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Abstract

Background: The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools
allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and
biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential.
Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are
many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite
the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building
process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the
automated transcriptome reconstruction, we used manually defined and curated genes, several of them
experimentally validated.

Results: Several approaches to transcript construction were utilized, based on the available data: a draft
genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we
integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a
set of manually curated genes was used for quality assessment of the transcripts. The interplay between the
automated pipeline and the quality control indicated which additional processes were required to improve the
transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice
junctions, and relatively high rates of intron retention, which caused unique issues with the currently available
tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results
of several tools improved the completeness and quality considerably. The final collection, created from the
integration of several quality control and improvement rounds, was compared to the manually defined set both
on the DNA and protein levels, and resulted in an improvement of 20% versus any of the read-based approaches
alone.

Conclusions: To the best of our knowledge, this is the first time that an automated transcript definition is
subjected to quality control using manually defined and curated genes and thereafter the process is improved.
We recommend using a set of manually curated genes to troubleshoot transcriptome reconstruction.
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Background
Conventionally, genetic and transcriptional studies of
non-model organisms have been restricted due to the
lack of reference genomes that impede their analyses.
Nevertheless, non-model organisms are of great eco-
logical and economic significance; consequently the
understanding of their unique metabolic pathways by
investigating their gene expression profiles is crucial.
The advent of next generation sequencing (NGS) and
its continuing improvement, as well as the develop-
ment of corresponding bioinformatics analysis tools
have boosted the number of sequenced transcriptomes
in non-model organisms and their automated assem-
blies have become common over time [1,2].
Numerous software and pipelines have been used to

automatically build transcriptomes and several methods
that integrate de novo assembly together with genome
based assembly have been proposed for non-model or-
ganisms [3]. Two major alternatives can be employed: 1)
Aligning reads to the existing reference genome and
then assembling the remaining unmapped reads or 2)
Performing a de novo assembly first and then using the
genome to improve the transcript assembly [3]. How-
ever, many open challenges in defining genes remain,
particularly where genomes are not available or are in-
complete. In spite of the large numbers of transcriptome
assemblies that have been performed, quality control of
the transcript building process is rarely performed.
Manually defined and curated transcripts or good

quality ESTs could be used to assess the quality of auto-
mated transcriptome assembly, but to the best of our
knowledge, they have not been used. In non-model or-
ganisms in particular, it is critical to have genes built
from the species being studied, as closely related well-
annotated species might not be available. In spite of the
great potential importance, the processes used to manu-
ally define and curate genes have not been documented
until now (Ben-Dor S., in preparation).
In this study, the transcriptome of the bloom-forming

alga Emiliania huxleyi was built. E. huxleyi is a cosmo-
politan unicellular photoautotroph that plays a promin-
ent role in the marine carbon cycle [4,5]. Its intricate
calcite coccoliths account for a third of the total marine
CaCO3 production, making it highly susceptible to fu-
ture ocean acidification [6]. In addition to their role in
the biogeochemistry of carbon and related climatic im-
pacts, coccolithophores produce the sulfur containing
compound dimethylsulphoniopropionate, precursor of
the dimethylsulfide gas which is a major source of sulfur
to the atmosphere where it can influence aerosol forma-
tion and consequently cloud condensation nuclei [7].
The recently published genome assembly of E. huxleyi

is a draft that was constructed from Sanger reads [8]. A
large number of available unassembled genomic reads,
numerous repeats and duplications, as well as holes in
the genome, indicated that the genome alone would not
provide a good basis for building transcripts. Therefore
we opted for an integrative pipeline to build the transcrip-
tome. To test and improve the quality of the automated
transcriptome reconstruction, we used 63 manually defined
and curated E. huxleyi genes, several of them experimen-
tally validated. After each step in the automated definition
pipeline, the presence of the manually defined genes was
checked, allowing troubleshooting of missing genes and im-
proving our pipeline. This is the first time that an auto-
mated transcript definition is subjected to quality control
using manually defined and curated genes and thereafter
the process is improved.

Results
Description of the experimental system
The experimental system was E. huxleyi cells subjected to
viral infection over a time course, with two different viruses,
lytic (EhV201) and non-lytic (EhV163). RNAseq was per-
formed for six samples using the Ilumina HiSeq2000 as
follows: control (no virus) and infected with EhV201 or
EhV163, at two time points: 1 and 24 hours post infection.
The in-depth description of the experiment and its bio-
logical significance was submitted elsewhere (Rosenwasser
S, Mausz MA, Schatz D, Sheyn U, Weinstock E, Tzfadia O,
Ben-Dor S, Feldmesser E, Pohnert G, Vardi A: Rewiring
host lipid metabolism is central in infection by large viruses
regulating the fate of algal blooms in the ocean, Submitted).
Table 1 summarizes the number of reads obtained for each
sample after removing adaptors and trimming to 90 bases.
The sequences were trimmed because of a decrease in
quality scores in late sequencing cycles due to the high GC
content (Additional file 1: Figure S1). The sample contain-
ing EhV201 for 24 hours had the highest number of reads
with adaptor sequences (about 15 million) and a relatively
low number of reads, since many of the E. huxleyi cells
were dead due to the viral infection [9-11] and therefore
there was a higher percentage of low quality or degraded
RNA (Table 1).

Transcriptome assembly
The available genome assembly (Emihu1) is a draft, and
was constructed from Sanger reads. There are unassem-
bled reads available, and this together with our experi-
ence in hand-curation, where we observed many repeats,
duplications, and holes in the genome (Figure 1), led us
to believe that additional genomic information is essen-
tial to achieve a high quality transcript assembly. In
addition to the genome, there were publicly available
ESTs, which can provide additional information. In light
of this, three different approaches were applied to define
E. huxleyi transcripts (Figure 2A, Additional file 2), two
of them utilizing our RNAseq data. The first was de novo



Table 1 Read counts

Sample Total reads
(cleaned*)

Reads aligned to
Emihu1plus**

Reads mapped to
transcripts

2BE 79,031,642 51,787,959 (66%) 65,282,968 (83%)

4BE 70,232,202 44,631,230 (64%) 57,466,155 (82%)

6BE 71,097,330 44,755,528 (63%) 57,685,982 (81%)

8BE 84,292,692 50,341,359 (60%) 64,839,232 (77%)

10BE 30,393,401 3,559,270 (12%) 6,042,025 (20%)

12BE 74,680,032 44,832,848 (60%) 58,182,177 (78%)

*After removing adaptors and trimming to 90 bp (removed 15million reads in
10BE and up to 5 million in the other samples) **Each sequence was counted
once even if several reads have the same sequence, each sequence aligned to
the genome ~2-2.5 times in average (for 10BE, 4 times). Percentage of cleaned
reads in parentheses.
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assembly; the second was a genome-based alignment to
an improved version of the genome assembly. The third
approach utilized a collection of publicly available E.
huxleyi ESTs. All approaches were integrated at the end.
De novo assembly of transcripts
The adaptor-cleaned and trimmed fastq files were assem-
bled using CLC Assembly Cell. Reads from all samples
were pooled for assembly. This resulted in 108477 frag-
ments. In order to reduce redundancy CAP3 [12] was used
Figure 1 Genome assembly quality assessment. Blast alignments were p
db=Emihu1) to examine the Emihu1 assembly (A) Hole in the genome. “Gold s
the gene in both ESTs and RNAseq reads, but when compared to the genome
building the “gold standard” genes several mapped to two contigs consistently
sequences is shown, with the segment from scaffold_11 as the query sequence
to cluster the fragments. The outcome was 6734 contigs
and 94068 singlets.

Genome based definition of transcripts
In addition to the Emihu1 current assembly of the
genome, the JGI website database includes Sanger se-
quencing reads that were not included in the current as-
sembly. They are called unplaced genomic reads and
consist of 95120247 bases (106669 N's and 95013578 A,
C, G or T) in 161432 sequences. The unplaced reads
were assembled using Newbler, resulting in 13227 con-
tigs. To evaluate the possible contribution of these con-
tigs to the transcriptome definition, the reads of Sample
10BE which had the lowest number of E. huxleyi reads
(Table 1), were aligned to these newly assembled contigs.
742435 reads were mapped to the new contigs, as
compared to 3.51 million reads previously aligned to
Emihu1. In view of the high number of reads aligned to
the new contigs, they were assembled to the available
genome using Minimus2 [13] to create an improved
genome version, Emihu1plus (Additional file 3).
The reads of each sample were aligned separately to

the Emihu1plus genome using TopHat [14]. The total
number of reads aligned to the genome per sample
spanned from 44 to almost 52 million. The exception
was Sample 10BE, as mentioned above, which has only
erformed at the JGI web site (http://genome.jgi-psf.org/pages/blast.jsf?
tandard” gene 1 was compared to the genome. There is full coverage of
, there is a part which does not have coverage. (B) Genomic Duplication. In
, scaffold_11 from 810,000-910,000 and scaffold_385. Alignment of the two
. Duplication of almost the entire segment can be seen.

http://genome.jgi-psf.org/pages/blast.jsf?db=Emihu1
http://genome.jgi-psf.org/pages/blast.jsf?db=Emihu1


Figure 2 Initial approaches for automated transcriptome building. (A) Three different approaches were applied to automatically define the
transcriptome, the first one, de novo assembly, uses only the reads, the second one uses the reads and an improved version of the genome
assembly and the third one is based on a publically available EST collection. See Methods for details. (B) Venn Diagram of the “gold standard”
genes found in each of the three approaches.
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3.56 million aligned reads due to advanced cell lysis
(Table 1). After alignment, Cufflinks and Cuffcompare
[15] were applied to all the TopHat outputs to define
transcripts. In this process, 90921 potential transcripts
were defined.

EST collection
ESTs were downloaded from NCBI, using the taxid
2903, for a total of 129641 ESTs. The ESTs were clus-
tered using TGICL. 113756 of them were assembled into
16882 clusters containing at least two ESTs. Single ESTs
that were not clustered (15885) were not utilized for fur-
ther transcriptome reconstruction.

Manual definition of genes
In parallel to the automated approach for transcript as-
sembly, we manually defined a set of E. huxleyi genes.
These genes were used in order to assess the quality of
the automated pipeline. The manual definition started
from the choice of a target gene (Figure 3). Protein se-
quences of the target gene from human, Arabidopsis
thaliana, and yeast (S. cerevisiae), and if necessary
additional species, were compared to the E. huxleyi gen-
ome on the JGI genome website using TBlastN [16]. Hits
were inspected to see if there was any transcript evi-
dence (ESTs). If there were matching ESTs, they were
assembled into transcripts, and compared to the predic-
tions, if there were any. If there was incomplete EST
coverage, but a JGI predicted gene model, the blast re-
sults were used to fix the prediction accordingly. When
the RNAseq reads became available, if possible, the
putative transcripts were corrected on the basis of the
reads. If there was more than one genomic hit in the
blast results, each successive hit was checked to see if it
was a truly independent hit, representing a family mem-
ber, or a duplication, which was then classified as real or
artificial (Figure 1B). If no ESTs were available to use as
an anchor for a predicted transcript, then a combination
of reads (if available), prediction based on blast hits and
the JGI predictions were used to construct a transcript.
If there was no genomic hit, or if there was a genomic

hit with a hole in the middle of a locus (Figure 1A), and
in some cases where there were no ESTs in JGI, searches
were performed against E. huxleyi ESTs in NCBI, in
order to identify sequences that might not have been
mapped to the genome, generally due to missing se-
quence in the genomic build. Transcripts were then con-
structed and extended as far as possible by running
Blast.
The sequence was then translated, and a BlastP search

was run at NCBI to determine if the putative protein
was closest to the target gene in other species, and if it
had the proper domains. We found that in many pro-
teins repetitive sequences interrupted the canonical
domain composition, and in some cases the domains
themselves.
After the protein sequence was finalized, multiple align-

ments and phylogenetic trees were constructed with pro-
tein sequences from representative species to see that the
sequence indeed belonged, who its closest relatives were,
and in the case of multiple family members, to attempt to
assign orthology.



Figure 3 Manual gene definition procedure. The procedure of manual gene definition is presented as a decision tree, with the start and end
in purple. The procedure starts from the choice of the target gene (purple circle, top middle), which was taken from three species, human,
Arabidopsis thaliana, and yeast. The chart flows from top to bottom, with decision points in pale blue diamonds, and analyses in blue rectangles
(database searches in bright blue, and other analyses in gray-blue).
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We compiled a set of 63 “gold standard” genes
(Sequences in Additional file 4) that were used after-
wards for quality control of the automated transcript
assembly. Validation of 18 of the sequences was per-
formed by real-time PCR with primers designed to the
manually constructed sequences or Western blot (Method
of construction and validation status: Additional file 5). All
of the sequences but two had reads in the RNAseq data of
the current dataset, and the remaining two have reads in an
additional dataset (not shown).
The “gold standard” genes all have known functions,

come from at least five different biological pathways, and are
distributed in various cellular compartments. They include
both globular and transmembrane proteins. They are a mix
of short and long transcripts ranging from 569 to 4661 base
pairs, with varying numbers of exons, ranging from single
exon to 17 exon genes, and are expressed in varying levels
according to the RNAseq data (Additional file 5). The “gold
standard” genes therefore have a wide representation of the
various types of genes extant in E. huxleyi.

First round of quality control using manually defined genes
To assess the quality of the transcriptome reconstruction,
presence of the 63 “gold standard” genes in the three tran-
script definition approaches was examined (Figure 2B). The
transcripts were compared to the standard genes using Blat
[17], with a minimum hit score of 200, in order to ensure
significant hits. Four of the genes had less than 10 reads in
the RNAseq, and therefore could not be found in the read-
based arms of the assembly. In the genome based transcript
collection, of the 59 possible genes, eleven were missed. In
the de novo assembly, twelve genes were missed. In the
EST branch, 44 genes were found out of 48 with ESTs. The
four that were missed either had only one EST, or non-
overlapping ESTs that were therefore not clustered. Two of
the four transcripts which did not have enough reads in the
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RNAseq were found in the EST branch, and two were not
found at all.

Improving the transcript repertoire
In order to define the genes missed by the Tuxedo suite
[14,15] (TopHat and Cufflinks), the Partek® Genomics
Suite™ software was applied. Partek was used to find regions
where reads aligned, excluding regions with Cufflinks tran-
scripts (Figure 4A). These regions were required to have a
minimum length of 300 base pairs and a minimum cover-
age of 50 reads, as the default Partek settings are permis-
sive. Of the 767778 “unexplained” regions defined by
Partek, 10940 met the requirements (Figure 4A).
In comparison to our “gold standard” collection, Partek

found only twenty-one genes, but that was due to the ex-
clusion of previously defined transcripts. Of the twenty-
one, it found four that were missed by Cufflinks, two of
which had also been missed by CLC Assembly Cell. The
other 17 genes that were found by Partek added new frag-
ments to transcripts defined with Cufflinks. All told, using
all four approaches, 61 out of the 63 “gold standard” genes
were found (Figure 4C).
For each of the approaches, we characterized the tran-

scripts and their translations. The median transcript
Figure 4 Automated transcription definition improvement. (A) Graphi
found regions that had reads in places that Cufflinks could not define trans
at least 300 bp were selected for defining further transcripts. (B) Clustering
Cufflinks and Cuffcompare, ESTs and Partek) using two different tools (TGIC
diagram of the “gold standard” genes found in each of the four approache
length for the de novo fragments was 303 bp, with a me-
dian ORF length of 98 amino acids, and a median ORF
coverage of 99%. The other methods resulted in longer
sequences (median range 624–892 bp, 170–259 amino
acids), but a lower ORF percent coverage, 89% for all
arms (Additional file 2).
The transcripts defined by the three primary ap-

proaches and by Partek, 219545 sequences, were clus-
tered using TGICL (Figure 4B, Additional file 2). This
process resulted in 36072 transcripts longer than 300
base pairs, including contigs and singletons as defined
by TGICL. To further remove redundancy, CD-HIT-
EST [18] was applied and the number of transcripts was
slightly reduced to 36014.
The next round of quality control was performed on

the set of 36014 transcripts. Only 53 of the “gold stand-
ard” set were found, indicating that in our clustering
8 genes were lost. Inspection of the output of both
programs showed that the genes were lost by TGICL.

Quality control on the protein level
The next step was to check for the presence of the “gold
standard” genes on the protein level. The transcripts
were translated taking only the longest open reading
cal representation of Partek® Genomics Suite™ improvement. Partek
cripts. Regions with a minimum coverage of 50 reads and a length of
of the transcripts found by the four methods (CLC Assembly Cell,
L, CAP3) and combining the results of both. tx = transcripts. (C) Venn
s.
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frame (ORF), with the ORF defined from stop to stop.
We did not require an initial Methionine, as many of the
transcripts are incomplete. Only 36 (68%) of the stand-
ard set were found on the protein level. Missed proteins
were inspected on a case-by-case basis, to understand
how they were lost and improve the pipeline.
Figure 5 Problems in the automated transcriptome reconstruction. (A
by black arrow) gives an example of a gene with a large amount of reads
read coverage, middle part the reads and lower part the transcripts defined
given of two transcripts overlapping in their 3’ UTRs (one manually and the
blue lines and their overlap by a black arrow. Visualization of reads on gen
(http://www.broadinstitute.org/igv/).
Three causes were identified: 1) Frameshifts due to ei-
ther sequence or assembly errors; 2) Correct reading
frames were shorter than the longest incorrect frame
(Additional file 6); 3) Fusion of transcripts on opposite
strands due to overlaps in 3’ UTRs (Figure 5). In order
to improve the fusion transcripts, we decided to split
) Transcripts missed, even with full coverage. The red line (pointed out
that was not defined by Cufflinks. Upper part of the plot shows the
by Cufflinks as blue bars. (B) Overlapping transcripts. An example is
other Cufflinks defined). The transcripts are represented by red and

ome in both panels performed using IGV browser [19]

http://www.broadinstitute.org/igv/


Table 2 Evaluation of enlarged “gold standard” gene set

Transcripts Peptides

63 100 63 100

De Novo (CLC assembly cell) 75% 72% - -

Cufflinks 76% 78% - -

Partek genomics suite* 33% 24% - -

ESTs 70% 69% - -

TGICL 84% 81% 66% 62%

CAP3 97% 95% 75% 75%

Final collection 97% 95% 75% 75%

The percentage of sequences found by each step of the transcriptome
reconstruction is given.
*Partek percentages are lower as the program was used to define transcripts
in very limited regions.
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them. For each transcript the three longest ORFs were
examined, and in cases where translations derived from
different ORFs did not overlap and the resulting peptides
were at least 100 amino acids length, the transcripts
were split.
The process ended up with 1559 sequences split into

two and 50 into three potential transcripts. 759 of the
split transcripts were found to be transcribed from op-
posite strands. Redundancy of the whole set after split-
ting was removed at the protein level using CD-HIT
[13], resulting in 35454 transcripts. When this set of
translations was compared to the 53 transcripts of the
standard set that were detected, 42 proteins out of the
53 were found (79%) an improvement of 11%.

Additional improvement of the transcriptome
At this point, it was clear that TGICL lost transcripts
during the clustering process. To overcome the problem
of missing genes, the initial transcripts from the four ap-
proaches were clustered using CAP3 (Figure 4). Further
redundancy was removed by CD-HIT-EST. The number
of potential transcripts longer than 300 base pairs was
79939. In order to split artificially fused transcripts, the
algorithm developed to split the sequences previously
was used. 2393 sequences were split in two, and 66 were
split in three. Once again, approximately half of the split
sequences (1143) were from opposite strands. Redun-
dancy at the protein level was removed with CD-HIT,
and subsequently the redundant transcripts were re-
moved, resulting in 79408 defined transcripts. These
transcripts were compared to the standard set, and 61
out of 63 transcripts were found.
Two different clustering algorithms were applied to

the collection of potential transcripts. TGICL strongly
removed redundancy, and makes longer transcripts (me-
dian 1242 bp) but loses genes. CAP3 does not lose
genes, but makes shorter transcripts (median 907 bp)
and leaves redundancy in the collection (Additional file
2). To take advantage of both algorithms, the two collec-
tions were compared. Transcripts defined by CAP3 that
were identical (19845) or were contained in (14953)
TGICL defined transcripts were replaced by their match-
ing counterparts in TGICL (30482). This reduced the
number of transcripts by 4316. Additional transcripts
defined by CAP3 that did not have a good match to
TGICL defined ones (44610) were introduced into the
final collection without changes. The final collection in-
cluded 75092 transcripts.
The final collection was compared to the “gold stand-

ard” set both on the DNA and protein level. 61 tran-
scripts and 47 proteins were found, an improvement
versus the TGICL alone. The transcripts that were not
detected on the protein level were analyzed in depth to
discover the possible flaws in our pipeline. There were
two major causes, one on the transcript level, and one in
the translation process. On the transcript level, we
discovered that many of the genes had both spliced
forms and intronic read-throughs (intron retention)
(Additional file 1: Figure S9, Additional file 6, Example
1). The retained introns disrupted the coding sequence.
The second major cause of missing protein sequences
was due to our definition of an open reading frame from
stop-to-stop (Additional file 6, Example 2).
We examined whether 63 genes were enough for qual-

ity control by increasing the number of hand con-
structed genes to 100, and running comparisons on the
DNA and protein levels at all stages of transcriptome re-
construction. The results show no change in the per-
centage of genes or proteins found in any of the steps
(Table 2). The additional 3 transcripts and 9 proteins
that were not found at the final stage were due to rea-
sons seen previously, lack of reads or longer irrelevant
open reading frames, respectively.

Characterization of the E. huxleyi transcriptome
The 75092 transcripts range in length from 301 to
34193 base pairs (bp). Close to half of the transcripts
(34680) are more than 1000 bp long, with an additional
32% (23993) longer than 500 bp (Figure 6A). 70% of the
transcripts had ORFs over more than 80% of their
length, and 44% had ORFs covering the entire length of
the transcript (Figure 6B).
In order to assess how well the reads fit the final tran-

scripts, the reads were mapped to the transcript collec-
tion, and 80% of the total reads mapped fully (Table 1),
in all samples except for sample 10BE that included a
high percentage of viral reads.
The final transcript collection was compared to the

JGI ‘Best transcript’ models (39126 models) [8] by apply-
ing Blat. Our collection was used to query the target
models. Out of 75092 transcripts, 63% (47358) were
found to have at least a partial match to the predictions,



Figure 6 Automatically defined transcriptome characteristics. (A) Transcript length frequency. (B) Fraction of transcript covered by ORF.
Numbers in the top of the bars represent the number of transcripts in each length or fraction bin.
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and only 7.4% (5578) of the transcripts matched in at least
90% of their sequences (Additional file 1: Figure S2). Of the
39126 models, 87.5% (34248) had at least partial coverage
of our transcripts. We compared the InterPro annotations
of the JGI matching and non-matching transcripts, and
while only 29% of the JGI matching transcripts had annota-
tion, 45% of the non-JGI transcripts did.
During the manual definition of the genes, 241 splice

junctions were mapped to the genome sequence, and
unlike published genomes, a prevalence (56%) of non-
canonical GC-AG junctions was observed (Table 3,
Figure 7A). The GC junction was used only when it was
obligatory, and there was no other way to map the
sequence (particularly for those based on ESTs, 48 out
of 63 transcripts). Thirteen of these junctions (9 GC, 3
GT and 1 GA) were verified with reverse transcriptase
PCR and Sanger sequencing (Table 4, Additional file
1: Figure S8).
Further investigation of this finding was performed
with additional junction collections, based on ESTs or
RNAseq reads, with both automated and manual ana-
lysis. The full collection of E. huxleyi ESTs was mapped
to the genome using Blat [13]. The mapping results were
very noisy, so for automated analysis the donor junctions
were filtered for AG acceptors (34089 final junctions).
The GC to GT ratio was approximately 3:1, further cor-
roborating our initial finding (Table 3, Figure 7B). In
addition, 269 junctions from 32 EST-based transcripts in
25 randomly chosen genomic loci were manually aligned
and examined, and the percentage of GC junctions was
64% (Table 4).
Splice junctions from automatically generated Cufflinks

transcripts were also analyzed, and donor (73358) and ac-
ceptor (71535) sites were extracted from Emihu1plus. In
order not to count the same junction twice in cases of
alternate splicing, non-redundancy was performed on the



Table 3 Splice junction sequence distribution

Donor GC GT GA AT CT Others

Gold standard 135 (56%) 95 (40%) 11 (4%)

ESTs 13266 (39%) 4708 (14%) 1203 (4%) 414 (1%) 1122 (3%) 13376 (39%)

Cufflinks 44991 (61%) 27374 (37%) 708 (1%) 285

JGI best transcript 80404 (82%) 14387 (15%) 1180 (1%) 108 427 1135 (1%)

Acceptor AG AC GC AT Others

Gold standard 241 (100%)

Cufflinks 70512 (98.6%) 812 (1%) 182 29

JGI best transcript 95694 (98%) 250 277 75 1331 (1.4%)
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genomic coordinates. The most prevalent splice donor is
GC (61%, Table 3, Figure 7C) while the canonical sequence
GT was only used 37% of the time. The splice acceptor is
almost entirely the canonical AG (98.5%). The even less ca-
nonical sequences (for example a donor not starting with a
Figure 7 Splice junctions in E. huxelyi. Splice junction donor and accept
ESTs C) Cufflinks defined transcripts and (D) JGI ‘Best transcript’ models gen
G), or at least part of them, represent misalignments of
TopHat (Additional file 1: Figure S3). Validation was per-
formed by manual inspection of spliced RNASeq reads
mapped to the genome, representing 36 randomly chosen
transcripts. A total of 270 junctions were inspected, and
or sites logos in (A) “Gold standard” manually defined genes (B) NCBI
e predictions. Logos constructed with WebLogo 3.3.



Table 4 Manual validation of splice donor sites

Donor GC GT GA Others

RNA-seq reads 175 94 1

Sanger sequencing 9 3 1

ESTs 167 94 6 2
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GC was found in 65% of the donors, while GT was found
in 35% (Table 4, Additional file 1: Figure S9). In contrast,
the JGI ‘Best transcript’ models have the opposite distribu-
tion, with 82% GTand only 15% GC (Table 3, Figure 7D).
Intron retention was observed as a major cause of re-

dundancy in the transcript collection and loss of pro-
teins in the translations. Therefore the phenomenon was
assessed in an attempt to quantify the level of intronic
reads and additional types of alternative splicing. Cur-
rently available programs to determine types of splicing
could not be used, for two reasons. Firstly, many have a
transcript mapping step which relies on GT-AG junc-
tions, which is inappropriate for E. huxleyi. Others re-
quire a database of defined splice junctions, which is
problematic to create due to the pervasive nature of the
intronic reads (Additional file 1: Figure S9). A manual
inspection was performed on 535 introns taken from 68
loci, and 89% (478) showed reads throughout the length
of the intron. The other instances of alternative splicing
observed were: 8 exon skipping, 6 alternate acceptors,
and 5 alternate donors.
Transcriptome annotations
The final transcripts were annotated using Gene Ontology
(GO) [20] terms by applying Blast2GO [21] at the DNA
level. 61% (45704) of the transcripts had at least one Blast
hit. GO terms were transferred to 84% (38510) of the tran-
scripts with Blast hits, and finally, GO terms were success-
fully assigned to 40% of the total transcriptome (29868),
after setting the Annotation Cut-Off to 45 (Additional file
1: Figure S4). The total number of annotations was 143794;
the mean number of GO annotations per gene was 5 and
the mean level in GO was 5.5 (Additional file 1: Figure S5).
The most frequent organism in the Blast top hits was
Afipia broomeae with 7071 hits and the second one was
Aureococcus anophagefferens with 2650 (Additional file 1:
Figure S6). A. Broomeae is a very well annotated species,
and that is probably the reason for the large number of hits,
as it is phylogenetically distant from E. huxleyi. The other
species are all relatively closer. The top GO terms to which
transcripts were assigned in the categories: biological
process, molecular function and cellular component were
oxidation-reduction process, ATP binding and integral to
membrane respectively (Additional file 1: Figure S7). A list
of terms and the number of genes annotated to them can
be found in Additional file 7.
KOG and KEGG annotations were performed at the
protein level; 2675 proteins were annotated in the KOG
system and 5850 in KEGG (Additional file 7).

Discussion
Definition of transcripts can and needs to be improved
from the current standards. Fully automated transcript
building, while the only practical method on a large
scale, can be improved, particularly for the individual
genome. We recommend a manually curated reference
set for quality control per genome, which will allow de-
tection of genome specific issues, and allow improve-
ment of existing tools and pipelines. Once done, the new
pipeline can then be utilized for all future transcrip-
tomes of the same genome. In our particular case, E.
huxleyi, the genome has non-canonical splice junctions,
overlapping genes, duplications and holes in the genome.
These issues were addressed, to the best level possible,
utilizing the “gold standard” set of genes for quality con-
trol. We have since successfully analyzed additional tran-
scriptomes from the same organism, taking these issues
into account.

Assembly strategy
One of the goals of this study was to achieve a complete
picture of the transcriptome: utilizing all the available
data, build accurate transcripts without either missing
genes, or including spurious sequences. The data at
hand was the genome assembly from JGI, ESTs from
GenBank, and our RNAseq reads. The genome was in-
complete, and the EST coverage was very partial, with
only 129,000 sequences for a genome with an estimated
30,000 genes, and many more transcripts. The RNAseq
data had good read depth, however, reads were relatively
short (90 bp) and transcript coverage was incomplete
due to the low complexity and highly repetitive nature
of the underlying sequence.
We used three different approaches to assemble the

sequence: two utilized the reads, one genome based and
one de novo, and an EST only branch. For the read-
based arms, the first decision that had to be made was
whether to combine the reads from the different bio-
logical samples or to analyze them independently. For
the genome-based approach, we chose to analyze each
lane individually (Cufflinks), and then join them (Cuff-
compare), while for the de novo assembly (CLC Assem-
bly Cell), without the basis of the genome to build on,
we used all the lanes together in order to maximize the
chances of building a transcript, particularly those with
low expression levels. The next decision was whether or
not to include the ESTs in the de novo construction, as
ESTs allow elongation of putative transcripts due to their
length and different sequencing method (Sanger). We
decided to cluster and analyze the ESTs on their own
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first, in order to improve the ESTs’ reliability, and to
combine the various tracks afterwards.
When the analysis was performed, the programs

chosen were considered state-of-the-art. New tools have
been developed in the interim, such as Trinity [22] and
SOAPdenovo-trans [23] among others. Programs devel-
oped for genome assembly and later adapted to tran-
script assembly (SOAPdenovo-trans, Oases [24]) seem
to be less accurate than purpose-built transcriptome
tools (such as Cufflinks and Trinity, personal communi-
cation). While some of the newly developed tools may
perform better building transcripts, a manually curated
gene set is still highly recommended for troubleshooting,
particularly for non-model organisms.

Manually constructed and curated transcripts
The process of manual construction of genes is highly
complex. Complications arise in cases when the target
sequence is not related closely enough to the genome of
interest to rely on as a basis for comparison, and when
there are no cDNA or genomic sequences to compare
to. We have both obstacles in E. huxleyi, but the first is
the greater issue, as there are no close relatives, and each
gene has a unique history, some closer to plants, some
to mammals, some even to bacteria (Additional file 1:
Figure S6).
Various techniques are used to bridge the gaps, many

of which can be implemented manually, but are difficult
to automate, particularly integration of information from
multiple sources. This is particularly true of the human
ability to process data based on visual presentation. The-
oretically, any one of these techniques may potentially
be programmed, but in practice, it is not trivial, and the
combination of methods for the decision-making process
is not possible in the computer capabilities currently
available.

Quality control
One of the major goals of this project was to test the
quality at each step of the transcriptome construction.
In the very first step, examination of the reads, we found
that the reads had to be trimmed due to a noticeable
drop in quality towards the end (last 10 cycles,
Additional file 1: Figure S1) due to the high GC content.
The manually curated genes gave us the opportunity

to detect faults in the process of automated transcript
building. When we compared the “gold standard” to our
initial gene build, many transcripts were missing. The
loss of genes was caused by: 1) Genes that were only
predicted, with no transcript evidence at all; 2) Genes
that had coverage, but by only one EST and had no
reads; 3) Genes with no reads and more than one non-
overlapping EST; 4) Genes without enough sequence
coverage for an automated program to build a long
enough transcript; 5) Genes that had read coverage, but
Cufflinks and CLC Assembly Cell did not build. We im-
proved our initial build by using the Partek Genomics
Suite to define transcripts missed by the earlier methods,
and indeed, found all the missing genes that had cover-
age on the nucleotide level.

Lost in translation
After we found all the “gold standard” transcripts pos-
sible in the dataset, we compared the hand curated and
automated datasets on the protein level. Many genes
were lost on the protein level, even though they could
be detected on the DNA level. The first class of missing
proteins was due to artificial joining of transcripts. This
phenomenon has been observed in model as well as
non-model plants [1]. Transcripts were joined in several
ways including on opposite strands overlapping in the 3’
UTR, and on the same strand with some overlapping
reads (possibly due to the repetitive nature of the gen-
ome). It is interesting to note that we did not observe
any overlapping transcripts in the coding regions. We
corrected many cases by using a script to split tran-
scripts, based on non-overlapping open reading frames.
The second class of missed proteins was due to the

choice of the longest open reading frame, from stop to
stop. In some cases, full ORFs from Methionine to stop
were in the correct frame and longer than stop to stop
(examples in Additional file 6), and in other cases, the
functional protein was not the longest frame. We de-
cided to use stop to stop because many of the transcripts
were partial, and did not expect to see a methionine in
these cases. Another reason was that frame-shifts may
cause the methionine to be lost. It may be worthwhile to
build a program that will look at both stop to stop and
Met to stop and choose the longer of the two. For the
cases where the longest frame was not the functional
one, an additional check can be performed, for example
utilizing BlastX results to choose the proper frame.
These issues are compounded in our particular case due
to high percentages of intron retention and genomic
repeats.

Additional observations
An additional observation that resulted from the hand
curation is the high percentage of non-canonical splice
junctions. In the hand curated transcripts, ESTs, and
Cufflinks defined transcripts, there is a clear majority of
GC splice donors (~60/40 GC/GT). In contrast, the JGI
“Best transcript” collection has the opposite ratio (~20/
80 GC/GT). The probable cause of the shift from GT to
GC is the high GC content of the E. huxleyi genome,
65% [8], among the highest of all eukaryotes sequenced
to date. This can create a burden on the splicing ma-
chinery, as the canonical junctions are 50% AT (GT-
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AG). The splice donor GC is also seen in many other
species, though at very low percentages, but the ‘univer-
sal’ splice machinery knows how to deal with GC, which
may be why the splice acceptor remains completely ca-
nonical. The “new” canon for E. huxleyi GC-AG, is 25%
AT, and is much closer to the DNA at hand. The JGI
“Best transcript” collection is composed of 68% ab initio
predicted genes [8]. Most of the ab initio algorithms are
programed to look for canonical GT-AG junctions, and
will only use non-canonical if there is nothing else. This
leads to the many mispredicted junctions in that dataset.
The non-canonical splicing may contribute to the high

frequency of intron retention. This phenomenon was
observed both in the manually curated as well as auto-
matically processed transcripts. From the hundreds of
alternate events inspected manually, mainly intron re-
tention was observed. It is not clear if the transcripts
with intron retention are functional, as in virtually all
cases checked, it led to premature stop codons in the
putative protein and disturbed the domain structure of
the potential proteins (data not shown). This raises the
following questions: 1) Is the nonsense-mediated decay
mechanism functional in E. huxleyi? 2) To what extent
is the splicing machinery conserved? 3) Is the efficiency
of splicing affected by the change in the junction se-
quence? Another possible explanation for the observed
intronic read-throughs is the presence of unspliced pre-
mRNA in the RNA used for sequencing. We view this as
unlikely, as the RNA was polyA selected, though it can-
not be ruled out, as this may also be different in E. hux-
leyi. These issues will have to be resolved by further
research into the various mechanisms mentioned.

Comparison of programs
Cufflinks missed putative exons and transcripts, where
Partek Genomics Suite was able to define them. Partek
describes reads mapped to the genome, while Cufflinks
attempts to build gene structure. There was no obvious
reason for the transcripts to be missed by Cufflinks, as
these regions had a minimum of 50 reads and length of
300 bp. It may be that the high rate of intron retention
did not allow Cufflinks to predict transcripts in those
regions.
We clustered the transcripts using both TGICL and

Cap3. While TGICL utilizes Cap3, due to its initial Blast
stage, it gives very different results. While TGICL re-
duced redundancy very efficiently, it lost many tran-
scripts. On the other hand, Cap3 alone clustered well,
but left redundancy in the dataset. In both cases, it is
not clear why the programs did not perform optimally.
As there is no explanation of how or why sequences are
removed by TGICL, we were surprised by this finding.
Cap3 left the redundancy in the dataset due to the many
alternative isoforms.
The final dataset has redundancy, mainly due to puta-
tive splice variants. Due to the high level of intron reten-
tion, many transcripts are predicted both with and
without introns. The programs cannot differentiate be-
tween real splicing and spurious splicing, though one
possible way to discern correct transcripts would be to
take intact reading frames into account.

Parameters to measure quality of the transcriptome
Using the manually curated transcripts, we found all of
the transcripts possible given the constraints of mini-
mum coverage per transcript. On the protein level, we
found most of the genes, but have room to improve the
pipeline. In independent measures of quality, the length
of the transcripts was reasonable (median length of
~1000 bp), and 70% of the transcripts had ORFs over
more than 80% of their length. Most reads and ESTs
mapped to the final transcripts. Taken together, it indi-
cates a good quality build.
We compared our set of transcripts to the JGI ‘Best

transcript’ models, which are mostly based on gene pre-
diction. While most of the JGI set was found in our
transcript collection, we had many transcripts not cov-
ered at all by the JGI set (37%). This raises the question
of fairness of comparison: Firstly of a predicted versus a
sequence based set, and secondly our full transcriptome
with isoforms included to the ‘Best transcript’ collection.
While the JGI models were partially sequence based, and
many of the predictions had some evidence of existence
in their RNA tag sequencing, the incompleteness of the
genome caused issues for proper gene prediction [8].
The predictions suffered additionally due to the fact that
they relied on canonical splice junctions, while in E.
huxleyi, the majority of junctions are non-canonical.
While the ‘Best transcript’ models generally have one
isoform per locus, the full transcript set has additional
transcripts of previously covered loci, while we have
coverage of many loci not covered by JGI at all.
While this manuscript was in preparation, a study on

the sulfate deficiency response in E. huxleyi was pub-
lished [25], where RNAseq was also performed. They
found, as we did, that the JGI models were severely lack-
ing, and do not give good coverage of the transcriptome.
We cannot compare our results to theirs, as their se-
quences are not yet available in a public repository.

Conclusion
As has been suggested [3] a reference set of transcripts
should be generated for quality control. We have shown
that the reference set should be genome specific and
manually defined, and that it is critical for troubleshoot-
ing and accurate quality control. This is the first time, to
the best of our knowledge, that a manually built set
of genes has been used to improve a transcriptome
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pipeline. The advantages are clear; it gives an organism-
specific picture of the pitfalls and problems that accom-
pany any de novo transcriptome sequencing, particularly
for non-model organisms.

Methods
Improved assembly of the Emihu1 genome
The current assembly of the E. huxleyi genome: Emiliania_hux-
leyi_CCMP1516v1.0 (Emihu1) was downloaded from the JGI
(Joint Genome Institute) website. In addition, reads
that were not introduced in the assembly were ob-
tained using the command wget http://genome.jgi-psf.
org/Emihu1/download/Emihu1_unplaced_genomic_reads.
fasta.gz. The unplaced reads were assembled using the
Newbler runAssembly program, version 2.3 (http://my454.
com/products/analysis-software/index.asp) using default pa-
rameters. Newbler was chosen as it is the standard tool for
454 reads and therefore it also works for longer sequences
like Sanger reads (which were used in the genome build).
The resulting contigs were merged to the Emihu1 genome
utilizing the Minimus2 software from the Amos pack-
age, version 3.0.0 (http://sourceforge.net/apps/media-
wiki/amos/index.php?title=Minimus2) [13].

Transcriptome assembly and definition
Sequence reads were deposited in GenBank SRA with
the study accession number SRP017794.
Sequence reads were trimmed to a length of 90 bp, and

adaptors were removed using the cutadapt program [26].
De novo assembly was performed with the CLC Assembly

Cell (EMEA, Aarhus N, Denmark, http://www.clcbio.com/
products/clc-assembly-cell/) software, version 3.2.2. All the
lanes were run together using default parameters. The gen-
ome based assembly was performed using the TopHat soft-
ware, version 1.3.0 [14], and was run for each sample
separately using the Emihu1plus as the reference sequence
and set to the default parameters, except for the minimum
intron length that was set to a minimum of 30. Then
Cufflinks (version 1.1.0) was run for each sample using the
accepted_hits.bam file as input and the -u –min-intron-
length 30 options. Cuffcompare [15] was applied on the
Cufflinks output of all the lanes together to define a list of
transcripts that are comparable between all the samples.
Transcript sequences were extracted using the Cuffcom-
pare gtf file coordinates utilizing the Galaxy tool: Extract
Genomic DNA (https://main.g2.bx.psu.edu/). Additional
partial exons or transcripts missed by Cufflinks were ex-
tracted from the alignments using Partek® Genomics
Suite™ software, version 6.5, Partek Inc., St. Louis, MO,
USA. EST clustering was performed using TGICL
version 2.1 (http://compbio.dfci.harvard.edu/tgi/software/).
Additional clustering of potential transcripts was performed
with TGICL, CD-HIT-EST (version 4.5.4) [18] or CAP3
(Version date: 10/15/07) [12].
ORF extraction and transcript splitting were performed
using in-house Perl scripts (available on request). The rules
used for splitting were as follows: 1. Transcripts whose
ORF covered at least 80% of the sequence were not split 2.
Transcripts shorter than 2000 bp were not split, 3. Tran-
scripts whose ORF covered between 10% and 80% of their
sequence were split into 2 or 3 if the new ORFs did not
overlap and the new transcript was at least 300 bp long.
Transcripts whose ORF covered less than 10% of the
sequence were removed from the data set. All se-
quence comparisons carried out for quality control or
for any other purpose were performed by with Blat,
version 34 × 12 [17].

Manual definition of genes
The RefSeq (NCBI, http://www.ncbi.nlm.nih.gov/, Gene
database) protein sequence of the target genes were taken
from Homo Sapiens, Arabidopsis thaliana and Saccharomy-
ces cerevisiae sequentially, starting from human, unless we
had reason to believe that a different species might
have a better chance of hits. The initial search was
TBlastN [16] at JGI (http://genome.jgi-psf.org/pages/
blast.jsf?db=Emihu1) with the following parameters
changed: Target database: Emiliania huxleyi v1 scaf-
folds (unmasked), ‘Filter low complexity regions’ off,
and ‘Perform gapped alignment’ on.
The hits from the various input species were com-

pared to see if they hit the same genomic loci. Each
locus was then inspected, starting with the hit with ei-
ther the highest score or the longest region of similarity,
to see if any transcript evidence was available – ESTs, as
seen in the JGI browser, and after we sequenced the
transcriptome, the reads mapped to IGV. If there were
ESTs available, they were assembled into transcripts
using Sequencher version 5.0 (GeneCodes Corporation,
Ann Arbor Michigan), and compared to the predictions
available at JGI (if there were any). If there was incom-
plete coverage, the putative transcript was improved
using the JGI gene models and the Blast results. When
the reads became available, the transcripts were cor-
rected on the basis of the reads. If more than one gen-
omic locus was found in the initial Blast, each successive
hit was examined to see if it was truly an independent
hit, representing a family member, or an artificial dupli-
cation, where the genomic or EST sequences was identi-
cal to a previously examined locus.
If no ESTs (or reads) were available to use as an an-

chor for a predicted transcript, then a combination of
the Blast hits and available predictions were used to con-
struct a transcript.
If there was no genomic hit, or if there was a genomic hit

with a hole in the middle, TBlastN searches were per-
formed at NCBI (http://blast.ncbi.nlm.nih.gov/), database
‘Expressed sequence tags’, limited to organism taxid: 2903.
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Transcripts were then constructed and extended as far as
possible by running sequential BlastN searches.
If there was no hit either in JGI or in NCBI, with the

proteins from the three initial species, a BlastP of the
initial protein sequences was performed at NCBI, look-
ing for hits in other algae or related marine species, and
bacteria as well. These sequences were then used as in-
put to the Blast searches as described above.
The putative transcript sequences were compared to

the reads mapped to the genome, visualized with IGV
version 2.0 (http://www.broadinstitute.org/igv/), and im-
proved where possible. The sequences were translated
using NCBI ORF Finder (http://www.ncbi.nlm.nih.gov/
gorf/gorf.html) [27] for full reading frames, and Expasy
Translate (http://web.expasy.org/translate/) for incom-
plete reading frames. BlastP was performed at NCBI to
determine if the protein matched the target gene, and if
it had the proper domains. If domains weren’t found, do-
main searches were performed using InterProScan (http://
www.ebi.ac.uk/Tools/pfa/iprscan/) [28], Pfam (http://www.
pfam.org) [29] and Prosite [30] (http://prosite.expasy.org/).
The final protein sequences were aligned (using

ClustalW version 2.1, and Muscle version 3.8.31) [21,31]
to the initial target proteins, the closest blast hits,
and other species as necessary, and phylogenetic trees
(ClustalW version 2.1, Neighbor Joining with 1000 boot-
straps, and Phylip version 3.69 Proml with 100 datasets,
3 repeats, 9 jumbles) [21,32] were constructed and
orthology assigned where possible.

Characterization of transcriptome
Splicing junction sequences were extracted based on gtf
files of the transcripts (output of Cuffcompare, or down-
loaded from JGI) as compared to the relevant genome
(Emihu1plus, Emihu1 respectively). The EST sequences
were mapped to the genome using Blat. A gtf file was
extracted from the alignments using the script http://
code.google.com/p/popgentools/source/browse/trunk/
misc/psl2gtf.pl?spec=svn2&r=2. Donors with non-AG
acceptors were filtered out for the ESTs. The strand
was taken into account, and redundancy was removed
to leave a single copy of each junction. The sequences
were extracted using Galaxy ‘Extract flanking se-
quences’. Logos were constructed using WebLogo
version 3.3 (http://weblogo.threeplusone.com/). Venn
diagrams were constructed using Venny (Oliveros, J.C.
(2007) VENNY. An interactive tool for comparing
lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/
tools/venny/index.html).

Transcriptome annotation
The full collection of transcripts was annotated at the
DNA level using Blast2GO (http://www.blast2go.com)
[33], the ‘Annotation Cut-Off ’ was set to 45. This
Annotation Cut-Off represents the maximum similar-
ity weighted by GO evidence codes (http://www.blas-
t2go.com/data/blast2go/b2g_user_manual_13012013.pdf).
KEGG and KOG annotations were obtained by submit-
ting the longest ORF protein sequence for each transcript
to the WebMGA server [34] (http://weizhong-lab.ucsd.edu/
metagenomic-analysis/) and the outputs downloaded.
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