within TFBS
If we consider all genome-wide hits of any TFBS model,
we may find that CpG dinucleotides can appear almost in
every position of TFBSs. However, some positions within
binding sites contain CpG dinucleotide more often than
do others, so we repeated the analysis for each type of
binding site position separately. For a particular TFBS
model, we selected CpG positions in the HOCOMOCO
alignments according to the information content of the
corresponding PWM columns. Information content is de-
fined as DIC (Discrete Information Content [93]) separ-
ately for different types of binding site positions. For a
particular TFBS model, we selected CpG positions in the
HOCOMOCO alignments according to the information
content of the corresponding PWM columns:

DICj ¼ 1
N

X
a∈ A;C;G;Tð Þ log xa;j!

� �
− log N !ð Þ

� �
;

Here xa,j are elements of the position count matrix
(i.e., nucleotide counts), N is the total number of aligned
TFBS sequences. In contrast to classic information con-
tent [94], DIC is based on raw counts (instead of per-
column nucleotide probabilities, which can be inaccurate
for a small set of aligned sequences). We define two em-
pirical DIC thresholds [95] Th and th (introduced in [96]).
Th corresponds to the DIC of the column having only 3
(of 4 possible) nucleotides that have the same frequency,
th corresponds to the DIC of the column having two nu-
cleotides with the same frequency, f, and the other two
nucleotides each with the frequency 2f.
The CpG positions have C and G as major nucleotides

(with the highest frequency) in the neighbouring col-
umns. High information content CpG (“core” TFBS po-
sitions) has both C and G columns with DIC greater
than Th. The medium (or low) information content CpG
(“flanking” TFBS positions) has both C- and G-column
DIC between Th and th (or lower than th). The sum-
mary is presented in Additional files 4 and 5.

Additional files

Additional file 1: Contains the total number of analyzed CpGs as well
as the count of CpG demonstrating SCCM/E above certain significance
levels. These results were obtained using only the 36 normal cell types.

Additional file 2: Contains RDM-based predicted TFBSs based on 50 cell
samples; tables containing information about the names of the TFBSs
models used, their function in regulation (activator or repressor), the
number of cytosines in our study (with any SCCM/E) overlapping with
TFBSs, the number of CpG “traffic lights” overlapping with TFBSs for each
TF, the expected number of such overlaps and the statistical significance
of the over-/underrepresentation of TFBS in CpG “traffic light” positions.
Consistent information is given for positions with positive SCCM/E.

Additional file 3: Contains RDM-based predicted TFBSs based on the 36
normal cell samples; tables containing information about the names of the
TFBSs models used, their function in regulation (activator or repressor), the
number of cytosines in our study (with any SCCM/E) overlapping with
TFBSs, the number of CpG “traffic lights” overlapping with TFBSs for each
TF, the expected number of such overlaps and the statistical significance of
the over-/underrepresentation of TFBS in CpG “traffic light” positions.
Consistent information is given for positions with positive SCCM/E.

Additional file 4: Contains PWM-based predicted TFBSs based on 50 cell
samples; tables containing information about the names of the TFBSs
models used, their function in regulation (activator or repressor), the
number of cytosines in our study (with any SCCM/E) overlapping with
TFBSs, the number of CpG “traffic lights” overlapping with TFBSs for each
TF, the expected number of such overlaps and the statistical significance
of the over-/underrepresentation of TFBS in CpG “traffic light” positions.
Consistent information is given for positions with positive SCCM/E.

Additional file 5: Contains RDM-based predicted TFBS for CTCF
supported with ChIP-seq peak data; tables containing information
about the names of the TFBSs models used, their function in regulation
(activator or repressor), the number of cytosines in our study (with any
SCCM/E) overlapping with TFBSs, the number of CpG “traffic lights”

http://www.biomedcentral.com/content/supplementary/1471-2164-15-119-S1.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-119-S2.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-119-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-119-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-119-S5.xlsx
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overlapping with TFBSs for each TF, the expected number of such
overlaps and the statistical significance of the over-/underrepresentation
of TFBS in CpG “traffic light” positions. Consistent information is given
for positions with positive SCCM/E.

Additional file 6: Contains a figure showing the distribution of the
observed to expected ratio of CpG “traffic lights” overlapping with
TFBSs of activators, repressors and multifunctional TFs. TFBSs were
predicted using RDM.

Additional file 7: Contains RDM-based predicted TFBSs. Tables containing
the positions within TFBSs with high, medium and low IC, the number of
cytosines in our study (with any SCCM/E) overlapping with TFBS, and
the number of CpG “traffic lights” overlapping with TFBS for each
TF. Consistent information is given for positions with positive SCCM/E.

Additional file 8: Contains PWM-based predicted TFBSs. Tables
containing the positions within TFBSs with high, medium and low IC, the
number of cytosines in our study (with any SCCM/E) overlapping with TFBS,
and the number of CpG “traffic lights” overlapping with TFBS for each TF.
Consistent information is given for positions with positive SCCM/E.

Additional file 9: Contains a table listing FANTOM5 samples (cell
types) matching 50 ENCODE samples. We grouped them into 50
classes of identical or similar biological cell types. The ENCODE sample
description is also provided. Normal/cancer cell types (36/14) are marked
in the last column.

Additional file 10: Contains thresholds for PWM corresponding to
the P-value < 0.0005 (i.e., when 5 of 10,000 random words have
scores no less than the thresholds). P-values were computed by
MACRO-APE software (http://autosome.ru/macroape).
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