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Abstract

Background: High-throughput sequencing is gradually replacing microarrays as the preferred method for studying
mRNA expression levels, providing nucleotide resolution and accurately measuring absolute expression levels of
almost any transcript, known or novel. However, existing microarray data from clinical, pharmaceutical, and
academic settings represent valuable and often underappreciated resources, and methods for assessing and
improving the quality of these data are lacking.

Results: To quantitatively assess the quality of microarray probes, we directly compare RNA-Seq to Agilent microarrays
by processing 231 unique samples from the Allen Human Brain Atlas using RNA-Seq. Both techniques provide highly
consistent, highly reproducible gene expression measurements in adult human brain, with RNA-Seq slightly
outperforming microarray results overall. We show that RNA-Seq can be used as ground truth to assess the reliability of
most microarray probes, remove probes with off-target effects, and scale probe intensities to match the expression
levels identified by RNA-Seq. These sequencing scaled microarray intensities (SSMIs) provide more reliable, quantitative
estimates of absolute expression levels for many genes when compared with unscaled intensities. Finally, we validate
this result in two human cell lines, showing that linear scaling factors can be applied across experiments using the
same microarray platform.

Conclusions: Microarrays provide consistent, reproducible gene expression measurements, which are improved using
RNA-Seq as ground truth. We expect that our strategy could be used to improve probe quality for many data sets from
major existing repositories.

Keywords: Allen Brain Atlas, Microarray, RNA-Seq, High-throughput sequencing, Transcriptome profiling, Reliability,
Gene expression, Brain
Background
RNA-Seq and related sequencing-based technologies are
gradually emerging as the preferred method for genome-
wide transcriptional analyses, as they provide several po-
tential advantages over hybridization-based microarray
technologies [1-5]. Fragment counts from RNA-Seq
more reliably track absolute gene expression levels (as
measured by quantitative PCR) than the fluorescence- or
intensity-based measures obtained using DNA microar-
rays [2,3]. Microarray intensities can also be prone to
background noise and hybridization saturation, leading
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to a lower dynamic range than RNA-Seq [1,2,4]. Further-
more, as RNA-Seq does not require a priori probe
selection, it allows unbiased analysis of the entire tran-
scriptome, including measurements of gene isoforms,
noncoding RNAs, novel transcripts [4], and base-level
transcriptional changes. But RNA sequencing techno-
logies do not always represent the most appropriate
strategy for large scale transcriptomics. In particular,
comparison between new and historical data sets is often
desired, and direct comparisons across platforms can be
problematic [6,7]. Currently, data from thousands of
studies on all of the major microarray platforms are pub-
licly available in databases such as ArrayExpress [8] and
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Gene Expression Omnibus (GEO) [9]. These data have
stimulated important advances in many biological areas
over the past two decades, including classification of
cancer subtypes [10]; identification of gene expression
changes in many diseases; drug discovery [11,12]; and
novel insights into the evolution, development, struc-
ture, and dysfunction of the human brain [13-16]. More-
over, microarrays and related technologies are still used
in the clinic to measure biomarkers for tumor classifica-
tion, patient diagnosis, patient prognosis, and predicted
response to treatment [17-20]. While there are several
options, both commercial (i.e, GeneSpring) and open
source (i.e., the "affy" and "limma" libraries in R), for
microarray analysis and data quality assessment, to the
best of our knowledge none take advantage of the im-
proved absolute gene expression measurements from
sequencing technologies.
Here we present the largest comparison between micro-

array and RNA-Seq to date, using samples from the Allen
Human Brain Atlas [14,21], a publicly available gene ex-
pression atlas of the human brain with microarray-based
genome-wide transcriptional profiling of specific brain re-
gions spanning all major anatomical structures of the
adult brain. RNA aliquots from 231 unique samples across
two adult human brains previously analyzed using Agilent
microarrays were reprocessed using the Illumina Hiseq
RNA-Seq technology, sequenced to a depth of 30 million
reads. We find that both methods produce highly re-
producible gene expression measurements. RNA-Seq
performed slightly better in terms of reproducibility of
measurements and detection of differential expression
between regions as described previously [2,3]. However,
by treating the RNA-Seq as ground truth, we were able
to improve microarray results. First, taking advantage of
the high variability of gene expression levels across the
adult human brain, we were able to identify the most
reliable microarray probe for each gene and remove
poorly behaving probes. Moreover, intensities for over
80% of probes could be scaled to provide highly reliable,
quantitative estimates of absolute gene expression that
should be transferable to any experiment using the same
microarray. Finally, we propose an extension to our experi-
mental setup which allows it to be applied to a greater
number of probes, and across several microarray platforms.
In summary, we find that microarray data can be improved
by filtering and scaling probes to RNA-Seq expression
values using a relatively small number of samples, and that
both methods provide reproducible gene-level expression
information that can lead to valuable biological insights.

Results
Experimental design
The Allen Human Brain Atlas (http://human.brain-map.
org) includes transcriptional profiling data from more than
3500 samples comprising approximately 200 brain regions
in six clinically unremarkable adult human brains using
custom Agilent DNA microarrays [14,21]. These arrays in-
clude every probe on the Agilent Human GE 44K micro-
array and approximately 16,000 additional probes. To
directly compare the output of transcriptome analysis from
microarrays and RNA-Seq across the human brain, we rea-
nalyzed a subset of the same RNA isolates used for micro-
array analysis using RNA-Seq. A total of 240 samples from
29 matched cortical and subcortical regions in two brains
were processed using Illumina HiSeq RNA-Seq technology
(Figure 1). In total each brain region was analyzed in eight
independent samples, spanning both hemispheres of both
brains, with two independent sampling sites per hemi-
sphere (treated as biological replicates). This experiment
was designed to facilitate comparisons between biological
replicates, between left and right hemispheres, between
brains, and across 22 relatively similar neocortical regions
and 7 more transcriptionally distinct non-neocortical
regions [14]. Overall nine samples were excluded from
this analysis—eight technical replicates and one sample
that failed quality control—leaving a total of 231 unique
samples.

RNA-Seq data preparation using RSEM alignment
followed by TbT and ComBat normalization
Several methods for sequence alignment and gene ex-
pression quantification of RNA-Seq data have been de-
veloped (for review see [22]) including the Tuxedo Suite
[23], RSeqTools [24], and RSEM [25]. These methods
each aim to summarize expression levels based on the
number of reads that align to each gene, but differ in
their treatment of splice junctions and ambiguous se-
quence alignments. For sequence alignment we used
RSEM, which aligns reads to known isoforms and then
calculates gene expression as the sum of isoform expres-
sion for a given gene, assigning ambiguous reads to mul-
tiple isoforms using a maximum likelihood statistical
model [25]. The resulting gene expression values are
presented as transcripts per million (TPM) after scaling
for gene length and for the total number of reads. Our
analyses can be reproduced starting from these TPM
values using Additional file 1 and data available from the
Allen Brain Atlas data portal (www.brain-map.org).
Proper normalization of microarray data can remove

non-biological differences between samples due to batch
effects and differences between arrays. These RNA-Seq
data showed minimal batch effects (Additional file 2;
supplementary figure legends in Additional file 3), but
could potentially still be improved with respect to variability
after scaling to the total transcript count. One strategy for
doing this is TbT normalization, which scales each sample
based on the total number of reads found in genes that
are not differentially expressed [26]. This normalization
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Figure 1 Experimental design. RNA from 240 samples spanning 29 neocortical (c) and non-neocortical (s) regions were run using microarray
and RNA-Seq in two brains. Gene expression levels were then calculated using comparable strategies. Microarray results were assessed, filtered,
and improved using RNA-Seq as ground truth. Details on region selection and preprocessing are available in the Methods and Additional file 3.
The source of the microarray image is Guillaume Paumier.

Miller et al. BMC Genomics 2014, 15:154 Page 3 of 14
http://www.biomedcentral.com/1471-2164/15/154
strategy resulted in a slight improvement in data quality
when considering cortical vs. non-cortical regions as the
two sample groups. Specifically, we see a three-fold de-
crease in between-sample gene expression variability
(based on standard deviation; Additional file 4) and
improved between-brain reproducibility, as measured
by between-brain correlation of differential expression
across brain regions (detailed in next section; increase
from R = 0.89 to R = 0.90; Additional file 4). After TbT
normalization, we identified a systematic bias between
samples from the two brains, in that many genes show a
consistent change in expression between brains across
many regions assayed. For example, samples from the
two brains cluster distinctly for many brain regions
(Additional file 2), and furthermore region and brain of
origin make up most of the variance between samples
(Additional file 4). Whether these between-brain differ-
ences are due to real biological differences in brain (i.e.,
due to age) or technical issues (i.e., due to RNA quality),
these systematic differences detract from our ability to
compare expression levels between brains, which is one
of our primary strategies for assessing biological repro-
ducibility. Therefore, to standardize gene expression
data between brains we used ComBat [27], which is an
empirical Bayes framework that was designed to remove
batch effects from microarray data. In addition to re-
moving the systematic bias between samples from the
two brains (Additional file 4), we find that ComBat also
improved between-brain reproducibility in our RNA-
Seq data (increase from R=0.90 to R= 0.92; Additional file 4),
which justifies our use of this method in this context.
Finally, we note that we used a comparable strategy
to further normalize the subset of microarray data
from the Allen Human Brain Atlas used in this study
(Additional file 3), leading to comparable improvements
in data quality (Additional file 4).

RNA-Seq only slightly outperforms microarray based on
global reproducibility measures
Several strategies for comparing RNA-Seq and micro-
array technologies have been previously used, including
correlation between absolute expression levels, dynamic
range assessments, and measurements of differential ex-
pression [1-5,28], but these comparisons typically in-
volved very few samples. In order to quantitatively
characterize the quality of gene expression calls from
both RNA-Seq and microarray, we performed these and
other global reproducibility assessments tailored specif-
ically to our experimental design. We first evaluated the
similarity of expression between each pair of biological
replicates using Pearson correlation (Figure 2A). RNA-
Seq showed a small but significant improvement over
microarray (p < 10-31; Wilcoxon rank sum test); however,
correlations for both methods were quite high (median
R = 0.984 vs. R = 0.994), suggesting a high degree of re-
producibility when using either method. Next, we dir-
ectly compared average TPM values for each gene with
corresponding average intensities measured by microarray
(Figure 2B). These two measures are highly correlated
(R = 0.78), at a level consistent with previous studies in
liver and kidney ([3]; Spearman = 0.73 and 0.75), nucleus
accumbens ([2]; R = 0.698-0.764), and pathogenic bacteria
([28]; Spearman = 0.78 and 0.80). Interestingly, a few hun-
dred genes had at least one (and in some cases all) probes
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Figure 2 Microarray and RNA-Seq show highly consistent gene expression metrics. A) Pearson correlations of absolute expression levels
between 115 replicate sample pairs using both methods. B) Average log2 expression levels between RNA-Seq (TPM) and microarray (intensity)
are strongly correlated. A subset of bright probes (red) show particularly increased intensity in microarray. C) Histograms showing distribution of
gene expression measures across all samples with microarray (top) and RNA-Seq (bottom). Note the extended leftward tail on the RNA-Seq
distribution indicating the lower range sensitivity. D) Number of genes called present in microarray (light grey) and RNA-Seq (dark grey) for at
least 5%, 50%, and 95% of samples. Horizontal black bars indicate the percentage of overlapping genes called as present using both methods.
E-F) Correlation of differential expression between brains based on microarray intensity (E) and RNA-Seq TPM values (F). Each of 100,000 points
shows the log2 fold change of a random gene between two random non-neocortical regions as measured by brain 1 (x-axis) and brain 2 (y-axis).
G) Correlation of differential expression between methods in the training set (brain 2). Labeling as in E, except fold changes correspond to
RNA-Seq (x-axis) and microarray (y-axis). H) Number of genes differentially expressed between non-neocortical regions based on an ANOVA, for
various p-value thresholds. Colors and lines as in (D).
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with much higher microarray intensity levels than ex-
pected by their TPM values (red dots in Figure 2B), al-
though the converse—genes with high expression in
RNA-Seq and low expression with microarray—were very
rare. These probes targeted members of several gene fam-
ilies (i.e., histone and keratin genes; Additional file 5) sug-
gesting that they may be more prone to non-specific or
off-target hybridization, for example with genes with a
high degree of sequence similarity. Furthermore, these
probes, which were selected on the basis of their absolute
expression differences between methods, also tended not
to show consistent differential expression patterns be-
tween methods (Additional file 5), suggesting that expres-
sion of a subset of probes may not be accurately assessed
using microarray (as discussed in detail later).
To compare the dynamic range of both methods, we

next plotted a histogram of gene expression levels across
all samples in our study (Figure 2C). We note that this
result will be highly dependent on sequencing depth,
and that our results are based on approximately 30 mil-
lion reads per sample. RNA-Seq shows higher sensitivity
in quantifying genes with very low expression, as shown
by the extended leftward tail in the bottom relative to the
top plot. Consistent with this finding, more genes were
identified as present by RNA-Seq compared to microarray,
regardless of the number of samples assessed (Figure 2D).
For example, approximately 80% of genes were found by
microarray to be expressed in at least half of the samples,
compared with approximately 90% by RNA-Seq, with the
difference mostly in genes with low expression. However,
very few genes identified as absent in RNA-Seq (i.e., no
transcript fragments) were called present by microarray,
suggesting a relatively low false positive rate in the Agilent
present/absent call.
Most genes show expression patterns between brain

regions that are highly consistent among individuals
[14]. To assess between-brain consistency in these data,
we selected 100,000 random genes and 100,000 pairs of
randomly selected non-neocortical brain regions in both
brains, identified the log2 fold change of each gene be-
tween the corresponding pairs of regions, and then plot-
ted these values between brains (Figure 2E-F). Using this
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Figure 3 Gene expression reproducibility is dependent on
expression level. A) Example genes showing good (CBNL2, left) and
poor (TCF15, right) reproducibility using microarray. Reproducibility is
defined here based on the between-brain correlation of a gene on
average log2(intensity) values in each of the 29 brain regions. B) There
is a strong relationship between expression level and reproducibility
for genes with low expression. Genes were sorted from lowest to
highest expression and divided into 20 bins based on expression,
which each represent 5% of array genes (x-axis). Each point shows
the average between-brain correlation (as in A) for all genes in that
bin (y-axis), as measured by microarray (blue) and RNA-Seq (green).
Arrows indicate approximate average TPM and intensity values
below which RNA-Seq (TPM = 1) and microarray (log2(intensity) = 5)
become progressively less reliable. Approximately 25% and 33% of
genes have expression levels below these thresholds in RNA-Seq
and microarray, respectively. The standard error of the mean (SEM)
for each bin is smaller than the dot size.
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strategy, we found highly correlated expression patterns
between brains for both microarray (R = 0.84) as well as
RNA-Seq (R = 0.92). We next directly compared the mag-
nitude of differential gene expression between methods
using the same strategy (Figure 2G). As with absolute ex-
pression levels, differential expression fold changes be-
tween methods are highly correlated (R = 0.78), at a level
consistent with previous studies (Spearman = 0.73 be-
tween liver and kidney, for example [3]). These correla-
tions are not as significant as between brains (Figure 2E),
despite the fact that RNA from the same RNA samples
were used in both methods, supporting results from previ-
ous studies that comparisons across platforms can be
problematic [6,7]. Finally, to identify specific genes show-
ing significantly different patterns of expression between
non-neocortical brain regions, we performed ANOVA
on all samples from these areas. At several p-value
thresholds we identified a highly overlapping set of dif-
ferentially expressed genes, with more genes reaching
significance using RNA-Seq than microarray (Figure 2H).
Collectively, these global metrics show that, although
Illumina sequencing technologies slightly outperform
Agilent microarrays by all of these metrics, both
methods can consistently and reproducibly evaluate
expression levels in the adult human brain for a large
percentage of genes.

Reproducibility dependent on gene expression level and
gene size
Genes with very low expression cannot necessarily be reli-
ably evaluated with either arrays or sequencing approaches.
In microarray, changes in expression of such genes are
often indistinguishable from fluctuations in intensity due
to background noise [29]. Likewise, expression measures
derived from a small number of sequence fragments are
subject to Poisson counting error [3,30,31]. Thus, while
RNA-Seq yields a broader dynamic range and higher per-
centage of expressed genes, there is no guarantee that the
percentage of genes with reproducibly predicted expression
levels will be higher using RNA-Seq (for example, see [4]).
To quantify this relationship, we first defined a metric of
biological reproducibility—defined as the between-brain
correlation of average expression level in each region—for
each gene separately (Figure 3A). We then sorted genes
based on expression level, divided them into twenty bins of
equal size, and identified the mean and standard error of
the mean (SEM) for each bin. For both technologies we
find that genes expressed at very low levels show progres-
sively decreasing reproducibility with decreasing expres-
sion level, whereas for more highly expressed genes
(TPM > 1 for RNA-Seq; log2[intensity] > 5 for Agilent
microarray), reproducibility is much less dependent on
expression level (Figure 3B). Furthermore, regardless of
the expression level, RNA-Seq appears to produce more
consistent gene expression patterns between brains than
microarray. Finally, to test the effect of gene size on repro-
ducibility, we repeated the above assessment, this time
sorting genes based on transcript length (Additional file 6).
Although the effect is more pronounced with RNA-Seq,
we find a nearly linear relationship (R = 0.96) between
transcript length and biological reproducibility using both
methods. This result appears to be due to a combination
of technical variability (the number of sheared fragments
per transcript increases with increasing transcript size)
and biological variability (larger genes tend to be more dif-
ferentially expressed across the human brain than smaller
genes; Additional file 6). The relationship between gene
size and biological variability would be an interesting topic
for future study.
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RNA-Seq can filter Agilent microarray probes
Many microarray platforms include multiple probes for
a subset of genes. While most such probes show roughly
consistent gene expression patterns, when these probes
do not agree it is not always obvious which one most accur-
ately reflects gene expression levels. Choosing the probe
with the highest expression produces consistent expression
levels between experiments (i.e., [32] and this paper); how-
ever, such a method only shows that probe expression is
reliable and not that the probe uniquely targets the appro-
priate gene (for example, see Figure 2b and Additional file 5).
We hypothesized that choosing optimal probes based on
correlation with RNA-Seq TPM calls, which have previ-
ously been shown to accurately track absolute gene ex-
pression levels [2,3], should lead to more reproducible
microarray results than any strategy based solely on array
intensities. To test this we chose the probes with the high-
est ("best") and lowest ("worst") between-method corre-
lation across samples for each of the 91% of genes with at
least two representative probes on the array, and assessed
how each set of probes compared with the array-derived,
highest expressed probes. As an extreme example, three
probes for ZFR2 showed markedly different expression
patterns as compared with RNA-Seq (Figure 4A), and in
this case correct choice of probe is important. Overall, we
find improved between-method reproducibility for our
best probes (Figure 4B, left bars), which is expected since
our probes were chosen this way. More interestingly, we
also see a slight improvement in biological reproducibility
between brains (Figure 4B, right bars; R = 0.86 compared
with R = 0.85), suggesting that RNA-Seq could be used as
a tool for probe selection or at least a posteriori analysis.
We note that, although only 60% of the best probes were
also the most highly expressed, choosing the most highly
expressed probe leads to highly biologically reproducible
results, as previously shown [32].
In addition to choosing the best probe for each gene,

this strategy can be used to assign each probe with a
quality score (or pass/fail call) based on reproducibility,
which could, for example, help eliminate genes from the
analysis in which all probes show potential off-target ef-
fects or non-specific binding. In this case we score each
probe based on the correlation, defining all probes with
significant positive correlation as passing (Figure 4A).
After correcting for multiple comparisons (q < 0.1), 82%
of genes have at least one passing probe on the array, a
number that decreases only to 68% if we consider as few as
16 carefully selected samples in the analysis (Additional file 7).
After omitting the set of best probes that failed quality
control, the remaining genes show marked improvements
in between-method and between-brain reproducibility
(Figure 4B; green bars; R = 0.87 vs. 0.85 and R = 0.88 vs.
0.86, respectively). Given our previous result showing
that genes with low expression tended to show poor
biological reproducibility (Figure 3B), we next compared
the expression levels of our best probes that passed com-
pared with those that failed (Figure 4C). Around half the
probes with log2(intensity) < 3 passed, compared with
more than 90% of probes with log2 (intensity) > 3, suggest-
ing that some probes likely fail because the probe itself is
bad, whereas other probes may be properly targeting their
corresponding gene, but that gene is not expressed in the
brain and therefore the between-method reproducibility
cannot be accurately assessed. Strategies for recovering
this second class of failed probes will be discussed later.

RNA-Seq can be used to improve microarray quality by
scaling probes
Microarray probes tend to measure relative gene expres-
sion levels more accurately than absolute levels. How-
ever, at non-extreme intensities (where the effects of
background noise and oversaturation can mostly be ig-
nored), the relationship between probe intensities and
gene expression levels identified through other experi-
mental strategies is nearly linear [33]. We therefore hy-
pothesized that, by using a simple linear transformation,
it should be possible to scale probe intensities so that
they more accurately reflect absolute expression levels.
To calculate such values—which we refer to as "sequen-
cing scaled microarray intensities" or "SSMIs"—we tried
several approaches (see Additional file 3). For these data
the most effective was a quantile-based approach, where
we identified the 5th and 95th quantile of expression for
each microarray probe (using intensity) and for the cor-
responding RNA-Seq gene (using TPM), and then
linearly scaled the microarray intensities so that these
values align with TPMs (Figure 5A). We performed this
scaling strategy using only samples from brain 2, and re-
served brain 1 as an independent test set. SSMIs were
only calculated for probes passing our quality control
assessment, as discussed above. Most probes showed a
relatively small range of slopes (m; 50% between 1 and
2) and required a small negative offset (b > 0), suggest-
ing that microarray intensity can be used as a rough
approximation for absolute expression levels after ad-
justing for background, but that the relationship is not
identical from probe to probe (Figure 5A, inset). Sca-
ling parameters and probe quality control measure-
ments are provided in Additional file 8.
To test whether SSMIs provide more biologically repro-

ducible results than corresponding intensity scores, we re-
peated all of our quantitative assessments (see Figures 2
and 3) using SSMIs for the set of optimal probes chosen
by RNA-Seq (see Figure 4). As hypothesized, absolute
expression levels show a dramatic improvement in re-
producibility between RNA-Seq and microarray, with
Pearson correlations increasing in many cases to R >
0.95 (Figure 5B). For example, while many microarray
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Figure 4 Probes chosen by RNA-Seq show improved reproducibility metrics. A) Example gene (ZFR2) with different probes showing the
"worst" between-method correlation (left), the "highest" average expression (center) and the "best" between-method correlation (right). Each plot
shows the expression level of a microarray probe (y-axis) and the corresponding gene TPM value as measured by RNA-Seq (x-axis). Each dot
represents a single sample in our training set (brain 2). Two of these probes would be filtered out as "low quality" using our metric. B) Between
method (left) and between-brain (right) measures of differential expression correlation when defining microarray genes based on the worst,
highest, and best probes (left three bars). Note that correlations in the "highest probes" bars come directly from Figure 2G (*) and Figure 2E (^).
The other two bars correspond to the subset of best probes that pass (green) and fail (red) quality control based on our filtering strategy,
respectively. Note that the best passing probes have the highest reproducibility. C) Genes with low expression are more likely to fail than genes
with moderate to high expression. Genes were binned based on expression levels (x-axis) and the number of passing and failing probes is shown
for each bin (y-axis). 91% of genes with log2(intensity) > 3 passed, compared to only 47% with lower expression.
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probe intensities overestimate gene expression levels by
several orders of magnitude, SSMIs for nearly all probes
much more closely match TPM values determined by
RNA-Seq (Figure 5C). It is important to emphasize that
we see these improvements in the test set (brain 1) using
scaling parameters calculated using an independent train-
ing set (brain 2). Along the same lines, between-method
measures of consistency based on differential expression
show similar improvements, in both the training set (brain
2; Figure 5D) and test set (brain 1). Furthermore, diffe-
rential expression fold change correlations between brains
based on SSMIs (R = 0.90) are nearly as high as those
based on RNA-Seq TPMs (R = 0.92; Figure 5D), sugges-
ting that after probe selection, filtering, and scaling, mi-
croarrays can nearly match sequencing technologies in
certain measures of biological reproducibility. Compa-
rable improvements can be found if we generate scaling
parameters with as few as 16 samples (Additional file 7).
Finally, to test whether our quantile-based scaling is

applicable to gene expression intensities derived from
other tissue, we processed RNA from two pluripotent
human embryonic stem cell (hESC) lines (H1 and H9;
Additional file 3) using both microarray and RNA-Seq,
which were used to assess, but not to improve, micro-
array quality. Following the same computational strategy
and using the same scaling parameters derived from
brain 2 above, we scaled microarray intensities from these
cell lines, and compared both measures of microarray
gene expression to TPM values based on RNA-Seq. As
with brain, SSMIs in both undifferentiated hESC lines
show significantly improved correlation with RNA-Seq
relative to unscaled intensities that much more closely
map to RNA-Seq derived absolute intensities (Figure 6).
Comparable results were found after differentiating these
hESC lines for up to 54 days to generate cortical neurons
(data not shown; Additional file 3). Although the Allen
Human Brain Atlas and the hESC lines were processed at
the same site, we note that different methodologies were
used for tissue processing, and that both the microarrays
and RNA-Seq for these data sets were processed off-site at
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Figure 5 Scaling of microarray probes by RNA-Seq leads to improved biological reproducibility. A) Strategy to convert intensity levels of
all probes to sequencing scaled microarray intensities (SSMIs) using samples from brain 2. SATB2 is shown as an example. 5th and 95th quantiles
(red dots) are compared between methods, and microarray intensities are scaled linearly such that these quantiles align. Grey and black dots
show expression of a sample in brain 2 for both methods before and after scaling, respectively. Inset shows the range of slope (m) and intercept
(b) parameters across all probes (25%, 50%, and 75% quantiles shown in bold; 5% and 95% quantiles shown in light lines or enumerated if off the
plot). (B-C) After scaling (black dots), all samples in brain 1 show markedly improved between-method correlation of absolute expression levels
compared with before (grey dots). This result holds for all 115 samples in brain 1 (B). A single example is shown in C (corresponding to the arrow
in B; labeling as in Figure 2B). Diagonal dotted line indicates perfect agreement of absolute expression levels (y = x). D) SSMIs show improved
reproducibility between methods based on between-method (left; * = compare with Figure 2G) and between-brain (right; ^ = compare with
Figure 2E) differential expression measures (compare with Figure 4C). The blue line indicates the between-brain correlation as measured by
RNA-Seq (Figure 2F), which is now only slightly higher (ΔR=0.02) than in microarray.
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different locations (Methods). These results suggest that
scaling parameters derived from a single experiment
can be applied to other experiments utilizing the same
array platform to improve array quality. More generally,
we find that RNA-Seq can be used as a tool to evaluate
microarray probe quality, filter out bad probes, and im-
prove the utility of microarrays as tools to measure ab-
solute gene expression levels. Such filtering appears
largely to be experiment independent, suggesting it could
be retroactively applied to improve data from thousands
of currently available data sets.

Identifying differentially expressed genes in neocortex
using microarray and RNA-Seq
We have previously shown that differences in transcrip-
tional patterns of distinct neocortical areas depend on
the distance between these areas, although compara-
tively few genes show very high levels of differential ex-
pression in the neocortex [14]. To assess the extent to
which these more subtle expression relationships can be
found using RNA-Seq as compared with microarray,
we performed ANOVA on all samples from these 22
neocortical areas. RNA-Seq identified 3458 genes dif-
ferentially expressed (p < 0.05, Bonferroni corrected),
compared with 2144 identified using microarray inten-
sities, of which 1121 agree between methods (p ~ 0).
An additional 194 genes were identified using SSMIs
instead of intensities, including 120 found by RNA-Seq
that were not initially identified by microarray, show-
ing that RNA-Seq scaling improved the sensitivity
of microarrays to detect differential expression by
approximately 10%, even when comparing relatively
similar tissue. Thus, despite the relatively mild tran-
scriptional differences between neocortical areas, we
find common differentially expressed genes between
methods. Collectively, these results demonstrate the
biological reproducibility and applicability of both of
these genome-wide transcriptional methodologies.
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Figure 6 Scaling parameters generated in human brain also improve measurements of absolute expression levels in human hESC
lines. Improved between-method correlation of absolute expression levels is found in H1 (A) and H9 (B) human hESC lines after scaling using
parameters identified in brain. Each point shows expression levels for a single gene in microarray (y-axis) compared with RNA-Seq (x-axis). Labeling
as in Figure 5C.
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Discussion
Optimizing gene expression measurements from extant
microarray data
We presented an extensive comparison between Agilent
microarray and RNA-Seq using 231 samples from the
Allen Human Brain Atlas [14]. Our analysis aimed to assess
and potentially improve the quality of extant microarray
data, and had three primary goals. First, we showed that
Agilent microarrays generate highly reproducible expres-
sion measurements for many genes, both when comparing
gene expression measurements with RNA-Seq as well as
between individual brains. Our results are in line with pre-
vious studies comparing RNA-Seq and several different
microarray platforms [1-5], in that we identified high corre-
lations of absolute (R = 0.78) and differential (R = 0.78) ex-
pression levels between methods. We also demonstrated a
high degree of biological reproducibility for genes with at
least moderate expression (TPM> 1, log2[intensity] > 5),
which progressively decreases for lower expression levels
using both methods. Second, we have shown that RNA-Seq
can be used to assess microarray probe quality, and
that this can be done using a relatively small number of
experimental samples. We saw progressively increasing bio-
logical reproducibility of gene expression measurements
when we initially used these quality scores to identify the
best microarray probe for each gene, and subsequently ex-
cluded genes from the analysis with no reliable probes.
Third, and most importantly, our study proposes for

the first time the use of high throughput sequencing to
scale microarray probe intensities to more closely reflect
absolute gene expression levels. Previous studies have
presented strategies for measuring absolute expression
using microarray, for example, by co-hybridizing bio-
logical samples with calibrated reference samples on
spotted-glass microarrays [34], and have sought to im-
prove array quality by filtering out bad probes from
Affymetrix probe sets [35]. The advantage of our strat-
egy is that these scaling parameters appear to be broadly
applicable, as those derived from samples run in adult
human brain improved the reliability of expression levels
identified using the same array in two different hESC
lines. In principal, these parameters (Additional file 8)
could now be applied to any sample run using our cus-
tom array (or the widely-used Agilent 44K Whole
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Human Genome Microarray) to improve absolute ex-
pression quantification for around 80% of genes without
needing to perform any additional sequencing. While
these scaling parameters may not be optimal for improv-
ing data derived from other experimental conditions, the
key point is that they can improve the data without the
need for performing additional sequencing.

Microarrays and RNA-Seq both currently used in research
and clinical settings
While RNA-Seq will likely replace microarrays in re-
search and clinical settings in the near future due to the
improved dynamic range and potential for finding novel
transcripts and sequence level variations, microarray
data sets are still highly valuable, and application of this
method improves their interpretability. Currently, micro-
array data from thousands of experiments are available
in public databases such as GEO [9] and ArrayExpress
[8], providing valuable resources for cross-study compar-
isons between experiments utilizing the same transcrip-
tional method. For example, both the Allen Human
Brain Atlas [14,21] and a companion BrainSpan atlas tar-
geting prenatal human brain (http://www.brainspan.org)
utilize the same Agilent array to facilitate between age
comparisons, and have provided insight into the structure
and function of the human brain. Furthermore, many
research and clinical laboratories already have standard
operating procedures in place for analyzing microarray
data—including the required machinery, storage space,
analysis tools, and expertise—which could be augmented
in a relatively straightforward manner using our method,
and it will take time to transition to sequencing-based
strategies. Finally, until quite recently RNA-Seq tech-
niques required more total RNA (100 ng-1 μg) than
microarray [4,36]. In our study this requirement limited
the samples that could be included in the experimental
design. However, newer RNA-Seq strategies that allow
transcriptional profiling from single cells [37,38] or even
single nuclei [39] hold great promise in categorizing and
understanding cortical cell types, and at potentially a
fraction of the cost of microarrays. Thus in the near
term, microarrays and RNA-Seq will both likely be used
for high throughout gene expression analysis, and there-
fore any strategies for improving the accuracy of detecting
and corroborating gene expression signal from microar-
rays will be helpful.

Limitations and suggested methodological improvements
One limitation of this analysis is that, in order to accur-
ately assess probe quality and define scaling parameters,
the variability across samples must be accurately mea-
sured. For example, we found that probes targeting genes
with very low expression in brain were much more likely
to be failed, compared with high expressers, and that such
genes also showed less consistent expression patterns be-
tween brains. It is likely that with a more diverse tissue
panel some of these low-expressing probes would be
assessed as higher quality. Another possible limitation is
that our scaling parameters derived from brain may not
be applicable to other tissues for genes showing a high de-
gree of differential isoform expression. Again, by using a
more diverse tissue panel to calculate scaling parameters,
we would expect that probes for such genes would not
show consistent expression between methods, and would
therefore be failed at the quality control step.
Using our current study as a starting point, we propose

a methodology that would address these limitations, and
could further be used to improve microarray data quality
for many publicly available data sets and clinical applica-
tions. First, an RNA atlas of gene expression from several
highly distinct tissues, organs, and cells lines would be col-
lected, for example by contacting an accredited tissue
bank, or in partnership with a related governmental pro-
gram such as the Genotype-Tissue Expression (GTEx)
Project (http://commonfund.nih.gov/GTEx/index). Our
results suggest that approximately 16 carefully chosen
samples would be sufficient, although increasing the num-
ber of samples would moderately improve the power to
detect passing probes (Additional file 7). Previously pub-
lished gene expression atlases on 46 [40] and later 79 [41]
such tissues found that nearly 90% of expressed genes also
showed some degree of differential expression, and these
atlases could be used as filters for determining the most
transcriptionally distinct tissues. Second, RNA from all of
these tissues would be processed using RNA-Seq and sev-
eral of the most commonly used microarray platforms in
parallel. Considering only the most widely published array
platforms for Affymetrix (HG-U133_Plus_2), Illumina
(HumanHT-12 V3.0), and Agilent (014850 Whole Human
Genome Microarray 4x44K G4112F), data for around
100,000 microarrays are currently hosted by Gene Expres-
sion Omnibus [9]. Additional RNA aliquots could be
stored for later processing using other microarray plat-
forms. Third, quality assessments and scaling parameters
for each probe (or in the case of Affymetrix, each probe
set) of each microarray platform would be assessed as de-
scribed above. Finally, the resulting values could be ap-
plied, in principle, to any data utilizing any of the
microarray platforms included in this experiment. We ex-
pect that our strategy could also facilitate direct compari-
sons of data collected using different array platforms,
although this hypothesis would need to be tested.

Conclusions
We showed that both Agilent microarrays and RNA-
Seq can provide highly reproducible measurements of
gene expression in the human brain. Furthermore, for a
majority of genes, we were able to quantifiably assess

http://www.brainspan.org
http://genome.ucsc.edu
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the reproducibility of microarray probes, remove probes
with off-target effects, and scale probe intensities to pro-
vide highly reliable, quantitative estimates of absolute gene
expression levels. The scaling parameters generated using
brain tissue appear to be applicable to other tissues, and
are provided as a resource to the community. Overall, we
calculated SSMIs values for 80% of the approximately
19,000 genes included in our between-method compari-
son with moderate confidence, and expect that many of
the remaining genes could be scaled using a more diverse
set of tissues, as proposed.

Methods
Post-mortem tissue acquisition and sample processing
Methods for post-mortem tissue acquisition and sample
processing have previously been described ([14] and
http://help.brain-map.org/display/humanbrain/Documenta-
tion). In short, tissue for the Allen Human Brain Atlas
was provided by the NICHD Brain and Tissue Bank
(Baltimore, MD) and the University of California Irvine
Department of Psychiatry and Human Behavior Brain
Donor Program (Irvine, CA), under approvals by Insti-
tutional Review Boards of the Maryland Department of
Health and Hygiene and University of Maryland Baltimore,
or the University of California Irvine, respectively, and with
consent from next-of-kin. Specimens for microarray and
RNA-Seq profiling were 24-year-old (Brain 1) and 39-
year-old (Brain 2) African American males. Total RNA
from 120 macrodissected samples initially processed
for microarray from each brain (as described in [14])
were also processed for RNA-Seq. These samples in-
cluded biological replicates from left and right hemi-
sphere in 29 brain regions, as well as four technical
replicates per brain. Aliquots of the same total RNA
isolates generated from macro dissections for microarray
were used for sequencing. RNA was sent to Expression
Analysis Inc. (EA; Durham, NC) for library preparation and
sequencing, of which 250 ng total RNA was input for each
run. EA used the Illumina TruSeq library preparation
protocol and performed paired-end, 50 bp sequencing on
an Illumina HiSeq2000 instrument. The sequencing was
run as 6-plex with target of 30 million reads per sample:
25-35 million reads per sample were generated. Processed
data is available at the Allen Brain Atlas data portal (www.
brain-map.org) in the form of gene counts, as well as TPM
values.

RNA-Seq alignment and data normalization
Sequences were aligned to the genome using RNA-Seq by
Expectation-Maximization (RSEM) [25] (see Additional file 3).
Transcripts (isoforms) were defined using the knownGene
table from UCSC Genome Browser ([42]; http://genome.
ucsc.edu; hg19, Feb. 2009). Summary expression levels for
each gene were calculated in terms of both counts and
TPM using this pipeline. Mapped read files were also con-
verted to BAM file format for visualization using Geno-
meBrowse (Golden Helix, Bozeman, MT).
Microarray data normalization was performed as de-

scribed on the Allen Human Brain Atlas data portal
(http://help.brain-map.org/display/humanbrain/Docu-
mentation). In short, data is preprocessed for systematic
biases, and quantile normalized to the 75th percentile in
each batch. Across batches within each brain, data is nor-
malized by aligning two sets of control samples included
in all batches and capturing method related bias is ad-
justed by a modified quantile normalization method. We
note that approximately 2,200 probes failed quality assess-
ments during generation of the Allen Human Brain Atlas
and were also excluded from this analysis. Across multiple
brains non-biological difference is adjusted again by align-
ing two sets of control samples. RNA-Seq data was TbT
normalized [26] in linear space, as described in the Re-
sults, with the differential expression vector defined as
TRUE if a sample was from neocortex and FALSE other-
wise. Samples were then scaled such that the total log2
(TPM) remained unchanged after normalization. Data
from both microarray and RNA-Seq were then ComBat
normalized [27] in log2 space using a parametric prior,
with the batches corresponding to brain of origin. Un-
less otherwise noted, ComBat normalized data were
used for all comparisons.

Comparisons between microarray and RNA-Seq
The open source R software (www.r-project.org/) was ex-
tensively used for all analyses and visualizations (Additional
file 3). Hierarchical clustering, bar plots showing expression
levels, and MDS in two dimensions were strategies used
for assessing data quality and evaluating the effect of
normalization (Additional file 3). For all between-method
comparisons, unless otherwise noted, a single microarray
probe with the highest average expression level across re-
gions [32] was selected to represent each of the approxi-
mately 19,000 commonly identified genes. A gene was
defined as present in microarray if called present by the
Agilent software, and in RNA-Seq if at least one fragment
was aligned to that gene.
Pearson correlations (R) were calculated in several

contexts as measures of consistency or reproducibility
throughout (Additional file 3). Differential expression
was measured in two ways. As a global measure of bio-
logical or technical reproducibility, fold changes of 100,000
random genes between randomly selected region pairs was
compared between brains or methods, respectively, using
Pearson correlation. Alternatively, a p-value for each
gene was calculated by running ANOVA across either the
7 non-neocortical or 22 neocortical regions, representing
transcriptionally diverse and relatively similar tissues, re-
spectively. To assess biological reproducibility of gene

http://genome.ucsc.edu
http://genome.ucsc.edu
http://www.brain-map.org
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http://www.r-project.org/
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subsets, genes were sorted based on average expression
level or gene size, binned into 20 groups, and then the
average and standard deviation of the across-region Pear-
son correlations for all genes in each bin were calculated.

Generation of microarray scaling parameters
SSMIs were calculated by performing a linear scaling on
microarray intensities from brain 2 in log2 space. Nor-
malized data prior to ComBat normalization were used
for this analysis to preserve samples from brain 1 as in-
dependent and since ComBat normalized RNA-Seq data
could less closely align to absolute expression levels than
do TbT normalized data. For each gene, scaling parame-
ters were found by identifying the 5th and 95th percent
quantiles of expression in RNA-Seq and microarray and
then linearly shifting microarray expression to match
these quantiles with RNA-Seq (see Figure 5A). All
probes were scaled, but only the probe for each gene
with the highest between-method correlation was in-
cluded in the final comparison between methods. Scaling
confidence was estimated using the significance of cor-
relation (a p-value output by the cor.test R function) and
converting to q-values as a measure of false discovery
rate using the R function qvalue [43]. Probes with q < 0.1
were scaled, and remaining probes were omitted from
the analysis. Finally, scaled array intensities were Com-
Bat normalized as described above for comparison with
other results.

Comparison with human hESC lines
RNA from two human pluripotent ESC lines, H1 and
H9, or their cortical neuronal progeny derived using di-
rected differentiation, were run on microarray and RNA-
Seq (Additional file 3). In short, RNA was generated by
lysing cells in RNAeasy buffer (Qiagen) and then follow-
ing the standard RNAeasy protocol. RNA was then sent
to Covance (for microarray) and Expression Analysis
(for RNA-Seq). This is in contrast to RNA from brain,
which was processed by Cogenics (for microarray) and
Covance (for RNA-Seq), as described above. Correlations
between methods were calculated both before and after
SSMI scaling to demonstrate the effectiveness of these
scaling parameters on absolute expression levels in other
tissues.

Availability of supporting data
All data presented in this manuscript are available either
at the Allen Institute data portal (www.brain-map.org) or
as part of Additional file 1. Specifically, microarray data
(both raw and normalized intensities), as well as sequence
data summarized to the gene level (both fragment counts
and TPM values) can be downloaded from the Allen Insti-
tute data portal by clicking on the "Human Brain" link and
then the "Download" link. Additional file 1 contains the
microarray and sequencing data for hESC lines as well as
annotated code for Figures 2, 3, 4, 5 and 6.

Additional files
Description of additional data files
The following additional data are available with the online

version of this paper. Additional file 1 is a zip file including
code and supporting data required to reproduce our ana-
lysis in R. Additional file 2 is a supplementary figure show-
ing that RNA-Seq has minimal batch effects. Additional file
3 is a text document that includes Supplementary Methods
and Supplementary Figure Legends. Additional file 4 is a
supplementary figure showing that normalization improves
the quality of RNA-Seq and microarray data. Additional file
5 is a supplementary figure showing that certain highly-
expressed microarray probes do not accurately measure
gene expression. Additional file 6 is a supplementary figure
showing that gene expression reproducibility is dependent
on transcript length. Additional file 7 is a supplementary
figure showing that quality control and scaling of micro-
array probes can be done well with as few as 16 matched
RNA-Seq samples. Additional file 8 is a supplementary
table listing scaling parameters for the Agilent Microarray.

Additional file 1: Code and data to reproduce analysis. This zip file
contains two code documents and several supporting data files that
are required, along with data from the Allen Brain Atlas data portal
(www.brain-map.org) to reproduce nearly all figures and statistics
presented in this manuscript.

Additional file 2: Clustering of RNA-Seq samples after TbT
normalization shows minimal batch effects. A dendrogram that
shows samples hierarchically clustered based on the RNA-Seq data. Also
shown are bar plots with biological and technical variables. Samples cluster
based on brain region and brain of origin, but not batch or other technical
variables.

Additional file 3: Supplementary methods and supplementary
figure legends. This file contains the supplementary methods for the
manuscript followed by supplementary figure legends corresponding to
Additional files 2, 4, 5, 6 and 7.

Additional file 4: Normalization improves the quality of RNA-Seq
and microarray data. Several plots showing that RNA-Seq data becomes
progressively more consistent and reproducible after TbT normalization,
which scales for the total reads, and ComBat normalization, which
removes the systematic bias between brains. Microarray data likewise
improved.

Additional file 5: Many probes with specifically high microarray
intensity do not accurately measure gene expression. Probes with
specifically high expression in microarray show poor between-method
agreement, suggesting they do not appropriately measure expression of
their assigned gene. These probes are also more likely than chance to be
part of gene families.

Additional file 6: Gene expression reproducibility is dependent on
transcript length. There is a strong linear relationship between gene
length—defined based both on the average transcript length for all
RefSeq isoforms of the gene as well as for the number of base pairs
spanned in the genome—and reproducibility for genes. This is in part
because large genes tend to show higher variability in the brain
compared with smaller genes.

Additional file 7: Microarray quality control and scaling can be
accurately done with 16 samples. The percent of passing probes
rapidly improves when using a small number of matched samples, and
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starts leveling out at around 16 samples. Excellent between-method
correlation and improvements in scaling are also seen with 16 samples
or fewer.

Additional file 8: Parameters and quality metrics for microarray
probe scaling. This table contains the parameters that can be applied to
any Agilent Human GE 44K microarray to scale probes so that they more
accurately reflect absolute gene expression levels. It also includes quality
metrics which can be used as filters, for example, to omit certain probes
from consideration.
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