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Abstract

Background: While the possible sources underlying the so-called ‘missing heritability” evident in current genome-
wide association studies (GWAS) of complex traits have been actively pursued in recent years, resolving this mystery
remains a challenging task. Studying heritability of genome-wide gene expression traits can shed light on the goal
of understanding the relationship between phenotype and genotype. Here we used microarray gene expression
measurements of lymphoblastoid cell lines and genome-wide SNP genotype data from 210 HapMap individuals to
examine the heritability of gene expression traits.

Results: Heritability levels for expression of 10,720 genes were estimated by applying variance component model
analyses and 1,043 expression quantitative loci (eQTLs) were detected. Our results indicate that gene expression
traits display a bimodal distribution of heritability, one peak close to 0% and the other summit approaching 100%.
Such a pattern of the within-population variability of gene expression heritability is common among different
HapMap populations of unrelated individuals but different from that obtained in the CEU and YRI trio samples.
Higher heritability levels are shown by housekeeping genes and genes associated with cis eQTLs. Both cis and trans
eQTLs make comparable cumulative contributions to the heritability. Finally, we modelled gene-gene interactions
(epistasis) for genes with multiple eQTLs and revealed that epistasis was not prevailing in all genes but made a
substantial contribution in explaining total heritability for some genes analysed.

Conclusions: We utilised a mixed effect model analysis for estimating genetic components from population based
samples. On basis of analyses of genome-wide gene expression from four HapMap populations, we demonstrated

detailed exploitation of the distribution of genetic heritabilities for expression traits from different populations, and
highlighted the importance of studying interaction at the gene expression level as an important source of variation

underlying missing heritability.

Keywords: Microarray gene expression, eQTLs, Heritability, Mixed model, HapMap populations, Epistasis

Background

In genome-wide association studies (GWAS) of conven-
tional complex traits such as human complex diseases, a
fundamental and yet unsolved question is that of so-
called missing heritability, i.e., the significant and often
numerous variants collectively explaining only a small
fraction of the total phenotypic variation [1,2]. For ex-
ample, recent studies show that ~50 variants explain
only ~5% of the phenotypic variation for human height,
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a highly heritable trait with narrow sense heritability of
~80% [3,4]. While fully resolving the missing heritability
remains a challenging task, we have studied the herit-
ability of gene expression traits to shed light on the rela-
tionship between trait phenotypic variation and genetic
variation on the basis that gene expression is the process
linking genetic information to the final phenotype, and
is itself genetically controlled. Furthermore, gene expres-
sion is generally assayed in well controlled experiments,
suggesting less vulnerable to environmental variation
than conventional phenotypes, and is thus an ideal
choice for studying the extent to which genetic compo-
nents contribute to phenotypic variation.

With the advent of DNA microarrays and more re-
cently deep sequencing-based profiling approaches, the
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expression of thousands of genes can be readily mea-
sured simultaneously, creating a global snapshot of cel-
lular activity. A number of studies have assessed the
heritability of microarray gene expression traits in differ-
ent species, including Arabidopsis [5] and rat [6]. The
heritability of gene expression means it can be subject
to the same quantitative trait loci (QTL) analyses as con-
ventional trait data to reveal the so-called expression
QTLs (eQTLs). For example, several studies have ana-
lysed the gene expression profile of lymphoblastoid cell
lines (LCLs) from HapMap samples and reported that
genetic factors make an important contribution to vari-
ation in gene expression [7-11]. These studies, however,
focused on differentially expressed genes and exploring
cis and trans genetic determinants of gene regulations
either from one single ethnic group or across ethnic
groups. There is not yet any report in the literature on
the gnome-wide distribution of heritabilities of gene ex-
pression traits and the cis and trans eQTLs across differ-
ent HapMap populations. Furthermore, the phenotypic
variations explained by interactions between eQTLs have
never been exploited at a genome-wide scale in humans
to our best knowledge. Recently, Price et al. [12] ana-
lysed microarray gene expression data from blood and
adipose samples of Icelandic family cohorts and began
to partition the heritability into cis and trans compo-
nents using a variance component model composed of
polygenic effects estimated using identity by descent
(IBD) for chromosome segments both proximal (cis) and
distal (trans) to the gene of interest. However, their
method implicitly assumed the sum of variance compo-
nents to be unity after normalising gene expression
values to have mean 0 and variance 1, and only genetic
variance component parameters were estimated using a
binary search algorithm. While samples of related indi-
viduals were collected and hence genetic correlations
among samples were expected, assumption of unity vari-
ance virtually neglected the variance-covariance struc-
ture and hence might introduce bias in the estimation of
heritability. Moreover, a large number of negative herit-
ability estimates were derived in that study, raising the
challenge for a meaningful biological explanation of the
negative heritability estimates. While it is possible that
variation noise caused the negative estimates of herita-
bilities as discussed in Price et al. [12], a robust statis-
tical approach which enables to prevent such negative
heritability estimate is highly desirable.

In this study, we re-analysed gene expression micro-
array data from four HapMap populations using a statisti-
cally rigorous variance component model with motivation
to explore (1) the global pattern of the distribution of heri-
tabilities of gene expression traits in unrelated individuals,
(2) the cumulative genetic contribution of cis and trans
acting eQTLs to gene expression heritability, and (3) the
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potential of gene-gene interactions in explaining the miss-
ing heritability at gene expression level.

Methods

Gene expression data and quality control

We analyzed the gene expression levels measured previ-
ously in LCLs from 210 unrelated HapMap individuals,
using Illumina’s human whole-genome expression array
(WG-6 version 1) [9]. In this experiment, each of the
two in vitro transcription (IVT) reactions from the 210
samples was hybridized to each of two arrays, resulting
in four replicate hybridizations for every sample. We
downloaded background-corrected gene expression values
from the Gene Expression Omnibus (GEO) database (ac-
cession number GSE6536), and then carried out quantile
normalisation across replicates of a single individual and
subsequently median normalisation across all individuals
by using the R package beadarray [13]. It should be noted
that the Illumina Genome Studio software can work out
detection scores for each probe and flag the presence/ab-
sence calls of expression of the features. However, the
detection scores were not provided for the current micro-
array dataset and hence we applied a filter to exclude the
microarray probes based on their expression levels as de-
scribed below.

Selecting probes

We conducted BLAT analysis [14] to map all 47,294
[umina array probes onto human ¢cDNA sequences from
Ensembl (hgl9). Among these, 21,152 mapped probes
were retained after removing probes mapped with over
90% identity to multiple genes or mapped to sex chromo-
somes or mitochondrial DNA. Further removed were 24
probes that carried at least one genetic variant within the
probe region (according to the Ensembl Variation data-
base). This further reduced the potential bias in gene ex-
pression estimation due to the mis-match between probe
and transcript sequence. To exclude those genes with an
extremely low expression level, additionally, we filtered
out those probe features whose raw intensity values were
smaller than background noises in more than half of the
total individuals in all the four replicated arrays, resulting
in 12,158 probes from 10,720 genes which were recog-
nized to be expressed features or genes. Finally, for the
genes surrogated by multiple probes, we took the average
over all relevant probes as estimates of their expression
levels. Following heritability and eQTL analyses were
based on the 10,720 expressed genes.

Genotype data and quality control

We downloaded the phase II and III combined genotype
data for HapMap individuals from the HapMap project
website. In total, there are over 4 million SNPs genotyped
for the present HapMap samples. Genotype quality checking
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was performed independently in each individual popula-
tion. SNPs were removed for each of the HapMap popula-
tions if they were: i) located on sex chromosomes, ii)
genotyped in less than 90% of individuals, iii) with allele
frequency < 0.05, and/or iv) demonstrating significant
departure from Hardy-Weinberg Equilibrium (P < 0.001).
The final dataset contained genotypes at 1,299,240 con-
sensus SNPs from all four HapMap populations.

Genetic relationship estimation

To estimate heritability from fitting a variance compo-
nent model, it is firstly necessary to estimate pairwise
genetic relationship coefficients for the HapMap samples.
A number of statistical methods have been proposed for
estimating genetic relationships from genome-wide high
density marker genotypes for homogeneous (i.e., non-
stratified) populations, e.g. the program PLINK [15]. How-
ever, for the present analysis using samples from four
HapMap populations, relationship estimation will be
biased unless the population structure is considered. Since
the population origin of each HapMap individual is clear
and the different populations have been geographically
isolated from each other for many generations, it is rea-
sonable to assume that individuals from different popula-
tions are unrelated and their relationship coefficients are
zero. Therefore, to adjust for population stratification we
used PLINK to estimate the coefficients of genetic rela-
tionship based on autosomal marker genotypes in each
HapMap population independently and then merged all
four population genetic relationship matrices by setting
the relationship coefficients between individuals from dif-
ferent populations to be zero. To account for linkage dis-
equilibrium (LD) between SNPs, we utilized the PLINK
SNP pruning function to generate a subset of 36,609 SNPs
that were in approximate linkage equilibrium (pairwise
genotypic correlation 7* < 0.05) to be used for relationship
estimations. It should be noted that the genetic relation-
ship coefficients derived from PLINK are the probabilities
of genome-wide allelic identical by descent (IBD) [15]. In
the following, we denote by K,,, as the genetic relation-
ship matrix in population pop (where pop = CHB, JPT,
CEU or YRI) and K as the final merged genetic relation-
ship matrix.

Gene expression heritability estimation

Let y;; be the normalised gene expression level for gene g
on the jth array for the ith individual. We use the follow-
ing linear mixed model to estimate gene expression

heritability
yij :”+Siﬁ+ui+el77 (1)

where p is the model intercept, S; is a row vector of
non-genetic covariates with coefficients f5, u; is the
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polygenic effect, and e; is the random residual term.
Here S; indexes the population origin for individual i, to
correct for the population structure embedded in the
HapMap samples. It should be noted that an intercept
term is included in the model and hence indexing to one
of the four populations is omitted in S; to avoid singular-
ity of the model design matrix. Assume u ~ N(O, O‘EK)
and e ~ N(0, 071), where o}, is the variance of the poly-
genic effect, K is the merged genetic relationship matrix,
o? is the residual variance, and I is a an identity matrix.
Assuming zero covariance among random factors u; and
e;, the overall phenotypic variance-covariance of the
gene expression traits can be expressed as

var(y) =% = O'EZKZ/ + oI, (2)

where Z is a design matrix relating gene expression levels
from each array to individual sample. We implemented a
restricted maximum likelihood (REML) approach using R
(http://www.r-project.org/) programming language to ob-
tain the maximum likelihood estimates (MLEs) of the
model parameters [16]. With the estimates of variance

components, i.e., G;

the gene expression trait can be estimated by /2, = 6; /

and 62, narrow sense heritability of

(624—6?). Gene expression heritability analysis was
performed in the four HapMap populations com-
bined, and also in each individual HapMap popula-
tion using a simplified linear mixed model y; = u +
u; + e; where u ~ N(O, azl(p,,p) and e ~ N(0, o2I).
eQTL scan and eQTL heritability estimation

To scan for genome-wide eQTLs for each gene, we aver-
aged the normalised expression levels for each gene
from four replicated arrays for each individual and then
tested for gene-SNP associations with correction for
population structure as in the following model

Y, = p+xgo + S+ e, (3)

where y; . is the mean expression value for a target gene
for individual i, x; is the genotype score of individual i at
the kth SNP marker, with values 0, 1 and 2 representing
the number of a reference allele at the SNP locus, ay is the
regression coefficient at the SNP, and e; is the residual
term. y, S; and /5 are defined as in equation (1). A t-test is
then carried out against the null hypothesis of a; = 0 for
the target gene at the kth SNP. A conservative Bonferroni
P value threshold (0.05/1,299,240 = 3.85 x 10®) was applied
to account for the large number of tests. Significant SNPs
were merged into eQTLs using criteria as detailed in Results.

For gene-SNP associations surpassing the Bonferroni
P value threshold, we were interested in how much of the
genetic variation for the gene expression trait could be
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explained by the significant SNPs. For this purpose, we
extended the above mixed model (1) by incorpora-
ting a SNP effect term as

Vi =H + & + Sifs + u; + €ij, (4)

where u ~ N(0, aé%K), e ~ N(0, 021), and all variables are
defined as per equations (1) and (3). Again, the REML
approach is applied to obtain the MLEs of the two vari-
ance components ag and ¢2. The model expressed in
equation (4) is essentially the same as the variance com-
ponent models defined previously by Yu et al. [17] and
Kang et al. [18]. Denoting by a and 62 the estlmates of
variance components from equatlon (1) and ag and (7
the corresponding estimates from equation (4), the est1-
mate of the phenotypic variance explalned by a test SNP
can be approximated by 6% = 0 + 62 ‘752' a . Then, the
proportion of phenotypic varlance of the gene expres-
sion trait accounted for by a test SNP can be appro-
ximately formulated as

i =53/ (62 +62) = (62 + 62-62-62) /(62 + 62).
(5)

This single point heritability estimation approach
can be readily applied to estimate aggregated heri-
tability from multiple SNPs by simply fitting multiple
SNP genotypes into the above equation (4).

Results

Population structure and genetic relationship

We firstly utilized multidimensional scaling (MDS) within
the PLINK program [15] to investigate population struc-
ture among the four HapMap populations (CHB, JPT,
CEU and YRI) based on marker genotype data. The first
two principal coordinates (PCo) clearly separate the CEU
and YRI populations from each other and from the two
Asian populations (CHB and JPT), which are in turn distin-
guished from each other by the third PCo (Additional file 1).
Separation of the four geographically isolated HapMap
populations indicates it would not be appropriate to treat
the four populations as a homogeneous sample, but in-
stead there should be proper control of the heterogeneity
caused by the population structure effect in both the ge-
netic relationship inference and association analysis.

We used PLINK to infer the genetic relationship
matrix for each of the four HapMap populations inde-
pendently and then merged the resulting four matrices
by setting inter-population pairwise relationship coeffi-
cients to zero. The mean (and standard deviation) of
IBD coefficients were 0.0067 (0.0074), 0.0056 (0.0073),
0.0068 (0.0080), and 0.0035 (0.0145) for CHB, JPT, CEU
and YRI HapMap populations, respectively. Clearly the IBD
coefficients were very low, as expected since individuals

Page 4 of 12

collected in each population were genetically unrelated.
Consistent with previous reports (e.g., [19]), six pairs of
individuals were evidently highly related (IBD coefficient
> 0.05). Three related pairs were from the YRI popula-
tion: NA18913 and NA19238 (IBD coefficient 0.5005),
NA19130 and NA19192 (IBD coefficient 0.2392), and
NA19092 and NA19101 (IBD coefficient 0.1231). The
remaining three potentially related pairs were between
CEU individuals NA06993 and NA07022 (IBD coefficient
0.0696), NA06993 and NA07056 (IBD coefficient 0.0686),
and NAI12155 and NA12264 (IBD coefficient 0.0679).
To avoid having close relatives in the data, we selec-
tively excluded one individual with greater number of
missing genotypes for each of the three pairs of highly
related individuals.

Gene expression heritability

Normalised gene expression levels were fitted into the
variance component model (equations 1 and 2) to esti-
mate the proportion of phenotypic variance explained by
polygenic effects, i.e., the heritability in the present Hap-
Map populations. A total of 10,720 genes were selected
for heritability estimation using the REML technique.
After REML fitting, we checked, using simple linear re-
gression analyses, that the expression values for more
than 95.3% genes, which were predicted from estimate
of fixed effects in the mixed model, were not in signifi-
cant linear correlation with the estimates of the random
and residual terms in the model.

The four HapMap populations present a similar distri-
bution and pattern of gene expression heritabilities, with
one peak near 0 and another at about 90% (Figure 1).
Pairwise comparison of heritability estimations between
all HapMap populations further confirmed a strong
correlation pattern (Pearson’s r > 0.89). Such a strong cor-
relation of within-population heritability variability sug-
gests either expression variability of the majority of the
genes is under similar levels of constraints in all popula-
tions, or the cis or trans expression regulatory mechanisms
of these genes have not undergone significant evolutionary
divergence. Combining the four HapMap populations
together, all genes showed heritability estimates larger
than a nominal level of 0.1% and a similar heritability
distribution pattern was observed (data not shown). In
the following text, we focused on the analysis of the
combined study sample from the four HapMap populations.

Genes can be characterized into constitutive (i.e.
housekeeping) and tissue-specific groups according to
whether they are ubiquitously expressed in all tissue/cell
types for maintaining the fundamental requirement of
basic cellular functions or specifically expressed to per-
form functions in differentiated tissues/cells. One recent
study involving monozygotic twins reported that mean
heritability of housekeeping gene expression is significantly
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Figure 1 Frequency distribution of gene expression heritability estimates (h) in four HapMap populations.

greater than the mean for all genes [20]. With the samples
of the unrelated individuals, we obtained similar finding in
the present HapMap populations using a comprehensive
housekeeping gene list of 6,909 genes derived from Zhu
et al. [21] to partition genes into housekeeping (3,585
genes) and non-housekeeping (7,135 genes) categories.
The housekeeping and non-housekeeping genes show
distinct heritability distribution patterns (Figure 2), with
the former presenting high levels of expression heritability,
and the latter showing a bimodal pattern of expression
heritability.

We explored the bimodal pattern of distribution of the
heritability estimates for gene expression traits. Additional
file 2 shows an empirical relationship between expression
levels and heritabilities of gene expression traits. It is clear
from the file that lower heritability estimates of gene
expression (4> < 0.2) were more likely to occur in genes
with low expression levels, which is consistent with the
fact that low expression levels are associated with a lower
level of phenotypic variation. High heritability estimates
(h* > 0.5) were present in genes with a wider range of gene
expression phenotype. Together with the fact that house-
keeping genes had higher expression levels (median 8.29;
mean 8.52) than non-housekeeping genes (median 7.46;
mean 7.98), the results suggested a possible link between
the expression levels and estimates of gene expression
heritabilities. We will elaborate the observation in below.

Genome-wide association eQTL analysis

In the genome-wide association scan, normalised gene
expression levels were averaged among four replicated
arrays for each individual and then scanned for genome-
wide SNP associations using a multiple linear regression
analysis with correction for population structure in the
mixed HapMap populations. A total of 11,290 regression
models involving 988 genes and 10,712 SNPs were de-
clared significant at Bonferroni-corrected P-value thresh-
old 3.85 x 10°® It is noted that the number of genes was
not taken into account in correction for multiple tests. At
an overall false positive rate of 5%, about 550 expression-
SNP models were expected to be significant at the given
threshold. Because the 550 expected false positives
accounted for only 4.7% of the total 11,290 discoveries,
the present threshold should be recognized to be conser-
vative and appropriate for further statistical analyses. For
genes with multiple associations, the significant SNPs
were merged into eQTLs. An eQTL in the present analysis
was defined as an independent peak in the P-value profile
across a given chromosome. Following Jiang et al. [22],
any peak occurring within a chromosome region of 5 Mb
in size was taken as a single eQTL peak. The eQTLs thus
defined were further classified based on their physical dis-
tance from the associated gene, either as cis eQTLs if the
SNP locates within 500 kb upstream of the transcript start
and 500 kb downstream of 3" end of the gene or otherwise
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as trans eQTLs. The 11,290 significant associations gave
rise to 1,043 eQTLs, of which about two third (671) were
trans eQTLs while only 372 were in cis, consistent with
previous eQTL studies (for example, [7,22]).

Previously, Stranger et al. [23] found an over-representation
of cis associations (803 cis and 44 trans) from the same
microarray dataset analysed here. We compared the cis
eQTLs mapped in the present study with those predicted
in the study of Stranger et al. and found that 591 out of
803 (73.6%) cis eQTL genes detected in Stranger et al. were
included in the current selected gene set. More import-
antly, 252 cis eQTLs were common between the two stud-
ies as shown in Additional file 3, i.e, 70% of the eQTLs
predicted here were also detected by Stranger et al., sug-
gesting a high level of comparability of the present study
to the previous eQTL analysis. Discrepancy in the number
of eQTLs predicted between the two studies may be partly
due to the fact that different genes or SNPs were selected
for the analyses and partly due to different eQTL analysis
methods used. Unlike the present analysis in which the
population origin is used as a covariate to correct for struc-
ture in the linear regression analysis of the pooling sample,
Stranger et al. [23] performed within population permuta-
tion to correct for inflated associations in simple linear
regression. Because the population structure is clearly

present in the pooled sample, linear regression conditional
on the known population structure is much simpler but
more effective in correcting for spurious associations than
the permutation test. In fact, Stranger et al. [23] detected
much less trans eQTLs largely due to their ways to deter-
mine the associated SNPs as the trans eQTLs. To avoid
the computational burden and statistical challenges in
testing all SNPs against all candidate expression traits,
Stranger et al. tested for trans effects in only ~25,000 SNPs
(roughly 1 percent of the total SNPs) selected for potential
functional significance. In contrast, we screened for trans
associations from the full SNP genotype data without prior
selection.

Additional file 4 shows the chromosome locations of
the eQTLs, with cis eQTLs indicated by the diagonal
across each chromosome and trans eQTLs showing a
strikingly uniformly distribution across the entire gen-
ome. Most genes with significant cis associations, pre-
sented only one cis eQTL (348 genes) while only 12
genes had two cis eQTLs. Eleven genes presented both
cis and trans eQTLs, with each of them consisting of
only one cis and one trans eQTLs. A complete list of
predicted eQTLs is provided in Additional file 3. Most
genes with strong trams associations have either one
(620 genes) or two (16 genes) trans eQTLs. One notable
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gene RPS4P21 (ribosomal protein S4X pseudogene 21;
Ensembl gene ID ENSG00000186008) at 34.5 Mb on the
chromosome 19 presents associations with 13 trans
eQTLs, 6 of which locate within a region from 91 to
241 Mb on chromosome 1. Partitioning genes into two
groups according to presence or absence of eQTLs re-
vealed that genes presenting eQTLs showed comparable
heritability values (mean 71.6% and median 79.8%) to
genes without eQTLs (mean 61.5% and median 72.6%),
suggesting no apparent connection between the herit-
ability levels and the predictability of eQTLs. Genes with
eQTLs were further partitioned into those with cis
eQTLs (including the eleven genes presenting both cis
and trans eQTLs), and those with trans eQTLs only.
This revealed that the genes with trans eQTLs shared a
similar heritability distribution with genes lacking any
eQTLs, i.e. these genes had low heritability levels, distin-
guishing them from genes with cis eQTLs which had
distinctly higher heritability levels (Figure 3a).

eQTL heritability

We were interested in how much heritability in gene ex-
pression traits could be accounted for by the predicted
eQTLs. It is statistically challenging to directly estimate
the proportion of phenotypic variance explained by each
individual eQTL as the status of the underlying QTL
gene linked to the SNP under study is unknown, so we
followed an approximation approach as in Cockram
et al. [24] by comparing the estimates of variance com-
ponents between a SNP-inclusive mixed model (i.e
Equation 4) and a SNP-free model (i.e. Equation 1). The
difference in the sum of variance component estimates
can be used as an estimate of the phenotypic variance

accounted for by the associated SNP. Here we used ljzéNp
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to represent the estimate of the fraction of phenotypic
variance explained by the eQTL. The sum of variance
components is expected to decrease with the SNP-
inclusive model because incorporation of additional ex-
planatory variables generally improves model fit and
hence will give a non-negative estimate of SNP heritabil-
ity; to validate the present eQTL heritability estimation,
we further confirmed that this decrease in the sum of
variance components is due to a decrease in genetic
variance components in the SNP-inclusive model rela-
tive to the SNP-free models and not due to a decrease in
residual variance (Additional file 5). A stacked histogram
presents the distribution of the heritability values for cis
and trans eQTLs (Figure 3b). It is clear that the majority
of the eQTLs explained individually very small fractions
of phenotypic variance, particularly for the trans eQTLs,
though there were some eQTLs explaining up to 80% of
the phenotypic variance. Due to the large proportion of
low heritability estimates among trans eQTLs, thus on
average, this group tended to contribute smaller genetic
variation (mean }AzéNP = 15.6%) to gene expression vari-

ation compared with cis eQTLs (mean h2,, = 22.0%).
We calculated heritability of expression phenotype by
regressing midparent expression values on their off-
spring expression values for the 10,720 selected genes in
the CEU and YRI trio population datasets [9]. After re-
moving those pairs of individuals with predicted hidden
relatedness, there are 28 (or 27) trio families retained in
the CEU (or YRI) population. The microarray data from
the trio families were pre-processed with the same nor-
malisation procedure as described above for the unre-
lated individuals. Because every sample was replicated by
four arrays, we took the average of replicates as gene ex-
pression estimate. In the trio-family analysis, heritability
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of gene expression was estimated by the regression coef-
ficient Additional file 6 summarizes the heritability esti-
mates, showing that there were about 32-35% genes
showing negative heritability estimates in the CEU and
YRI trio-family populations. The negative heritability es-
timates reflected nature of the regression analysis which
is highly vulnerable to environment variation, particu-
larly when a small population size is used. However,
Fisher’s exact test demonstrated that the genes with the
cis and trans eQTL genes predicted from the analysis
above were specifically enriched for non-negative herit-
ability estimates, suggesting a strong concordance be-
tween the trio-family based analysis and the population
based eQTL analysis. We observed a highly significantly
positive correlation in the expression heritability esti-
mates between the two analyses (Pearson’s r = 0.22,
P value < 10”7). Moreover, focus was on only those genes
detected with significant eQTL regulation, the correl-
ation coefficient increased to 0.31 (P value < 107). These
may suggest that the mixed model analysis confers sta-
tistically more robust estimation of gene expression her-
itability, at least in the present setting.

Missing heritability

For the 988 genes with significant eQTL associations,
we were interested in the extent to which the genetic
contributions to gene expression variation could be ex-
plained by the detected eQTLs. From a mathematical
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perspective, this is simply the ratio of heritability estimate
at the eQTL (ie, fzéNP) or aggregated heritability from all
detected eQTLs if multiple eQTLs are present, to the esti-
mate of total heritability (i.e., h?

trai
72 72
hSNP/ htmit

,) for a given gene, i.e.,
=63/, . For simplicity, we denote this ratio
by p. For genes with multiple eQTLs, the aggregate herit-
ability from all eQTLs was estimated by fitting genotypes
from multiple eQTL peak SNPs into the linear mixed
model and then following the same strategy used for sin-
gle SNPs. In the first instance, multi-point genotypes were
fitted in the linear mixed model in an additive form, i.e.,
neglecting interaction terms. We summarized for each
gene the aggregate heritabilities explained by the cis and/
or trans eQTL components. The results (Figure 4a-b)
show a right-skewed density distribution of the p values,
i.e., for the majority of the genes, only a small fraction of
the total genetic variation could be explained by the de-
tected cis or trans eQTLs, a phenomenon well-known as
“missing heritability” in conventional complex trait ana-
lyses [1,2]. The value of p varied widely between a mini-
mum of 13.8% and a maximum of 88.8%. Although more
trans eQTLs were predicted, the mean (median) p values
were similar between cis: 28.44% (24.3%) and trans: 24.0%
(17.6%) eQTLs.

To investigate the influence of gene-gene interactions
on gene expression trait heritability, we selected genes
presenting multiple eQTLs and for each selected gene
we fitted a linear mixed model with incorporation of
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988 genes with significant eQTL associations. (a) cis eQTLs, and (b) trans eQTLs.
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SNP-SNP multiplicative interaction effect. There were
39 genes with two eQTLs and 3 genes with three or
more eQTLs. For simplicity, only genes presenting two
eQTLs were selected for interaction test. As listed in
Additional file 7, incorporation of interaction terms in
the model in the model did not necessarily lead to an in-
creased proportion of phenotypic variation for all the 39
genes tested. In 16 of the selected genes, the interaction
terms had increased the explained genetic variance by
as large as 35%. To assess the appropriateness of includ-
ing interaction terms in the model, Akaike information
criterion (AIC) was calculated for the models with or
without interaction term. The models having a lower
AIC value were recognized to be statistically more ap-
propriate in decomposing the gene expression pheno-
typic variation. For five of the 39 genes, the models
with the interaction term showed lower AIC values and
hence were preferred in comparison with the corre-
sponding additive models (Additional file 7). This dem-
onstrates that the analysis of gene-gene interactions may
be useful to uncover the genetic components that are
not explained by additive gene effects only for some
expression traits but this is not always the case for all
genes.

Discussion

Approaches that combine genome-wide gene expression
profiling and genome-wide marker genotype data are
offering new insights for dissecting the genetic basis of
complex traits including common human diseases. In
this study, we used publicly available datasets of micro-
array gene expression measurements and genome-wide
SNPs from 210 HapMap individuals to examine the her-
itability of gene expression traits in LCL samples by
using REML analysis of a variance component model.
Differing from previous studies, which also analyzed the
same microarray datasets but aimed to infer differen-
tially expressed genes and/or to detect genetic controls
of the expression regulations within or across ethnic
groups (eg, [7-11,23,25-27]), this paper represents a
detailed exploitation of the genome-wide distribution of
heritabilities of gene expression traits. We present here
for the first instance the cis and trans eQTLs through
analysis using the information jointly from four HapMap
populations. In contrast to a most recent study on gene
expression heritability [12], in which the heritability in
expression were estimated to be negative for a large
number of genes, the present study developed a statisti-
cally robust variance component approach which may,
ensure non-negative estimates of variance components
and, in turn non-negative estimates of gene expression
heritability in the range of 0 ~ 100%. The mixed model
analysis was originally proposed for estimating quantita-
tive genetic parameters using pedigree information of
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outbred populations [28]. The present variance component
model utilises the relationship matrix inferred from
genome-wide genotype, and the method developed here
can be readily implemented for a population based analysis.

In this study, we observed a common pattern in distri-
bution of gene expression heritabilities among four
HapMap populations (CHB, JPT, CEU and YRI), sug-
gesting possibly similar levels of constraints imposed on
the expression variability of the most genes in the popu-
lations, or no apparent evolutionary divergence has been
detected to impact the expression regulatory mecha-
nisms of these genes. In this aspect, our result is consist-
ent with a previous study which did also observe that
expression variability of most human genes in one popu-
lation was not markedly deviant from another popula-
tion [29]. In the present study, we observed that
heritability of gene expression was estimated to vary
from as low as zero to as large as nearly 100%, indicating
a large varying levels of genetic contribution to variation
in the gene expression phenotype. While there was an
abundance of genes with very low heritability, a large
number of genes clustered at heritability levels of around
90%, resulting in a bimodal distribution. The analysis
also shows that genes with larger variability tend to have
a larger heritability (Additional file 8). In general, house-
keeping genes exhibited greater heritability than non-
housekeeping genes, demonstrating that a greater level
of genetic control has been preserved in this group of
genes. However, caution must be taken in interpreting
the bimodality pattern in distribution of gene expression
heritabilities. One of possible explanations for the bimo-
dality is that a expression trait can be regulated either
in cis or in trans and that the expression traits regulated
in cis intend to have a higher heritability whilst the
trans regulated expression traits intend to have a lower
heritability. One other possibility as suggested from
Additional file 2 is that those genes with an ultra low
level of expressions are subjected to a very low statis-
tical power to be detected for a significant genetic com-
ponent in their regulation.

It needs to be stressed that the housekeeping genes
listed here was derived by an independent study from
multiple gene expression profiling experiments with dif-
ferent human tissues [21]. Therefore the different patterns
of the heritability distribution between housekeeping and
non-housekeeping genes revealed in this study should not
be confounded by expression level related assignment of
genes into different categories. Because information was
not available for presence or absence of expression in the
[lumina bead-based microarray dataset analysed, we have
applied a filter to exclude lowly expressed genes to avoid
the bias in estimates of gene expression heritability. Classi-
fying genes into discrete abundance classes, e.g., highly
expressed, lowly expressed and non-expressed, is not a
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simple task because genes show broad and quantitative
expression levels with no clear separation into distinct
classes with the current transcriptomic profiling platforms
[30]. Many technique issues might influence the estima-
tion of expression abundance, e.g., sensitivity of the plat-
form, sample preparation and data processing algorithm.
Recently, sequencing based application such as RNA-seq
[31] is increasingly being used to quantify gene expression
with more precise measurement. However, the RNA-seq
technique has its own limitations. For example, sequen-
cing depth exerts a profound impact on the expression
abundance estimation and the subsequent data analyses
such as differential expression prediction [32]. We argue
that care must be taken interpreting the gene expression
data. Nevertheless, we noted that RNA-seq data sets for
LCLs of two of the present HapMap populations were
publicly available [33,34]. We downloaded the normalised
RNA-seq expression data for YRI and CEU LCL samples
and confirmed that about 88% and 85% of the 10,720
currently selected genes were present in the RNA-seq
datasets for YRI and CEU populations, respectively. This
result supports the appropriateness of the current strategy
to select expressed genes for the eQTL analysis from the
microarray data.

With a genome-wide scan of gene-SNP associations,
1,043 eQTLs were detected for 988 genes. Concordant
with previous studies (e.g., [7,22]), we obtained an excess
of trans over cis eQTLs. Moreover, we demonstrated in
Additional file 9 that genes with or without eQTLs had
a similar distribution in expression levels, removing the
concern that gene expression levels had substantial im-
pact on prediction of eQTLs. We estimated the fractions
of genetic variations explained by eQTLs by using a sim-
ple approach which compares the variance component
estimates between SNP-free and SNP-inclusive models.
Compared to methods that require calculating allelic
effect and allele frequency at individual locus (e.g., [6]),
the present eQTL heritability estimation approach pro-
vides a simple alternative and allows multiple eQTLs to
be jointly analyzed for both additive and interactive
effects. We demonstrated that both categories of eQTL
cumulatively explained comparable proportions of the
total heritability despite that trans eQTLs individually
have weaker effects than cis eQTLs, a result consistent
with other eQTL studies [35]. While heritability may be
considered to evidence the genetic control of phenotypic
variation (gene expression level), it is an obvious assump-
tion that higher heritability implies a greater chance to
map genetic variants responsible for variation in gene ex-
pression. However, we have shown that this assumption
may be true for cis eQTLs but not for trans eQTLs, be-
cause while genes with cis eQTLs aggregated at high herit-
ability levels, genes with trans eQTLs shared a similar
heritability distribution to that of genes with no eQTLs at
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all. One possible explanation is that trans effects in LCL
could be introduced by non-genetic variation of in vitro
factors, which could mimic trans regulation but does not
resemble true biologically heritable genetic regulation.
Another potential reason is the lack of power to detect
trans eQTLs in those genes without eQTLs in the present
sample given stringent significance threshold and the
small genetic effects conferred by the trans eQTLs. The
implication of this finding is that heritability should not
be used as a filter to screen genes for the detection of
eQTLs.

A number of explanations have been suggested for the
failure of associated variants to fully explain heritability
in conventional complex trait association analyses; these
include a lack of statistical power to detect loci with
minor effects, the existence of interactions between gen-
etic factors and/or between genes and environment, and
the possibility of influence by epigenetic factors; the first
of these explanations has been extensively studied [4]. In
this study, we investigated gene-gene interaction (epista-
sis) as a potential source to account for unexplained her-
itability in genetic association studies. Genetic studies
have long identified specific instances of genetic interac-
tions in model species [e.g., [36]]. A recent study in yeast
Saccharomyces cerevisiae had confirmed interactions
partially explained the heritability of complex traits
missed by the additive genetic contributions [37]. How-
ever, carrying out genome-wide interaction analysis in
human is still not feasible because the prevalence of
interactions in human dataset is still largely unknown
[38,39]. We take advantage of the fact that while predict-
ing genetic interactions a priori from population data
may be difficult computationally and of low power, it is
much more straightforward to detect epistasis among
variants a posteriori once they have been detected [38].
For a number of genes with multiple eQTLs, we mod-
elled multiplicative interaction effects and evaluated the
contribution of gene-gene interactions to total gene
expression heritability. Epistatic effects were detected
in 5 genes through AIC model selection, leading to a
substantial increase in the genetic variance explained by
10 ~ 35%. However, it needs to be emphasized that the
number of genes predicted with multiple eQTLs could
be underestimated possibly due to the small sample size
and/or over-stringent significance threshold implemented
in the association test. It would be certainly likely to de-
tect such eQTLs when the significance confidence was
lowered but this may enforce concern of the type 1 error.
Hence the present finding about cis and trans eQTL
interactions is clearly subject to variation due to use of
small samples. Nonetheless, our results clearly show that
the interaction is a crucial term for exploring and unrav-
elling the mystery of missing heritability at gene expres-
sion level.
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Conclusions

We implemented a variance component analysis for in-
ferring the proportion of phenotypic variations explained
by genetic factors for genome-wide gene expression
traits from unrelated individuals. The study reveals that
heritability of the genome-wide gene expression traits
varies from 100% to almost zero which is common be-
tween four HapMap populations, that the cis- regulating
expression traits usually have a larger heritability than
trans- regulating expression traits, and that distribution
of the expression traits heritability differs between the
house-keeping and non-house keeping genes. The study
illustrates that interaction between eQTLs contributes
significantly to a missed fraction of heritability in the ex-
pression traits.

Availability

Computer program implementing the present variance
component model analysis is available in Additional file 10.
The microarray gene expression data analysed in this paper
were downloaded from the Gene Expression Omnibus
(GEO) database (http://www.ncbi.nlm.nih.gov/geo) through
accession number GSE6536 [9].
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