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Abstract

Background: Penicillium chrysogenum has been used in producing penicillin and derived B-lactam antibiotics for
many years. Although the genome of the mutant strain P. chrysogenum Wisconsin 54-1255 has already been
sequenced, the versatility and genetic diversity of this species still needs to be intensively studied. In this study,
the genome of the wild-type P. chrysogenum strain KF-25, which has high activity against Ustilaginoidea virens, was
sequenced and characterized.

Results: The genome of KF-25 was about 29.9 Mb in size and contained 9,804 putative open reading frames (orfs).
Thirteen genes were predicted to encode two-component system proteins, of which six were putatively involved
in osmolarity adaption. There were 33 putative secondary metabolism pathways and numerous genes that were
essential in metabolite biosynthesis. Several P. chrysogenum virus untranslated region sequences were found in the
KF-25 genome, suggesting that there might be a relationship between the virus and P. chrysogenum in evolution.

metabolites.

Comparative genome analysis showed that the genomes of KF-25 and Wisconsin 54-1255 were highly similar,
except that KF-25 was 2.3 Mb smaller. Three hundred and fifty-five KF-25 specific genes were found and the
biological functions of the proteins encoded by these genes were mainly unknown (232, representing 65%),
except for some orfs encoding proteins with predicted functions in transport, metabolism, and signal transduction.
Numerous KF-25-specific genes were found to be associated with the pathogenicity and virulence of the strains,
which were identical to those of wild-type P. chrysogenum NRRL 1951.

Conclusion: Genome sequencing and comparative analysis are helpful in further understanding the biology,
evolution, and environment adaption of P. chrysogenum, and provide a new tool for identifying further functional
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Background

The filamentous fungus Penicillium chrysogenum has been
widely used for producing penicillin and derived -lactam
antibiotics for more than 80 years [1]. The discovery of
penicillin has greatly improved human health and pro-
moted the development of the medical industry. In addition
to producing penicillin, P. chrysogenum has exhibited
abilities in others areas, including bioleaching, biological
remediation, promoting plant growth, and producing non-
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B-lactam antibiotics and antifungal agents [2-6]. According
to previous reports, several P. chrysogenum strains produce
secreted proteins, such as PAF, PgAFP, and PgChP, which
inhibit the growth of opportunistic zoopathogens, plant-
pathogenic fungi, and toxigenic molds [7-9]. With their
high stability, effective inhibitory activity, and broad inhib-
ition spectra, these three proteins could be effective anti-
fungal agents in medicine and agriculture [10,11].

In 2008, van den Berg et al. reported the first sequence
of the P. chrysogenum genome and genes that were re-
sponsible for key steps in penicillin production were
identified [12]. The genome not only led to a deeper un-
derstanding of penicillin synthesis, but also provided a
new tool for identifying additional metabolites [13]. The
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sequenced P. chrysogenum strain Wisconsin 54-1255
was a model laboratory strain that was derived from
wild-type NRRL 1951, which was isolated from infected
cantaloupe [14,15]. As a mutant strain used in the la-
boratory, Wisconsin 54-1255 might be some genetic var-
iations, such as reduced PahA activity, encoded by
pahA, in the catabolism of phenylacetic acid (the side
chain precursor for the synthesis of benzylpenicillin)
[16]. Moreover, different P. chrysogenum isolates main-
tain diverse genetic backgrounds [17,18], and studying
the genome sequences of other strains will provide-
more information on the genetic diversity of P. chryso-
genum. Therefore, sequencing the genome of a wild-type
P. chrysogenum strain is necessary.

P. chrysogenum KF-25 is a wild-type strain isolated
from a soil sample by our laboratory. It shows high-anti-
fungal activity against Ustilaginoidea virens, which
causes false smut disease of rice and corn in humid areas
[19], in contrast to the Wisconsin 54-1255 strain, which
did not exhibit anti-fungal activity. This suggested that
there might be differences in the genetic backgrounds of
the two strains. To provide more genetic information on
P. chrysogenum to identify additional active substances
and to determine the critical genes involved in the bio-
synthesis of the active substances, we sequenced and an-
alyzed the genome of KF-25. Comparative genome
analysis of strain KF-25 with Wisconsin 54-1255 and the
wild-type strain NRRL 1951 revealed significant genetic
variance. We also analyzed the functions and distribu-
tion of the genes encoding several important proteins,
including transporters, non-ribosomal peptide synthase,
and two-component regulatory systems (TCRSs).
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Results and discussion

Strain features

The colony morphology and anti-fungal activity of
strains KF-25 and Wisconsin 54-1255 were investigated.
Following grown on potato-Sucrose-agar (PSA) plates
for 5 days, flavescent water drops were observed on the
surface of KF-25 colonies, but not on Wisconsin 54-
1255 (Figure 1a,d). Strain KF-25 also produced more yel-
low pigment than Wisconsin 54-1255 (Figure 1b,e). The
anti-fungal activities of the two strains against U. virens
strain UV-1 were tested, and results showed that strain
KF-25 had a strong inhibitory effect on UV-1 (Figure 1c),
while no anti-fungal activity was observed for strain
Wisconsin 54-1255 (Figure 1f). The fermentation broth
of KF-25 and Wisconsin 54-1255 was analyzed by using
HPLC-DAD and an additional peak was observed at
time point 7.28 min in the HPLC chromatogram of KE-
25 (Figure 1gh). The component was collected from
time point 7 to 8 min and the collected component
showed a high activity against UV-1 (data not shown).
As strain KF-25 is a wild isolate and Wisconsin 54-1255
is a mutant strain derived from NRRL 1951 [13], the dif-
ferent origins might cause the different physiological
features.

Genome sequence and annotation of P. chrysogenum
KF-25

General genome features

The genome of P. chrysogenum KF-25 was sequenced by a
shotgun approach using Hiseq 2000 (Illumina, California,
USA) with a read length of 2 x 100 bp. The 29.9 Mb gen-
ome was covered by 194 scaffolds and composed of 1,459

-

Figure 1 Colony features and anti-fungal activity of KF-25 and Wisoconsin 54-1255. (a) and (d), the front colony morphology on PSA
plates after 5 days of growth. (b) and (e), the back of the colony on PSA plates after 5 days of growth. (c) and (f), the inhibitory activity of the
4-day fermentation broths on U. virens strain UV-1. (g) and (h), the HPLC chromatogram of the four day fermentation broths. The upper row
indicated the features of KF-25 and the lower row indicated the feature of Wisconsin 54-1255.

4730

6817

28 o) €0 70 109 7o o %o 150 200
Tume et




Peng et al. BMC Genomics 2014, 15:144
http://www.biomedcentral.com/1471-2164/15/144

contigs with 154x coverage. Among the 194 scaffolds, the
average length was 154 kb, with the largest being 2.72 Mb.
The general features of the KF-25 genome compared with
the Wisconsin 54-1255 genome are shown in Table 1.
Genome annotation revealed that the genome of strain
KF-25 encoded 9,804 ORFs, and that the GC content of
the predicted protein-coding region was 53.4%. Among
the 9,804 ORFs, 7044 were similar to proteins in UniProt
database, 4,158 proteins were similar to proteins in the
KEGG database (Figure 2), and 9,727 showed similarity to
proteins from the NCBI nr database. Analysis of the 9,804
ORFs by KOGnitor indicated that 6,231 predicted proteins
matched members of the eukaryotic orthologous groups
(KOG) (Figure 2). In the genome of strain KF-25, 112
genes encoding tRNA and 29 rDNA genes were predicted
using tRNAscan and RNAmmer software. The 112 tRNA
genes were mainly scattered between scaffolds 1, 9, 15, 18,
19, 24 and 51, although sometimes four or five tRNA
genes formed clusters. The anticodon usage of KF-25 is
listed in Additional file 1: Table S1. Among the 9,804
predicted ORFs, 39 and 91 were identified as transla-
tion and transcription factors, respectively. (Additional
file 1: Table S2 and Table S3).

In total, 317 repetitive elements were found in the
genome of strain KF-25 by RepeatScout, with a mini-
mum length 50 bp and a maximum length of 1,296 bp.
Repetitive sequence analysis by using CENSOR indicated
that 648,249 bp of the KF-25 genome (2.17%) was repeat
sequences, while the repeat content of Wisconsin 54-
1255 was 1.04% [12].

Microsatellites (simple sequence repeats, SSRs) are
one of the most popular genetic markers and exist
widely in fungal genomes. Because of high mutation rate
and changing in repeat numbers during DNA replica-
tion, SSRs exhibit high individual specificity [20-22]. In
the genome of KF-25, 3,798 SSRs were found, with sizes
ranging from 15to 167 bp, and these SSRs were homoge-
nously distributed throughout the genome (Additional
file 1: Figure S1).

Table 1 General genome features of P. chrysogenum
KF-25 and P. chrysogenum Wisconsin 54-1255

Genome features P. chrysogenum  P. chrysogenum

KF-25 Wisconsin 54-1255 [12]
Assembly sizes (Mb) 299 322
GC content (%) 490 489
Gene number 9,804 12,943
Mean gene length (bp) 1,573 1,515
Exons per gene 32 30
Introns per gene 2.2 2.2
tRNA number 112 145
rRNA number 29 28
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The secretory system and transporter

Translocation of protein and molecule across the plasma
membrane is essential for cell life and requires the help
of secretory systems and transporters, such as signal rec-
ognition particle (SRP) and the Sec translocase [23,24].
SRP plays a critical role in targeting of secretory proteins
to the cellular membrane [25], while the Sec secretion
system is responsible for protein translocation across the
cytoplasmic membrane [26]. P. chrysogenum has been
widely used to produce penicillin and some other second-
ary metabolites with antimicrobial activity [2,7-9,27,28].
The secretory system and transporters are essential for se-
cretion of these antimicrobial substances and for import
of their substrates. In the KF-25 genome, 12 proteins were
predicted to be components of the eukaryotic Sec-SRP se-
cretion systems (Additional file 1: Table S4). These pro-
teins might play important roles in protein secretion in
P. chrysogenum. Several genes in the genome of KF-25
encoded transporters or components of the secretion
system that involved in producing penicillin and other
secondary metabolites. KF-25 genome contained 531
genes that encoded transporter proteins, which mainly
belonged to the major facilitator superfamily (MES, 231
genes), and the ABC transporter superfamily (52 genes).
Several genes in the secondary metabolism gene cluster
were predicted to encode MFS-type transporters by
antiSMASH [29]. The MFS transporters in the penicil-
lin synthesis pathway could regulate the production of
penicillin and enhance the sensitivity of P. chrysogenum
to phenylacetic acid [30]. Many ABC superfamily trans-
porters in the KF-25 genome were predicted to be mul-
tidrug resistance proteins [31]. One ABC superfamily
transporter was reported to be critical in the export of
phenylacetic acid, which is the precursor of penicillin
synthesis. There were also several other transporters in
the KF-25 genome that are involved in sugar, amino
acid, cation, and vitamin transport.

Two-component regulatory system

TCRSs (Two-component regulatory systems) are found
in bacteria, yeast, fungi and plant, and enable organisms
to rapidly sense and adapt to specific environments [32].
TCRSs consisted of a sensor kinase and a response regu-
lator, and are involved in regulating diverse processes,
such as chemotaxis, osmolarity and differentiation [33-35].
According to previous reports, osmotic pressure regulates
the morphogenesis and the secondary metabolism path-
ways of filamentous fungi via TCRSs [33,36,37]. Increased
osmotic pressure stimulated the vegetative growth and co-
nidia formation of P. chrysogenum, and also influenced its
respiration and organic acid production [38,39]. The
TCRSs that senses osmotic pressure and regulates the life
cycle of P. chrysogenum might induce P. chrysogenum pro-
duce secondary metabolites, such as penicillin and other
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Figure 2 Characteristics of the genome of P. chrysogenum KF-25. (a) Functional classification of ORFs encoded by the genome of strain
KF-25, based on the KOG (Eukaryotic Orthologous Groups of proteins) database. In total, 6,231 ORFs with orthologs in the KOG database were
classified and the percentages indicate the frequencies of ORFs with assigned functions. (b) Functional classification of KF-25 genome ORFs based
on the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. In total, 4,158 ORFs had functional classifications assigned and the numbers
with each classification are indicated.
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bioactive agents. Thirteen predicted proteins based in KF-
25 were involved in TCRSs. Among these proteins, four
contained both the sensor kinase and response regulator
domains, four contained only the sensor kinase domains,
and the remaining five contained only the response regu-
lator domains (Table 2). Six of the 13 predicted proteins
were involved in TCRSs that sensed and adapted to the
osmotic pressure. Similar proteins were also found in the
genome of Wisconsin 54-1255 [12] . The existence of os-
motic pressure-associated TCRSs in the P. chrysogenum
genome might explain the ability of P. chrysogenum to
adapt to high osmotic pressure. The other seven predicted
TCRSs proteins were mainly involved in sensing or adapt-
ing to drugs, the cell cycle, or capsular synthesis.

Comparative genomics and phylogenetic analysis of

P. chrysogenum KF-25

Comparative genome analysis of P. chrysogenum KF-25
and P. chrysogenum Wisconsin 54-1255

The genome of P. chrysogenum KF-25 was 2.3 Mb
smaller than that of P. chrysogenum Wisconsin 54-1255
(Table 1). The genome of KF-25 was composed of 194
scaffolds, while the genome of Wisconsin 54-1255 was
composed of only 49 super-contigs [12]. We speculated
that gaps between the scaffolds might be one of the rea-
sons for the smaller genome size of KF-25. Genomic
alignment showed that the genome of KF-25 covered
93% of the Wisconsin 54-1255 genome. The average
protein similarity between the predicted proteomes of
KF-25 and Wisconsin 54-1255 was 75.1% (Figure 3a;
Additional file 1: Figure S2). Several genome fragments,

Page 5 of 15

with a total length of 2.3 Mb, were missing in the KF-25
genome. These fragments in the Wisconsin 54-1255
genome were mainly from the 5'- termini of contigs 13,
17, 23, 24 and the 3'-terminus of contig 22. According
to a previous report, these fragments of the Wisconsin
54-1255 genome were not found in the genomes of
other sequenced filamentous fungi, such as Aspergillus
nidulans, Aspergillus niger, and Aspergillus oxyaze [12],
and were proposed to contain the P. chrysogenum-
specific genes [12]. Alignment of the proteomes of the
two strains showed that 2, 317 genes in the genome of
Wisconsin 54-1255 were not found in the genome of KEF-
25 (Figure 3b), while 1,043 (representing 45%) of these
genes were located in the 2.3 Mb of missing fragments.
Based on these results, we inferred that these genes were
not the P. chrysogenum-specific genes, but of Wisconsin
54-1255 strain-specific genes. The biological functions of
most proteins encoded by these strain-specific genes are
unknown (2183, representing 94.2%) [12], though some
genes were involved in transport, metabolism, and tran-
scription regulation (Figure 3c; Additional file 1: Table S5
and Figure S3A). The 2.3 Mb of missing fragments con-
tained numerous repeat and transposable elements, and
the introns in these regions were typically small and few
compared with other regions of Wisconsin 54-1255 gen-
ome. Because the two sequenced P. chrysogenum strains
were isolated from different geographical regions, and be-
cause Wisconsin 54-1255 is a laboratory strain tht has
undergone several rounds of mutation, the strain-specific
sequences in the Wisconsin 54-1255 genome might have
evolved by transposition and horizontal gene transfer.

Table 2 The genes encoding the proteins involving in the two-component systems in the genome of P. chrysogenum
KF-25 and corresponding genes in the genome of P. chrysogenum Wisconsin 54-1255

Genes in Genome Putative protein function

Corresponding genes in

of KF-25 P. chrysogenum Wisconsisn 54-1255
KF25_0355 osmolarity two-component system, response regulator SSK1 Pc20g02430 (98% identify)
KF25_1660 two-component system, NarL family, capsular synthesis sensor histidine kinase RcsC Pc22g18780 (99% identify)
KF25_2492 osmolarity two-component system, response regulator SKN7 Pc22g04440 (99% identify)
KF25_4368 two-component system, chemotaxis family, sensor kinase Cph1 Pc06g00040 (99% identify)
KF25_4886 two-component system, unclassified family, sensor histidine kinase and response Pc16g03520 (99% identify)
regulator
KF25_7115 two-component system, cell cycle sensor kinase and response regulator Pc12g07950 (96% identify)
KF25_7139 two-component system, NarL family, capsular synthesis sensor histidine kinase RcsC Pc22g07510 (99% identify)
KF25_7934 osmolarity two-component system, phosphorelay intermediate protein YPD1 Pc22g12510 (100% identify)
KF25_8216 osmolarity two-component system, response regulator SSK1 Pc22g16340 (99% identify)
KF25_8339 osmolarity two-component system, response regulator SSK1 Pc13g13580 (88% identify)
KF25_8360 osmolarity two-component system, response regulator SSK1 Pc13g13880 (99% identify)
KF25_9319 two-component system, unclassified family, sensor histidine kinase and response Pc13g09080 (99% identify)
regulator
KF25_9723 two-component system, unclassified family, sensor histidine kinase and response Pc20g15550 (99% identify)

regulator




Peng et al. BMC Genomics 2014, 15:144
http://www.biomedcentral.com/1471-2164/15/144

Page 6 of 15

(a)

Penicillum chrysogenum Wisconsin 54-1255

1suu'onuo

12000000

e

Il
IMIIH\ [l

6000000 suoouon 10000000

zooﬁnon cuuﬁuuo 14000000

" * l. 4 ‘

Penicillum chrysogenum KF-25

(b) (<)
14000 - o = Wisconsin54-1255
o = Unmatched gene L2 P = KF-25
= Matched gene § -
10000 - ‘_355 8.’ -
8000 - q(___‘)_ s
6000 - 8 002
8' 0.015
4000 - Y—
O 0.01
2000 (o]
S 0008
©
0 - . . o o y
KF-25 Wisconsin F T EF TS TS S ST &8 e" &
ST I T TS T T TSI e"‘
54-1255 &s" & Rty ebé, @a" &y b@‘é \‘s"’@ Qhe“ &S& (,4.‘#&6@ &
o ¢e9 & 5¢° o o8 @0‘, 0‘25’& (‘@‘6‘.9 & \‘s‘ K ,<‘° Lo & o éo""
& a?"qo v‘y;é‘&} ‘ﬁq v"@@" ’\\"‘\&p?'& 609&“ 6‘@ ‘e&@i&&i :»‘“\.,&&i&"é;;&é &
FeEe & & TG T fed S o
@(\". & 0‘& & < " V& S g“} = e\“"*f? é.,f“ &
& & & Fo & & &
& « & & &
R & & C <
& & & &
& & o« &
< q“’ %é'a

Figure 3 Comparative genome analysis of P. chrysogenum KF-25 and Wisconsin 54-1255. (a) Alignment of the KF-25 and Wisconsin
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54-1255 genomes using Mauve 2.3.1. The line above indicates the position of the genome in Wisconsin 54-1255. The rectangles represent the
genome fragments and the white gaps between the rectangles mean no similar fragments were found in the other genome. (b) Comparation
of the orthologous genes between the genomes of P. chrysogneom KF-25 and Wisconsin 54-1255. Numbers of genes with orthologs found in the
other genome are represented in blue and numbers of genes with no ortholog genes found were represented in red. The vertical axis indicates
the number of genes. (c) KOG classification of the specific genes of KF-25 and Wisconsin 54-1255. The vertical axis indicates the percentage of
genes among the specific genes (2,317 specific genes for Wisconsin 54-1255 and 355 specific genes for KF-25) and the horizontal axis indicates

the classification of the gene in the KOG database.

Furthermore, there were 355 strain-specific genes in KF-
25 genome that were not found in the genome of Wiscon-
sin 54-1255 (Figure 3b). These KF-25 strain-specific genes
mainly exhibited high levels of similarity to genes from
Aspergillus species and Neosartorya fischeri (Additional
file 1: Figure S4), which are evolutionarily closely related
to P. chrysogenum [12]. The biological functions of the
355 KF-25-specific genes are mainly unknown (232, repre-
senting 65%), except for some ORFs that were predicted
to be involved in transport, metabolism, and signal trans-
duction (Figure 3c; Additional file 1: Table S6 and Figure
S3B). Among the 355 ORFs, none were found to be in-
volved in cell mobility, extracellular structures, chromatin

structure, and metabolism (Figures 2 and 3c), but ORFs
with functions in intracellular trafficking, secretion, ves-
icular transport, signal transduction, and transcription
were frequently found. To confirm that the 2.3 Mb of
DNA fragments were truly missing from the KF-25 gen-
ome, three randomly chosen Wisconsin 54-1255 strain-
specific genes (Pc03g00290, Pc12g02270 and Pc21g20980)
from these fragments of were investigated using PCR
amplification. The results showed that these genes were
detected in the Wisconsin 54-1255 genome but not in
the KF-25 genome (Figure 4). Another one Wisconsin
54-1255-specific gene, Pc00c02 [GenBank:AM920417.1],
which is annotated as a 16S ribosomal RNA was not
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Figure 4 PCR detection of the P. chrysogenum Wisconsin 54-1255-specific genes from the genome of KF-25 and Wisconsin 54-1255.

detected in either genome. The 16S ribosomal RNA gene
is widely used to classify bacteria and is reported to only
exist in bacterial genomes [40]. BLAST analysis of
Pc00c02 indicated that it was highly similar to the 16S
rDNA region of bacteria Rugosimonospora sp. 260305
(100% identify) and Micromonospora sp. HBUMS80369
(99% identify). The 16S rDNA found in the Wisconsin 54-
1255 genome sequence might be caused by bacterial con-
tamination during sequencing.

Comparative analysis of P. chrysogenum KF-25 and other

P. chrysogenum strains

According to previous proteomic studies, the improve-
ment process of penicillin production enhanced the
expression of some genes, while decreasing [15,41,42].
P. chrysogenum Wisconsin 54-1255 is a moderately im-
proved penicillin producer derived from the wild-type
P. chrysogenum NRRL 1951, which exhibited more sec-
ondary metabolism pathways (such as pigments), patho-
genicity proteins and virulence proteins compared with
Wisconsin 54-1255 and another high penicillin producer
P. chrysogenum AS-P-78 [15,42]. P. chrysogenum KF-25 is
a wild-type strain that had a stronger yellow pigment pro-
duction than Wisconsin 54-1255 (Figure 1). The ability to
produce more pigments is representative of a greater
number of secondary metabolic pathways, and was a
common feature of both KF-25 and NRRL 1951. Several
KF-25-specific genes were found to be associated with
pathogenicity and virulence. One such gene, KF25_6369,
which encodes glucose oxidase, is thought to be involved
in virulence because gluconic acid and glucose oxidase are
related to pathogenicity of Penicillium espansum in apples
[43]. Glucose oxidase also showed reduced expression in
Wisconsin 54-1255, compared with NRRL 1951 [42]. The
penicillin synthesis genes were clustered in one group
in the genomes of NRRL 1951 and Wisconsin 54-1255,
while several such clusters were found in the AS-P-78
genome [44]. Similar to wild-type NRRL 1951, KF-25
contained only one penicillin synthesis gene cluster. Wild-
type P. chrysogenum KF-25 and NRRL 1951 have more

secondary metabolism pathways and more pathogenicity
and virulence associated genes, which are fitness mecha-
nisms for the wild-type strains to survive in natural
environment.

Phylogenetic analysis of P. chrysogenum KF-25 and the
other sequenced filamentous fungi

A concatenated set of the amino acid sequences of 90 con-
served proteins was used to construct a phylogenetic tree
[12]. The phylogenetic analysis (Figure 5) showed a close
relationship between KF-25 and Aspergillus species, and a
more distant evolutionary relationship between KF-25 and
Penicillium marneffei and Talaromyces stipitatus. P. chry-
sogenum KF-25 was in the same evolutionary branch as
Wisconsin 54-1255 and showed a close relationship with
Penicillium digitatum. This result was consistent with pre-
vious reports [12,45]. A phylogenetic tree constructed
based on the amino acid sequences of the B—tubulin also
supported the evolutionary relationship of strains from
the Penicillium genus (Additional file 1: Figure S5).

Secondary metabolism analysis of P. chrysogenum KF-25
Putative secondary metabolism pathways

P. chrysogenum has been known as a penicillin producer
for many years [1]. Recently, studies have mainly focused
on the pathways of penicillin synthesis, and the key
genes involving involved in penicillin production have
been determined [13,27,46]. In additional to penicillin,
P. chrysogenum can produce many other secondary me-
tabolites, such as mycotoxin and drugs [27,28,47,48]. In
a previous report, SMURF analysis predicted that the
genome of Wisconsin 54-1255 contains 33 secondary
metabolism gene clusters [49]. In this study, secondary
metabolism gene clusters was predicted using anti-
SMASH [29], and 33 and 41 gene clusters were identi-
fied in the genomes of KF-25 and Wisconsin 54-1255
(Additional file 1: Table S7 and Figure S6). The pre-
dicted products of 23 secondary metabolism gene clus-
ters in KF-25 were: eight nonribosomal peptides, 10
polyketides, two hybrid non-ribosomal peptide synthase
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Figure 5 Phylogenetic analysis of P. chrysogenum and other sequenced filamentous fungi. The phylogenetic tree was constructed by
concatenating the amino acid sequences of 90 conserved proteins from all strains using the neighbor-joining method and bootstrap analysis
(1,000 replicates) of the ClustalW alignment. Gibberella zeae was used as an outgroup strain. The support rates are indicated at the node of each
branch and the scale bar represents 0.05 substitutions per amino acid position.

(NRPS)-polyketide synthases (PKS), one hybrid NRPS-
terpene, one terpene and one siderophore, while the
remainding 10 gene clusters produced other secondary
metabolites (Additional file 1: Table S7). Among the 33
gene clusters, five were predicted to produce stigmatellin,
chalcomycin, epothilone, fumitremorgin and penicillin.
The production of penicillin by KF-25 and Wisconsin 54-
1255 were verified by HPLC (Additional file 1: Figure S7).
The data showed that Wisconsin 54-1255 exhibited
greater ability of producing penicillin than KF-25.

Non-ribosomal peptide synthetase

NRPSs play important roles in the synthesis of non-
ribosomal peptides, which include antibiotics and other
important pharmaceuticals [50]. In the P. chrysogenum
KE-25 genome, 20 NRPS genes were found and the do-
main compositions of these predicted NRPSs are shown
in Additional file 1: Figure S8. Among the 20 predicted
NRPSs, 14 were involved in putative secondary metabol-
ism pathways, while the other six were not. Eleven of
the 20 predicted NRPSs, encoded by gene KF25_6155,
KF25_1342, KF25_6525, KF25_1526, KF25_9456, KF25_
5703, KF25_8966, KF25_6509, KF25_8398, KF25_9347,
and KF25_4993, had similar amino acid sequences to
HC-toxin synthase. In addition, 15 of the predicted
MES transporters encoded by the KF-25 genome were
identified as HC-toxin efflux carriers. The HC-toxins
determine the specificity and virulence of pathogenic
fungi toward host plants [51]. The existence of the HC-
toxin synthases and HC-toxin efflux carriers suggested
that P. chrysogenum KF-25 might produce HC-toxin.

Polyketide synthase

Polyketides, including pigments, antibiotics, and myco-
toxins, are a diverse group of secondary metabolites pro-
duced by microorganisms and plants. PKSs are complex
enzymatic systems for producing polyketides [52-55].
Type I and type II PKSs are modular in structure and
contain multiple catalytic activity enzymes individually
[56], while the type III PKSs have simple structures
[57,58]. There were 10 predicted polyketide synthesis
pathways and two predicted hybrid NRPS-PKS synthesis
pathways in the KF-25 genome sequence. Twenty-four
polyketide synthase genes were extracted from the KF-
25 genome and 23 of them were predicted to encode
type I PKSs. The remaining gene (KF25_7297) encoded
a type III PKS (Figure 6a). Thirteen of 24 predicted PKSs
were identified as members of putative secondary me-
tabolism pathways. One such pathway, containing a type
I PKS was predicted to produce epothilone (Additional
file 1: Table S7). According to previous reports, epothi-
lone is produced by myxobacteria and exhibits antican-
cer activity by targeting the microtubule of the cancer
cell [59]. Because the KF-25 genome contains an epothi-
lone synthesis gene cluster, it is possible that KF-25
might be useful in producing this potential anticancer
agent. We will further investigate whether KF-25 pro-
duces epothilone and whether the strain has anticancer
activity. Type I PKSs have similarity to the type-I fatty
acid synthases (FAS), which are essential in lipid metab-
olism [55,56]. The existence of diverse PKS genes in the
P. chrysogenum KF-25 genome suggests that KF-25
might produce diverse lipids and polyketides, and that
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these metabolic products might influence the life cycle
of P. chrysogenum.

Cytochrome P450

Cytochrome P450s (CYPs) are hemoproteins that are
ubiquitously distributed throughout all domains of life
and play important and diverse roles in metabolic pro-
cesses and adaptation to different environmental niches
by fungi [60]. CYPs participating in numerous primary,
secondary, and xenobiotic metabolic reactions have been
reported [61,62], and several CYPs predicted from se-
quenced microorganism genomes were found to be
members of secondary metabolism pathways [63,64].
CYPs can be classified into different families based on
the amino acid sequences [65,66]. Ninety CYPs were
predicted in the KF-25 genome (about 0.9% of total
ORFs) and many of them were members of putative sec-
ondary metabolism pathways, including the pathways of
PKSs, NRPSs, andNRPS-terpenes. These CYPs belonged
to 60 different families. There were usually one or two
CYPs per family but some families contained three to six
CYPs (Figure 6b). The classifications of the CYPs from
the Wisconsin 54-1255 genome were almost the same as
those from KF-25 genome (Additional file 1: Figure S9).
As a multicomponent electron transport chain system,
CYPs are critical in degradation, detoxification, and syn-
theses of life-critical compounds in organisms [67]. Be-
sides their functions in secondary metabolism, CYPs
also play critical roles in the adaption of organisms to
specific ecological niches and the biosynthesis of physio-
logically important compounds [68,69]. The existence
of so many CYPs might be essential for the life cycle
P. chrysogenum and the synthesis of the metabolic
products, such as penicillin [70].

P. chrysogenum virus terminal fragment-similar sequences

To date, the genome of only one virus originating from
P. chrysogenum has been sequenced, which showed it
was a dsRNA virus of the Chrysovirus genus [71,72].
DNA alignment analysis (Figure 7) showed that numer-
ous sequences in the KF-25 genome were similar to the
5'- and 3'-UTR of four P. chrysogenum virus DNA se-
quence segments [72]. These sequences were also found
in the genome of Wisconsin 54-1255 (data not shown).
The sequences matching the 5 -UTR of the virus were
mainly composed of (CAA), repeats, which are similar
to the translational enhancer elements in the 5'-UTR of
tobacco viruses [73]. Some sequence fragments of KF-25
genome matched the 5'-UTRs and 3'-UTR of virus seg-
ment 2, but did not contain regions encoding virus struc-
tural proteins. According to previous reports, eukaryotic
gneomes contain many sequence of viral origin that have
played diverse roles, such as horizontal gene transfer me-
diated by dsRNA viruses, providing resistance to the virus,
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and promoting the evolution of host organisms [74-77].
We speculate that P. chrysogenum genome might have ob-
tained the UTRs by integrating the viral genome. During
the evolutionary process, genes encoding virus structural
proteins were eliminated but the UTR regions remained.
The functions of these sequences in P. chrysogenum ge-
nomes are still unknown, but they might provide insertion
sites for the virus, or a potential mechanism of viral resist-
ance for P. chrysogenum.

Conclusions

In this study, we reported the genome sequence of wild-
type P. chrysogenum KF-25. This is the second report of a
P. chrysogenum genome, but the first of wild-type strain.
Comparative genome analysis showed that KF-25 genome
lacked regions of the genome, totaling 2.3 Mb, that were
found in Wisconsin 54-1255 genome, which were previ-
ously considered to be P. chrysogenum species-specific re-
gions [12]. However, our results showed that the missing
regions were only specific to Wisconsin 54-1255. These
regions contained numerous repeat elements and trans-
posable elements, indicating that these segments might
have been obtained by Wisconsin 54-1255 through trans-
position and horizontal gene transfer during evolution.
Comparative analysis of KF-25 with another wild-type
strain, NRRL 1951, revealed that they had numerous fea-
tures in common, such as pigments production, and a
greater number of pathogenicity- and virulence-associated
genes. Based on the phylogenetic tree of 90 conserved
orthologous proteins, strains KF-25 and Wisconsin 54-
1255 maintained a close evolutionary distance. Analysis of
the TCRSs indicated that many proteins were osmolarity
TCRSs, which may be an adaptive strategy of P. chryso-
genum to high osmotic pressure. Several gene clusters in-
volved in putative secondary metabolism pathways, and
many genes encoding essential enzymes for the biosyn-
thesis of diverse biologically-active agents were found,
which could provide foundation for using P. chryso-
genum to produce antibiotics including penicillin and
other B-lactam antibiotics. The identification of P. chry-
sogenum virus UTR sequences in the two sequenced P.
chrysogenum genomes is helpful for studying the rela-
tionship between the virus and its fungal host in evolu-
tion. The results of this study can help us to further
understand the genetic diversity of P. chrysogenum and
shed light on its evolution, biology, environmental
adaption and application.

Methods

Strains and culture conditions

P. chrysogenum strain KF-25 and U. virens strain UV-1
were isolated and identified by our lab. Strain Wisconsin
54-1255 [12] was provided by MA van den Berg at DSM
Anti-Infectives. Fungal strains were grown in potato-
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sucrose (PS) medium [20% (w/v) potato lixivium, 2% (w/v)
sucrose], and 1.5% (w/v) agar was used in solid potato-
sucrose medium (PSA). To assay the antifungal activity,
P. chrysogenum strains KF-25 and Wisconsin 54-1255
were grown in 500-ml flasks containing 100 ml of PS
medium at 28°C for 96 h with shaking (180 rpm). The
culture supernatants were filtered through four layers of
cheesecloth and centrifugated at 16000 x g for 20 min at
4°C. The culture supernatants were sterilized by filtering
through a 0.22 um membrane (Millipore) and were used
to assay the antifungal activity against U. virens using the
disk diffusion test [78]. The conidia of pathogen U. virens
were spread on a PSA plate at a density of 10® spores/ml
and 100 pl spore suspension was used for each plate, then
20 pl of the sterilized culture supernatant above was
added to a piece of sterile filter paper with a 6 mm diam-
eter, placed in the center of the plate. The plate was incu-
bated for 5 days at 28°C. Assays were performed in
triplicate.

HPLC-DAD analysis

Conidiospores of P. chrysogenum KF-25 and Wisconsin
54-1255 were inoculated at 10° to 10° conidia/ml in a
production medium containing (g/l): glucose-H,O, 5;

lactose - H,O, 80; (NH,),CO, 4.5; (NH4)5SOy, 1.1; NaySOy,
2.9; KH,PO,, 5.2; KoHPO, - 3H,0 ,4.8; trace elements so-
lution (citric acid - H,O, 150; FeSO,-7H,0,15; MgSO, -
7H,0, 150; H3B0O3,0.0075; CuSO,-5H,0, 0.24; CoSO,-
7H,0, 0.375; ZnSO,-7H,0O, 1.5; MnSO,-H,0O, 2.28;
CaCl, - 2H,0O, 0.99), 10 (ml/l); 10% phenylacetic acid,
pH 7, 75 (ml/l) and the pH was adjusted to pH 6.5 before
inoculation [79]. The culture was incubated at 25°C in an
orbital shaker at 280 rpm for 4 days. The mycelium was
removed by centrifugation and filtration, and the fermen-
tation broth was assayed for penicillin by HPLC-DAD
(High Performance Liquid Chromatography-Diode Array
Detector). The assay was performed on a Dionex UltiMate
3000 RS HPLC system with autosampler and a DAD de-
tector (Thermo Fisher Scientific, Waltham, MA) and an
Agilent ZORBAX 300SB-C18 column (250 x 4.6 mm,
5 um particle size, Agilent Technologies, Palo Alto, CA).
The mobile phase was consisted of solvents A [0.5 mol/L
KH,PO, (pH3.5): methanol: water, 1:3:6] and B [0.5 mol/L
KH,PO, (pH3.5): methanol: water, 1:5:4]. The gradient
program started with 30% of B, followed by increasing to
100% B from 0 to 20 min, held at 100% B from 20 to
35 min, decreasing to 30% of B from 35 to 50 min. The
flow rate was 1.0 ml/min with a column temperature of
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25°C. The injection volume was 20 pl, and the detection
wavelength was 210 nm. Penicillin G (0.5 mg/ml) was
used as a positive control.

The cultures of P. chrysogenum KF-25 and Wisconsin
54-1255 in potato-sucrose (PS) medium for 4 days were
analysed by HPLC on a Dionex UltiMate 3000 RS HPLC
system with autosampler and a DAD detector and a
Sepax Polar-Silica column (250 x 10.0 mm, 5 pm particle
size, Sepax Technologies, Newark, DE). The mobile
phase consisted of solvents A (10 mM ammonium acet-
ate) and B (methanol). The program held at 80% B from
0 to 20 min. The flow rate was 2.0 ml/min and the col-
umn temperature was 25°C. The injection volume was
5 pl, and the detection wavelength was 210 nm.

Genome sequencing, assembly, and annotation
Whole-genome sequencing of KF-25 was performed by
the National Center for Gene Research, Shanghai, China.
KF-25 genomic DNA was extracted as described previ-
ously [80], then was randomly sheared and purifiedto
construct three libraries with insert sizes of 170 bp,
500 bp and 2-3 kb. DNA was amplified from the librar-
ies and sequenced by HiSeq2000 (Illumina, California,
USA). The reads were assembled into contigs by Velvet
(Version 1.2.03) [81] and then scaffolds were constructed
based on the contigs using SSPACE [82].

AUGUSTUSugustus (http://bioinf.uni-greifswald.de/au-
gustus/) [83] was used to predict the genes in the KF-25
genome, and the putative proteins were aligned against the
NCBI nr, UniProt (http://www.uniprot.org/) and KEGG
(http://www.genome.jp/kegg/) database using BLASTP tool
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The predicted genes
were then aligned against the CDD database (http://www.
ncbinlm.nih.gov/Structure/cdd/wrpsb.cgi) using rpsBLAST.
To identify the KOG classification of each gene, we
searched for each amino acid sequence in the KOG data-
base in NCBI using KOGnitor (http://www.ncbi.nlm.nih.
gov/COG/grace/kognitor.html). Metabolic pathways of the
KF-25 genome were constructed based on the annotation
results against the KEGG database. Repeat sequences
were analyzed using CENSOR [84] (http://www.girinst.
org/censor/index.php). The genes encoding tRNA were
predicted using tRNAScan [85], and RNAmmer [40]
was used to find rDNA sequences. P. chrysogenum virus
terminal UTR sequences in the KF-25 genome were
identified using local BLAST and the sequences were
aligned using ClustalX 2.0 [86].

Comparative genome analysis

Mauve software [87] was used to compare the genome of
KF-25 with Wisconsin 54-1255 [GenBank:NS_000201.1].
Dot plot analysis of the two genomes was performed with
Gepard [88]. The orthologous genes between KF-25 and
Wisconsin54-1255 were by compared the proteomes of
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the two genomes and proteins that exhibited similarity
higher than 25% were thought orthologous. Proteins
encoded by all of the strain-specific genes were classified
by searching the eukaryotic orthologous groups (KOG)
database in NCBI using KOGnitor.

Detection of strain-specific genes from P. chrysogenum
The genomic DNA of KF-25 and Wisconsin 54-1255
was extracted as described previously [80]. Four pairs of
primers based on specific gene sequences of Wisconsin
54-1255 (Additional file 1: Table S8) were used to amp-
lify specific genes by PCR (primers used were listed in
Additional file 1: Table S8). The products were detected
on an agarose gel.

Secondary metabolism-related gene analysis

The secondary metabolism pathways in the KF-25 and
Wisconsin 54-1255 genomes were predicted using anti-
SMASH (http://antismash.secondarymetabolites.org/) [29].
Modular polyketide synthases in the genome were pre-
dicted and the domain compositions were analyzed using
AMSPKS [89] and Pfam [90]. Genome-encoded cyto-
chrome P450s were classified by searching against the fun-
gal cytochrome P450 database [65].

Phylogenetic analysis

Phylogenetic trees were constructed in MEGA 5.05 [91],
using the neighbor-joining method and bootstrap ana-
lysis (1,000 replicates), of MUSCLE [92] or ClustalW
[86] alignments. Phylogenetic trees of filamentous fungi
were constructed as described previously [12] using the
aligned amino acid sequences of 90 orthologous genes
from P. chrysogenum KE-25, P. chrysogenum Wisconsin
54-1255 [GenBank:NS_000201.1], P. marneffei [GenBank:
ABAR00000000], P. digitatum [45], T. stipitatus [GenBank:
ABAS00000000], A. niger [93], A. nidulans [GenBank:AA
CD00000000], A. oryzae [94], Aspergillus fumigatus [95],
Aspergillus clavatus [GenBank:AAKDO00000000], Aspergil-
lus terreus [GenBank:AAJN0O0000000], Aspergillus flavus
[GenBank:AATH00000000], Aspergillus kawachii [96],
Neosartorya fischeri [GenBank:AAKE00000000], and Gib-
berella zeae [GenBank:AACMO00000000] (Additional file 1:
Table S9).

Data access

The complete genome sequence of P. chrysogenum KF-
25 has been submitted to SRA (http://www.ncbi.nlm.nih.
gov/sra/) under the accession number SRP022930.

Additional file

Additional file 1: Table S1. Anticodon usage of Penicillium
chrysogenum KF-25 genome. Figure S1. Number of occurrences of
simple sequence repeats in P. chrysogenum KF-25 genome. Table S2.
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Putative transcription factors in the genome of P. chrysogenum KF-25.
Table S3. Putative translation factors in the P. chrysogenum KF-25 genome.
Table S4. List of the ORFs with the predicted function as the compositions
of the secretion system. Figure S2. Dot plot analysis of P. chrysogenum
KF-25 (horizontal) and P. chrysogenum Wisconsin 54-1255 (vertical)
genomes. Table S5. KOG annotation of the P. chrysogenum Wisconsin
54-1255 specific ORFs. Figure S3. Functional classification of the P.
chrysogenum Wisconsin 54-1255 and KF-25 specific ORFs based on the
KOG database. Table S6. KOG annotation of the P. chrysogenum KF-25
specific ORFs. Figure S4. Classifications of the origin of the most similar
genes in GenBank of the 355 KF-25 specific genes. Figure S5. Neighor-
Joining phylogenetic tree of P. chrysogenum KF-25 and other species of the
genus of penicillium based on the benA gene. Table S7. Detail information
of the predicted secondary metabolism gene clusters. Figure S6. Putative
structures of the predicted secondary metabolism gene clusters products.
Figure S7. Detection of penicillin G by HPLC-DAD. Figure S8. The domain
compositions and the phylogenetic tree of the non-ribosomal synthetases
from KF-25 genome. Figure S9. Neighor-Joining (NJ) phylogenetic tree of
the cytochrome P450 (CYPs) from the genomes of P. chrysogenum KF-25
and P. chrysogenum Wisconsin 54-1255. Table S8. Primers used to amplify
the P. chrysogenum Wisconsin 54-1255 specific genes from both the
genomes of P. chrysogenum Wisconsin 54-1255 and P. chrysogenum
KF-25. Table S9. Orthologous genes used in phylogenetic analysis of
various filamentous fungi.
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