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Abstract

Background: Sorghum is an important cereal crop, which requires large quantities of nitrogen fertilizer for
achieving commercial yields. Identification of the genes responsible for low-N tolerance in sorghum will facilitate
understanding of the molecular mechanisms of low-N tolerance, and also facilitate the genetic improvement of
sorghum through marker-assisted selection or gene transformation. In this study we compared the transcriptomes
of root tissues from seven sorghum genotypes having differential response to low-N stress.

Results: lllumina RNA-sequencing detected several common differentially expressed genes (DEGs) between four
low-N tolerant sorghum genotypes (San Chi San, China17, KS78 and high-NUE bulk) and three sensitive genotypes
(CK60, BTx623 and low-NUE bulk). In sensitive genotypes, N-stress increased the abundance of DEG transcripts
associated with stress responses including oxidative stress and stimuli were abundant. The tolerant genotypes
adapt to N deficiency by producing greater root mass for efficient uptake of nutrients. In tolerant genotypes, higher
abundance of transcripts related to high affinity nitrate transporters (NRT2.2, NRT2.3, NRT2.5, and NRT2.6) and lysine
histidine transporter 1 (LHT1), may suggest an improved uptake efficiency of inorganic and organic forms of
nitrogen. Higher abundance of SEC14 cytosolic factor family protein transcript in tolerant genotypes could lead to
increased membrane stability and tolerance to N-stress.

Conclusions: Comparison of transcriptomes between N-stress tolerant and sensitive genotypes revealed several
common DEG transcripts. Some of these DEGs were evaluated further by comparing the transcriptomes of
genotypes grown under full N. The DEG transcripts showed higher expression in tolerant genotypes could be
used for transgenic over-expression in sensitive genotypes of sorghum and related crops for increased tolerance
to N-stress, which results in increased nitrogen use efficiency for sustainable agriculture.

Keywords: N-stress, Sorghum, Nitrogen use efficiency, Transcriptome, RNA-seq, Genotypes, Differentially
expressed genes

* Correspondence: idweikat2@unl.edu

Equal contributors

'Department of Agronomy and Horticulture, University of Nebraska, Lincoln,
NE 68588, USA

Full list of author information is available at the end of the article

- © 2014 Gelli et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
() B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:idweikat2@unl.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Gelli et al. BMC Genomics 2014, 15:179
http://www.biomedcentral.com/1471-2164/15/179

Background

Sorghum [Sorghum bicolor (L.) Moench] is one of the
most important staple food grain crops for millions of
people living in the West Africa and India [1]. Sorghum
performs C, photosynthesis, which makes it adapted to
high temperatures and water limitation [2]. Despite its Cg4
nature, sorghum depends on nitrogen fertilizers for high
grain yields. In higher plants, N limitation leads to dra-
matic changes in plant growth and development, such as
root branching, leaf chlorosis and reduced seed produc-
tion [3,4]. Nitrogen is a constituent of amino acids, nucle-
otides, proteins, chlorophyll, and several plant hormones.
It is an important inorganic nutrient for plant growth and
development [5,6].

Nitrate is the major source of N in agricultural soils
[7], serving both as a nutrient and a signal [3]. As a nu-
trient, it is absorbed by roots through low- and high-
affinity nitrate transporters (NRT1 and NRT2), which is
reduced to nitrite by nitrate reductase (NR), and to am-
monium by nitrite reductase (NiR). Ammonium is then
incorporated into amino acids by glutamine synthetase
(GS) and glutamate synthase (GOGAT) [8,3,9]. Localized
supply of nitrate strongly promotes the elongation of lat-
eral roots [5]. As a signal, nitrate induces the expression
of a number of genes including NRT1, NRT2, NR and
NiR [3,10], GS and GOGAT [3,9]. In addition to these ni-
trogen metabolism genes, expression of different regula-
tory genes also induced by nitrate. For example, nitrate
stimulates the expression of the Arabidopsis MADS-box
gene, ANRI, regulates lateral root development [5]. It also
induces AFG3 (Auxin signaling F-box 3) and which en-
hances miR393 levels to modulate root architecture [11].

In the past several decades, the increasing use of nitro-
gen fertilizers in crop production has played a major role
in improving yields [6], which underlies our current
population growth. However, crop plants use less than
half of the applied nitrogen [12]. Excess nitrate volatil-
izes as reactive N gases by denitrifying bacteria [13] or
leaches into waterways and causes eutrophication. Re-
cent analysis showed that acidification of soil results
mainly from high usage of N fertilizers [14]. The heavy
reliance on fertilizer application has resulted in greater
need for environmental protection measures. Therefore,
improving nitrogen use efficiency (NUE) by developing
genotypes that yield better with limited N supply is a
prerequisite for sustainable agriculture. NUE is defined
as the amount of biomass and grain yield produced per
unit of available N in the soil [15]. The molecular basis
of the NUE traits is complex. Genetic variation exists for
NUE in sorghum [16] and maize [17], suggesting that
scope exists for selecting high NUE genotypes. Interest-
ingly, comparison of N uptake capacities of maize and
sorghum under contrasting levels of N availability
showed that under non-limiting N supply, the two crops
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have similar N uptake, while under severe N-limitation
the N uptake capacity of sorghum is higher than that of
maize [18]. The reason for this difference is unclear, but
it could be due to a more developed and branched root
system in sorghum compared to maize. Hirel et al. [19]
suggested the components involved in N uptake capacity
of sorghum are potential candidates for improving N up-
take capacity of maize and possibly other crops under
N-limiting conditions.

Many efforts have been made to understand the mo-
lecular basis of plant responses to N and identifying
N-responsive genes in order to manipulate their ex-
pression and enable plants to use N more efficiently
[20]. In Arabidopsis, microarray analysis of gene ex-
pression changes in response to different concentra-
tions of nitrate for both short-term and long-term
treatments revealed numerous genes involved in nitro-
gen response [21,22]. In rice, Lian et al. [23] reported
expression profiles of 10,422 unique genes using a
microarray, while no significant difference was de-
tected in the transcriptomes of leaf tissues, and a total
of 471 genes showed differential expression in the root
tissues in response to low-N stress. Bi et al. [24] devel-
oped a growth system for rice by limiting N and identi-
fied N-responsive genes, validated the function of an early
nodulin gene, OsENOD93-1, by over-expressing in rice.
Some of these experiments were performed with a short
period of N-stress and identified differentially expressed
genes in response to the N-stress in Arabidopsis [21] and
rice [23]. A transcriptional change in response to longer
periods of stress, which is crucial for adaptation to field
conditions, has also been identified [22,24]. However, a
limitation in these experiments was the use of single geno-
type. Without comparing the transcriptional differences
between N-stress tolerant and sensitive genotypes, it is
impossible to separate N-stress tolerant genes from stress
responsive genes.

In maize, Chen et al. [25] detected many nitrogen re-
sponsive genes by analyzing the global gene expression
changes in response to N-stress in leaf tissues of two
maize inbred lines with contrasting N-stress tolerance
using an affymetrix maize genome array. The transcrip-
tional profiling of two soybean genotypes exposed to N-
stress using Illumina RNA-sequencing revealed a number
of candidate genes for N utilization [26]. Investigating the
N-stress tolerance mechanisms in sorghum could facilitate
a better understanding of the genetic bases of low-N toler-
ance, and so enable the effective use of genetic and gen-
omic approaches to improve sorghum N-stress tolerance.
To identify the genes responsible for stress tolerance, ge-
notypes with similar genetic backgrounds, but with con-
trasting stress tolerance, are ideal for linking candidate
genes to the stress tolerance. However, developing such
near-isogenic lines requires several years of backcrossing
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and selection [27]. One alternative is to identify com-
mon genes that are differentially expressed between
low-N tolerant and sensitive genotypes with different
genetic backgrounds under N-stress conditions.

To this end, we conducted transcriptional profiling of
seven sorghum genotypes (four low-N tolerant and three
low-N sensitive) having differential phenotypic response to
N-stress using RNA-seq technology. In this case, we maxi-
mized the number of lines analyzed in an attempt to iden-
tify common differentially expressed genes (DEGs). We
identified a number of common N-stress tolerant DEGs
between sensitive and tolerant genotypes under N-limited
conditions.

Methods

Generating plant material and screening for N-stress
tolerance under field conditions

The physiological adaptations to N-stress were com-
pared between two Chinese sorghum lines (Chinal7 and
San Chi San) with two U.S. sorghum lines, CK60 and
BTx623 grown in greenhouse conditions. The biochem-
ical assays conducted on these genotypes by Maranville
and Madhavan [28] showed that assimilation efficiency
index and phosphoenolpyruvate carboxylase (PEPcase)
activity were significantly greater for the Chinese lines
than the U.S. lines. In this project, we developed 210 F;
Recombinant Inbred Lines (RILs) by crossing the low-N
sensitive U.S line, CK60 with the day-length insensitive
and low-N tolerant Chinese line, San Chi San. Each of
the RILs was derived from a single F, plant following the
single seed descent method until F; generation. Sorghum
genotypes KS78, BTx623, CK60, San Chi San, Chinal7
and the F, RILs were evaluated phenotypically in two N
regimes for two years with two replications each. Field
experiments were conducted at University of Nebraska-
Lincoln experimental farms at Mead, Nebraska and
consisted of low-N (LN, 0 kg ha!) and normal N (NN,
100 kg ha™') regimes. The LN field had not received
any applied nitrogen fertilizer since 1986. Plant height
(PH) was measured from base of the plant to tip of the
head in centimeter. Biomass and grain yields (BY and
GY, t ha') were recorded under both N regimes. Five
of the worst performing RILs (RILs 1-5) and five of the
best performing RILs (RILs 6-10) covering the two tails
of CK60 x San Chi San population were selected based
on their biomass yield (t ha!) under LN conditions.

Screening the selected genotypes for N-stress under
controlled conditions

Seeds from KS78, BTx623, CK60, San Chi San, and Chinal7
sorghum genotypes, five best and worst performing RILs se-
lected from LN field conditions, were planted in Sunshine
mix (Canadian sphagnum peat moss, vermiculite, and dolo-
mitic limestone) without added fertilizer (N-stress). These
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genotypes were also planted in Sunshine mix provided
with 100% Hoagland solution (Full N) [29]. The seeds
were grown in three inch pots under a 16/8 h photo-
period at 25°C (day) and 18°C (night). The fresh and
dry weights of root and shoot tissues of three week old
seedlings were measured from both N-conditions.

RNA extraction from root tissues

The roots were harvested separately from three week old
seedlings, all traces of soil removed by repeated gentle
washing in de-ionized water, frozen in liquid nitrogen
and stored at -80°C until RNA extraction. All samples
were taken at middle of the day to minimize diurnal
changes in C and N metabolism [30], because the ex-
pression levels of nitrate assimilation genes are different
at different time points of the day. Total RNA was ex-
tracted first using NTES buffer (20 mM TRIS pH 8,
10 mM EDTA, 100 mM NacCl and 1% SDS) and followed
by Trizol reagent (Invitrogen) using the manufacturer’s
instructions. RNA samples were dissolved in RNAse-free
H,0O, the integrity and quality of the total RNA was
checked by a NanoDrop 1000 spectrophotometer and by
resolution on a 1% non-denaturing agarose gels. Equal
quantities of RNA from the five best performing RILs
and the five worst performing RILs were bulked as high-
NUE and low-NUE bulks respectively. For RNA-seq,
four biological replications of each genotype grown
under N-stress were used.

lllumina RNA-sequencing

RNA-seq was used to identify common DEG transcripts
among root tissues of four N-stress tolerant genotypes
(San Chi San, Chinal7, KS78, and the high-NUE bulk)
and three sensitive genotypes [CK60, BTx623 (reference
genome), and low-NUE bulk] grown under N-stress.
The experimental process is summarized as follows:
RNA libraries were prepared from 4 pg total RNA using
the Ilumina TruSeq RNA Sample Prep Kit v2 - Set A
(RS-122-2002) according to the manufacturer’s instruc-
tions. Libraries were analyzed and measured by gel elec-
trophoresis and NanoDrop 1000 Spectrophotometer to a
concentration of 10 nM each. Four indexed libraries were
pooled into one lane and clusters generated at 8 pM con-
centration were sequenced on the Illumina Genome
Analyzer IIx (GAIIx; llumina, Inc., San Diego, CA) using
three 36-cycle sequencing kits to read 76 nucleotides of
sequence from a single end of each insert, by standard
multiplexing v8.3 protocol.

Identification of Differentially Expressed Genes

Short reads with 76 bp generated by GAIIx were initially
processed to remove the adapter sequences and low-
quality bases at the 3" end. The short reads were mapped
against the Sorghum bicolor 79 genome (http://www.


http://www.phytozome.net/sorghum.%20php

Gelli et al. BMC Genomics 2014, 15:179
http://www.biomedcentral.com/1471-2164/15/179

phytozome.net/sorghum.php) using Bowtie [31], allow-
ing up to two mismatches. The reads mapped to mul-
tiple locations were discarded. The number of reads in
genes was counted by HTSeq-count tool [32] with the
‘union’ resolution mode. Then, the edgeR package [33]
with TMM normalization method was used to align ex-
pression values to a common scale. The reads per kilo
base per million (RPKM) values were also calculated for
genes as the expression level [34]. The resulting expres-
sion values were log,-transformed. Average log signal
values of four biological replications for each sample
were then computed and used for further analysis. The
cutoff of log,-fold value >1 (2-fold absolute value) and
adjusted P-value <0.001 (FDR) were used for determin-
ing significant DEG transcripts. A total of 12 pair-wise
comparisons were made by comparing three sensitive
genotypes with each of the four tolerant genotypes to
find common DEG transcripts across all genotypes. In
addition, tolerant and sensitive genotypes were com-
pared one by one to each other among themselves to
asses if the differences in gene expression between sensi-
tive and tolerant genotypes found are usual or unusual
for differences among sorghum genotypes.

Gene Ontology analysis

Sorghum gene ontology (GO) term association informa-
tion was obtained from http://www.phytozome.net. Using
the above gene association file and the GO ID to term
index file, the GO annotation file for sorghum was gener-
ated by a custom script. The GO::TermFinder [35] was
used for enrichment analysis. The GO term with P <0.05
is defined as enriched GO term with significant DEGs
among 12 pair-wise comparisons. This analysis allowed us
to determine the major biological functions of DEGs.

Pathway enrichment analysis

The gene pathway mappings were downloaded from http://
genome.jgi-psf.org/Sorbil/ Sorbil.download. ftp.html and
the filtered model 6 was used in the analysis. The
hypergeometric test was applied to identify significantly
enriched pathways:

Where N is the number of all genes with pathway an-
notation, 7 is the number of DEGs in N, M is the num-
ber of genes mapped to a given pathway, and m is the
number of DEGs in M.

The pathways with a P value of <0.05 are defined as
those with significantly enriched genes among 12 pair-
wise comparisons.
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Real-time quantitative RT-PCR (qRT-PCR) analysis

qRT-PCR was used to validate and compare the expres-
sion of DEG transcripts obtained from RNA-seq experi-
ment on the cDNA synthesized from root tissues grown
under N-stress as well as full N. DEG transcripts were
analyzed through qRT-PCR using an iQ™5 optical system
(Bio Rad, Hercules, CA). Template cDNA samples were
prepared using the iScript First Strand Synthesis System
Kit (Bio-Rad) for reverse transcriptase-PCR with 500 ng
of total RNA. Primers for the PCR reactions were de-
signed to have a melting temperature of 58°C to 62°C
and to produce a PCR product between 100 to 150 bp.
Six differentially expressed genes were selected to valid-
ate the RNA-seq data using qRT-PCR on independent
biological replicates. Primers were listed in Additional
file 1. The control gene, actin (Sb01g010030) was se-
lected since its expression was found to be stable be-
tween the root RNA extracted from different genotypes.
Transcript abundance was assayed using SYBR green
PCR master mix with 2 pl of 10-fold diluted cDNA and
2 ul of the primers (5 pM). The program used was as
follows: initial denaturation for 3 min at 95°C, followed
by 40 PCR cycles consisting of 95°C for 10 s, 56°C to 62°C
for 30 s, 95°C for 60 s and 55°C for 10 s. For each product,
the threshold cycle (CT), where the amplification reaction
enters the exponential phase, was determined for three
technical replicates and three independent biological repli-
cates per genotype. The comparative 27*“" method was
used to quantify the relative abundance of transcripts [36].

Results

Phenotypic performance of sorghum genotypes under
field and controlled conditions

Mean phenotypic performance of the five sorghum ge-
notypes CK60, BTx623, KS78, San Chi San and Chinal?7,
and the five worst and best performing CK60 x San Chi
San RILs tested under NN and LN field conditions were
shown in Table 1. Under LN, the biomass and grain yield
of sensitive genotypes, CK60 (3.1 t ha?tand 1.1 t ha') and
BTx623 (4 t ha' and 1.2 t ha™'), were lower than the
tolerant genotypes KS78 (5.9 t ha™ and 2.2 t ha™),
San Chi San (7.6 t ha™ and 5.0 t ha') and Chinal7
(7.3 t ha™ and 3.9 t ha™'), respectively. The biomass
and grain yields of RILs 1-5 range from 3 to 3.7 t ha™*
and 0.9 to 1.7 t ha™ respectively, which were close to
the sensitive genotypes. The biomass and grain yields
of RILs 6-10 range from 9.4 to 16.5 t ha™' and 1.0 to
6.7 t ha™' respectively and were higher than the bio-
mass and grain yield of LN tolerant genotypes.

Root systems from N-stress tolerant genotypes were
usually more extensive than those of N-sensitive geno-
types (not shown). To quantify these differences, we com-
pared root biomass of all genotypes grown under no
added N and full-N conditions. Selected genotypes from
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Table 1 Performance of five sorghum inbreds, five worst
(1-5) and five best performing (6-10) CK60 x San Chi San
RILs grown under normal-N and low-N field conditions
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Table 2 Performance of three-week old seedlings of five
sorghum inbreds, five worst (1-5) and five best performing
(6-10) performing RILs grown under controlled conditions

Genotype Plant height (cm) Biomass yield Grain yield
(tha™) (tha™)

NN LN NN LN NN LN
RIL-1 113 95 4.1 30 13 0.9
RIL-2 132 83 9.0 3.1 3.1 14
RIL-3 149 77 7.5 32 1.6 1.1
RIL-4 147 98 76 35 32 1.7
RIL-5 122 109 8.1 37 25 09
CK60 115 91 6.6 3.1 29 1.1
BTx623 140 126 82 4.0 28 12
KS78 132 76 10.1 59 4.1 22
San Chi San 157 137 16.5 76 64 50
China-17 170 157 13.8 7.3 55 39
RIL-6 124 93 13.0 114 6.2 4.6
RIL-7 152 122 13.2 9.6 40 1.0
RIL-8 161 125 134 94 34 26
RIL-9 185 168 17.7 15.1 6.2 52
RIL-10 163 137 184 16.5 77 6.7

NN- normal N field (100 kg ha™ fertilizer); LN- low N field (0 kg ha™ fertilizer).

field evaluations were grown for three weeks in Sunshine
mix provided with 100% Hoagland solution (full N) and
provided with no added fertilizer (N-stress). The fresh and
dry weights of root and shoot tissues from five seedlings
were averaged and shown in Table 2. Under N-stress, the
average weights of sensitive genotypes and worst perform-
ing RILs (1-5) were lower than the tolerant genotypes and
best performing RILs (6-10).

RNA-seq data analysis
We sought to compare the transcriptomes of multiple N-
stress tolerant and sensitive genotypes. To select a tissue
type for the RNA-seq, we conducted extensive 2D prote-
omic comparisons on both leaf and root tissue extracts
from three week old seedlings of sensitive and tolerant ge-
notypes grown on Murashige and Skoog medium, as well
as 45 day old leaves from soil grown plants, in the pres-
ence and absence of added N (not shown). In general,
greater protein abundance differences were observed be-
tween the root tissues of sensitive and tolerant genotypes
grown under N-stress compared to full N. In contrast, no
such generalized increase in protein abundance or obvious
changes in individual proteins were observed between leaf
tissues of three week-old and 45 day old plants grown at
either N condition (data was not shown). Therefore, in
this study, we focused our transcriptional profiling experi-
ments on root tissues.

Seeds from the selected genotypes were grown in Sun-
shine mix without fertilizer (N-stress) for three weeks.

Full N N-stress
Genotype Fresh Dry weight  Fresh Dry weight

weight (g)  (9) weight ()  (9)

Root Shoot Root Shoot Root Shoot Root Shoot
Ril-1 105 204 045 183 620 371 035 045
Ril-2 951 190 049 181 371 225 016 021
Ril-3 121 215 072 181 623 345 026 047
Ril-4 122200 065 164 72 316 035 048
Ril-5 942 192 042 122 586 312 023 033
CK60 103 179 041 165 510 321 024 041
BTx623 130 225 066 200 650 350 044 052
KS78 141 243 083 236 751 435 050 070

San ChiSan 125 247 079 221 6.89 415 047 059
Chinatl7 126 266 077 265 723 449 051 063

RIL-6 105 245 054 234 565 395 036 050
RIL-7 164 277 087 289 685 441 038 053
RIL-8 109 238 052 223 571 375 039 049
RIL-9 146 278 067 244 666 485 041 065
RIL-10 135 231 077 200 835 475 050 048

Full N-full nitrogen (Sunshine mix with 100% Hoagland solution); N-stress-
nitrogen stress (Sunshine mix without added fertilizer).

The seedlings of KS78, Chinal7, San Chi San and best
performing RILs have higher root and shoot mass com-
pared to CK60 and worst performing RILs (Table 2). To
survey the root transcriptome in response to N-stress,
c¢DNA samples were prepared from the root tissues of
seven sorghum genotypes [CK60 (1), BTx623 (2), San
Chi San (3), Chinal7 (4), KS78 (5), high (6) and low (7)
NUE bulks] grown under N-stress conditions and used for
[lumina RNA-seq. The total number of reads generated
from each library (average of four biological replications)
ranged from 7.3 to 8.3 million (Table 3). After filtering, the
sequences of the seven libraries were mapped to the sor-
ghum reference genome, and a total of 5851955, 5306235,
5018702, 5399517, 6182990, 5269488, 5751263 sequences
were matched (~70% of the reads). The number of reads
producing unique sequences ranged from 3.6 to 5.2 mil-
lion. The number of genes with at least one mapped tran-
script was 21497, 21537, 21295, 21160, 21632, 21336 and
22033 for libraries 1, 2, 3, 4, 5, 6, and 7, respectively. Simi-
larly, the number of genes with RPKM>1 was 14972,
14452, 14678, 13924, 14369, 15037 and 14673 for seven li-
braries respectively.

Differential transcript abundance between sorghum
genotypes

To check the variation in transcript abundance between
low-N sensitive and tolerant genotypes, 12 pair-wise
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Table 3 Categorization and abundance of transcripts detected with RNA-seq

Summary Lib 1 Lib 2 Lib 3 Lib 4 Lib 5 Lib 6 Lib 7
Total raw reads 8312677 7422797 7462817 7695810 8268795 7329570 7907043
Reads mapped to reference 5851955 5306235 5018702 5399517 6182990 5269488 5751263
Alignment 6467410 5758740 5324164 6623514 7615114 6899562 6842041
Unique mapped reads 5236500 4853730 4713240 4175521 4750866 3639414 4660485
Reads in gene region 4810502 4465738 4342745 3816552 4353451 3287048 4261630
Genes with >1 reads 21497 21537 21295 21160 21632 21336 22033
Gene # when RPKM is at least 1 14972 14452 14678 13924 14369 15037 14673

Lib 1-7: CK60, BTx623, San Chi San, China17, KS78, high- and low-NUE RIL bulk libraries respectively.

comparisons were made between three sensitive geno-
types [CK60 (1), BTx623 (2) and low-NUE bulk (7)]
with each of the four tolerant genotypes [San Chi San
(3), Chinal7 (4), KS78 (5) and the high-NUE bulk (6)].
A total of 486, 527, 279, 941, 589, 695, 550, 1432, 731,
341, 478, and 130 gene transcripts were found to be dif-
ferentially expressed between 1/3, 1/4, 1/5, 1/6, 2/3, 2/
4, 2/5, 2/6, 7/3, 7/4, 7/5, and 7/6 library comparisons
(Additional file 2, Figure 1). Higher number of DEG tran-
scripts were observed in BTx623 (1432), and CK60 (941)
when compared with the high-NUE bulk (Figure 1).
Four tolerant genotypes (3, 4, 5, and 6) were compared
one by one to each other, 60 gene transcripts showed
differential expression in at least five pair-wise compari-
sons (Additional file 3). Similarly, pair-wise comparisons
among three sensitive genotypes (1, 2, and 7) showed 289
transcripts were differentially expressed in at least two
comparisons (Additional file 4).

Confirmation of differentially expressed candidate genes

To confirm the gene expression profiling data obtained
from RNA-seq, qRT-PCR analysis was used to test the
expression of selected candidate genes. The gene spe-
cific primers used are listed (Additional file 1). For the
genes tested, the differential expression observed with
RNA-seq was generally confirmed with qRT-PCR data
(Additional file 5). Since gene expression differences
could also result from responses to other deficient nu-
trients, we tested the expression profiles of the same se-
lected candidate genes in root tissues grown under full
N provided with 100% Hoagland solution (Additional
file 5). In general, genes that were differentially expressed
between sensitive and tolerant genotypes, under low-N
were either not differentially expressed or had less pro-
nounced differential expression when grown under full N
conditions (Additional file 5). For example, 20G-Fe oxy-
genase (Sb08g016370) which had dramatically increased
expression in the N-sensitive genotypes between most
pair-wise comparisons under low-N (Additional file 5C),
was not increased in root tissues of sensitive genotypes
when plants grown under full N (Additional file 5C). A

disease resistance gene (Sb05g008910) was differentially
expressed to a lesser extent in full N conditions than in
N-limited conditions, in most pair-wise comparisons
(Additional file 5B and C). Furthermore, an aquaporin gene
(Sb10g007610), which was strongly increased in expression
in most of the sensitive genotypes under N-stress, was gen-
erally decreased in expression relative to N-stress tolerant
genotypes, under full-N. This is reflected by fold-change
values of less than one (Additional file 5C).

Gene Ontology functional annotation of DEGs

After identifying DEG transcripts from 12 pair-wise com-
parisons, we separated the DEGs abundant in sensitive ge-
notypes from the DEGs abundant in tolerant genotypes.
The functional annotations of DEG transcripts were estab-
lished using GO::TermFinder to see which GO terms are
enriched in these two groups of genotypes. GO analysis
classify the gene transcripts and gene products into their
corresponding biological processes (BP), molecular func-
tion (MF), and cellular component (CC). The DEG tran-
scripts with known GO annotation were categorized in to
30 functional groups in sensitive genotypes (Figure 2a)
and 11 groups in tolerant genotypes (Figure 2b). In the
molecular function ontology, the DEG transcripts associ-
ated with catalytic activity were the most abundant group
in both sensitive (522) and tolerant (225) genotypes. DEG
transcripts associated with heme, tetrapyrrole binding,
and nutrient reservoir activity encoding storage proteins
such as albumins were found common between sensitive
and tolerant genotypes. GO terms associated with mo-
lecular functions like peroxidase, hydrolase, antioxidant,
dioxigenase, electron carrier activity are enriched in sensi-
tive genotypes. In the biological processes ontology, GO
terms associated with metabolic process were the most
enriched in sensitive (471) and tolerant (197) genotypes.
DEG transcripts related to stress responses including
oxidative stress and stimuli were found in sensitive ge-
notypes. Three DEGs associated glutamine metabolic
process GO terms were enriched in tolerant genotypes.
With respect to cellular component ontology, DEG
transcripts associated with extracellular region and
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Figure 1 Number of differentially expressed gene transcripts between sensitive and tolerant genotypes among seven libraries.

12 pair-wise comparisons (1/3, 1/4, 1/5,1/6, 2/3, 2/4, 2/5, 2/6, 7/3, 7/4, 7/5, and 7/6) were made by comparing three sensitive genotypes [CK&0 (1),
BTx623 (2) and the low-NUE bulk (7)] with each of the four tolerant genotypes [San Chi San (3), Chinal7 (4), KS78 (5) and the high-NUE bulk (6)].

B Transcripts abundantin
sensitive genotypes

H Transcripts abundantin
tolerant genotypes

apoplast GO terms were found in sensitive genotypes and
signal recognition particle terms in tolerant genotypes.

Functional enrichment of significant genes

In addition to GO analysis, the DEG transcripts abun-
dant in sensitive genotypes and tolerant genotypes were
mapped to terms in KEGG database, and compared with
the sorghum reference genome to identify significantly
enriched metabolic or signal transduction pathways. DEG
transcripts with KEGG annotation were categorized into
78 pathways in sensitive genotypes (Additional file 6A) and
68 pathways in tolerant genotypes (Additional file 6B). In
both sensitive and tolerant genotypes 59 pathways were
common, including inositol phosphate, pyruvate, starch
and sucrose, fructose and mannose metabolism, and
citrate (TCA) cycle. DEGs associated with flavonoids,
stilbene and lignin biosynthesis, fluorine degradation,
gamma-hexachlorocyclohexane degradation, ascorbate
and aldarate metabolism were enriched in all genotypes.
The amino acid biosynthetic pathways (phenylalanine,
tyrosine, and tryptophan) and primary metabolism path-
ways like fatty acid, nitrogen, amino sugars, vitamin B6,
galactose, glutathione, sulphur and riboflavin were signifi-
cantly enriched in both sensitive and tolerant genotypes.
DEG transcripts associated with alanine and aspartate me-
tabolism, pentose phosphate pathway, amino sugars and
thiamine metabolism, aromatic amino acids (phenyl
alanine, tyrosine and tryptophan), sterol and alkaloid
biosynthetic pathways are enriched in sensitive geno-
types (Additional file 6A). The pathways related to fol-
ate, pentothenate, aminoacyl-tRNA, lysine biosynthesis
and branched chain amino acids (valine, leucine and
isoleucine) degradation pathways were enriched in tol-
erant genotypes. In addition, DEGs related to histidine,

aminophosphonate and methionine metabolisms were
also enriched in tolerant genotypes (Additional file 6b).

Comparison of DEGs between N-stress tolerant and
sensitive genotypes

The number of DEG transcripts between low-N tolerant
and sensitive genotypes of sorghum were calculated for
n =4 through n = 12, where n is the number of pair-
wise comparisons in which the given gene transcript was
differentially expressed. Only two transcripts showed dif-
ferential expression in all 12 pair-wise comparisons
made between all three low-N tolerant and four sensitive
genotypes. A total of 183 genes showed differential ex-
pression when n =6, while 33 genes showed differential
expression when n=9 (Figure 3). From these DEGs,
transcripts that showed differential expression among
the four tolerant genotypes (Additional file 3) as well as
among three sensitive genotypes (Additional file 4) were
discarded. This process would differentiate the DEG tran-
scripts involved in low-N tolerance from the genes differ-
entially expressed due to unrelated genotype differences. A
total of 115 DEG transcripts when n = 6 (Additional file 7)
were found common between four tolerant and three sen-
sitive genotypes. Of these, 88 were abundant in sensitive
genotypes and 27 DEG transcripts were abundant in toler-
ant genotypes.

Differential expression of nitrogen metabolism genes in
sorghum genotypes

RNA-seq results for known nitrogen transport and assimi-
lation genes indicate that N-stress increased the abun-
dance of gene transcripts encoding high affinity nitrate
transporters in tolerant genotypes (Table 4). For example,
transcript encoding nitrate transporter NRT2.5 or NRT2.7
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Figure 2 Histogram showing Gene Ontology functional enrichment analysis. a) GO terms for DEG transcripts abundant in sensitive
genotypes. b) GO terms for DEG transcripts abundant in tolerant genotypes.

was abundant in tolerant genotypes compared to CK60.
Other transcripts encoding nitrate transporters, NRT2.2,
NRT?2.3, and NRT2.6 were also abundant in Chinal7 and
KS78 compared to sensitive genotypes. Fd NADP (+) re-
ductase (FNR) transcript was abundant in Chinal7 com-
pared to sensitive genotypes, but the response was
slight. Expression of a transcript encoding enzymes in-
volved in ammonia assimilation, glutamate synthetase
(GOGAT-3) was abundant in KS78 and high-NUE
bulk, but not in Chinal7 and San Chi San relative to
CK60. Conversely, glutamine synthetase (GS-2) tran-
script was abundant in CK60 compared to tolerant ge-
notypes. Similarly, transcripts encoding genes involved
in nitrate assimilation, nitrate reductase (NR-1), nitrite

reductase (NiR) were abundant in CK60 and BTx623
compared to the high-NUE bulk.

DEG transcripts abundant in sensitive genotypes under
N-stress

A higher number of gene transcripts were abundant in
sensitive genotypes under N-stress, (Additional file 7),
some of which were listed in Table 5. Transcripts encod-
ing flavonoids and stilbene biosynthesis including chal-
cone and stilbene synthase, flavanone 3-hydroxylase,
choline monooxygenase and flavin containing domains
were abundant in sensitive genotypes. Abundance of a
DEG transcript encoding leucoanthocyanidin dioxygenase,
and transcripts encoding cytochrome P450’s (CYP71A25,
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Figure 3 Number of DEGs among 12 pair-wise comparisons
made between three sensitive and four tolerant genotypes;
n =the number of comparisons in which the given gene
transcript was differentially expressed.

CYP87A2, CYP72A15) were higher in CK60 and BTx623
compared to San Chi San, Chinal7 and KS78. The tran-
scripts encoding genes involved in cell wall modification in-
cluding beta-expansin, alpha/beta hydrolases, peroxidases,
chitinase A glycosyl hydrolase and beta-1, 3-glucanase had
higher abundance in sensitive genotypes. N-stress increased
the abundance of gene transcripts related to phytohor-
mones such as auxins, and cytokinins in sensitive genotypes
(Table 5). The transcript abundance of regulatory genes,
such as transcription factors and protein kinases, was
also differential between the genotypes. Here, five ki-
nases showed higher abundance in sensitive genotypes,
including cysteine-rich receptor like kinase (CRK55), PR5-
like pathogen resistance receptor kinase (ARK1AS), S-
locus lectin protein kinase, PEP1 receptor kinases. Several
transcription factors also showed higher abundance in
sensitive genotypes including a putative MYB transcrip-
tion factor and auxin responsive transcription regulators
(ARF2, OsSAURA4).
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DEG transcripts abundant in tolerant genotypes under
N-stress

In this study, 27 gene transcripts showed higher abundance
in tolerant genotypes compared to sensitive genotypes
under N-stress conditions. These transcripts encoded genes
involved in membrane transporter, defense, protein synthe-
sis and protein turnover (Table 6). Genes involved in mem-
brane transport include, a lysine histidine transporter 1
(LHT1), whose expression was abundant in San Chi San,
Chinal?7 and high-NUE bulk compared to sensitive geno-
types under N-stress. A transcript encoding SEC14 cyto-
solic factor family protein was also abundant in San Chi
San, Chinal7 and KS78 relative to CK60 and BTx623. The
abundance of a gene transcript encoding a protein with an-
kyrin repeat was higher in tolerant genotypes relative to
CK60. The transcripts encoding many ribosomal genes in-
volved in protein synthesis including structural constituent
of ribosome L16p/L10 and translation elongation factors
(Tu), were abundant in tolerant genotypes compared to
sensitive genotypes. In addition, transcripts encoding
genes involved in abiotic stress response, like drought
induced family protein were abundant. Genes involved in
detoxification of xenobiotics like UDP-Glycosyltransferase
and Glutathione-S-transferase were abundant in tolerant

genotypes.

Discussion

The focus of our study is to identify common genes that
are differentially expressed between low-N tolerant and
sensitive genotypes having different genetic backgrounds
with differential response to N-stress. To select the geno-
types with differential response to N, five sorghum geno-
types (CK60, BTx623, San Chi San, Chinal7 and KS78)
and RILs from CK60 x San Chi San were evaluated
under field conditions provided with full N' (100 Kg ha™

Table 4 Differential expression of nitrogen metabolism genes among sorghum genotypes

Gene name Locus Log(FC) = log, (sensitive/tolerant genotype)

1/3 1/4 1/5 1/6 2/3 2/4 2/5 2/6 7/3 7/4 7/5 7/6
NRT25 or 2.7 Sb03g032310  -16 -34 -4.1 -2 ns ns -19  ns ns 16 -2 ns
HANT:NRT2.2 Sb04g001000 ns -19 =22 ns ns -6 -19 ns ns -1.8 =22 ns
HANTNRT2.3 Sb04g001000  ns -1.9 -2.2 ns ns 16 <19 ns ns -18 22 ns
HANTNRT2.6 Sb04g001000  ns -19 -2.2 ns ns 16 <19  ns ns -18 22 ns
GOGAT-3 Sb03g031310  ns ns -1.8 -1.8 ns ns ns ns -2 ns ns ns
NiR Sb04g034160 ns ns ns 36 ns ns ns 39 -6 -15 ns 2.1
NR-1 Sb07g022750  ns ns ns 37 ns 2.1 ns 4.8 -19  ns -19 1.8
GS-2 Sb06g031460  ns 4.1 53 6 -4 ns ns ns 26 ns ns ns
FNR Sb01g006100 ns ns ns ns ns -16 ns ns ns ns ns ns

ns = non-significant when FDR < 1; Log(FC) is the log, ratio of gene transcript between sensitive genotypes [CK60 (1), BTx623 (2), low-NUE bulk (7)] and tolerant
genotypes (San Chi San (3), China17 (4), KS78 (5), High-NUE bulk (6)]; If Log(FC) <0, negative values indicate transcript is abundant in tolerant genotypes and if

Log(FC) >0, positive values indicate transcript is abundant in sensitive genotypes.
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Table 5 List of DEG transcripts abundant in sensitive genotypes

Log(FC) = log, (sensitive/tolerant genotype)

Gene annotation Gene id 1/3

174 1/5 1/6 2/3 2/4 2/5 2/6 7/3 7/4 7/5 7/6

Flavanoids and stilbene biosynthesis
Chalcone and stilbene synthase Sb07g004700 39
Sb10g028700 5.0
Sb07g005780 39
Sb06g014550 33
Sb09g026280 x*
Sb07g000550 1.8
Sb05g004900 76

Sb04g003850 93

Choline monooxygenase

Polyamine oxidase 1, Flavin-containing domain
Leucoanthocyanidin dioxygenase
Anthocyanidin 5,3-O-glucosyltransferase
CYP71A25 cytochrome P450,

CYP87A2 cytochrome P450,

Glutathione S-transferase

Cell wall metabolism

Beta-1,3-glucanase Sb08g019670 39
Sb10g028070 2.8
Sb02g003110 25
Sb09g020980 9.8
Sb09g021000 38
Sb10g021250 10.1
Sb1306s002010 7.2
Sb08g019670 39
Sb05g023710 2.7

Beta-expansin

Peroxin 13

Peroxidase superfamily protein
Peroxidase superfamily protein
Alpha/beta-Hydrolases
Alpha/beta-Hydrolases

Glycosyl hydrolases family 17
Chitinase A glycosyl hydrolase
Phytohormones

SAUR-like auxin-responsive protein Sb06g001800 **
Sb06g011767 6.5
Sb04g000450 38
Sb06g018490 124

Auxin response factor 2 (ARF 2)
Auxin-induced protein 5NG4
Cytokinin-O-glucosyltransferase 2
Kinases

CRK55, Cystein rich RLK 55 Sb01g039360 **
Sb03g025630 x*
Sb01g041910 32
Sb09g001750 **

Sb079021940 30

PR5-like receptor kinase

Protein kinase superfamily protein
S-locus lectin protein kinase

PEP1 receptor-1 kinase
Transcription factors

MYB-like transcription factor Sb09g030390 29
Sb01g014400 44
Sb06g011767 65

Sb06g001800 **

AP2/B3-like transcriptional factor
Auxin response factor 2

SAUR-like auxin-responsive protein

50 84 34 31 42 75 26 ** *x 68
6.0 7.1 ** 4.2 52 64 ¥ 44 55 66 %
4.2 26 19 32 35 19 0 34 37 20 13
30 ** 29 28 25 % 24 22 19 * 18
** 32 37 % i 25 29 24 28 33
75 48 49 87 45 17 18 102 59 31 32
** 77 35 66 ** 66 24 60 ** 6.1 **
9.2 70 % 9.6 95 73 19 91 9.1 68 %

39 *x 33 21 22 0 *x 2.2 22 0% *x
39 ** 26 0% 26 % ** 2.3 35 % 2.1
2.2 *x x> 25 22 0 16 20 1.7 * xx
*x *x 40 84 xx *x 26 85 *x ** 26
2% %% 34 25 %% %% 21 26 %% %% 22
100 ** 35 88 87 % 22 90 89 ¥ 24
79 *x 38 63 70 % 29 60 6.7 % 26
39 ** 33 21 22 % ** 2.2 22 % **
x> xx 19 23 xx xx 15 23 *x x> 1.5

35 i 36 % ** *x 34 36 35 % 35
6.5 xx x> 73 73 0 22 78 77 % 26
55 *% 80 32 48 73w *% *% *%
75 *x 29 76 % 29 121 72 0 25

22 2.1 ** ** 13 12 20 23 22 0%
4.1 35 0% *x 37 30 % *x 47 40
x xx 32 32 xx xx 31 24 xx x> 24
*x 59 % 29 36 73 0 *x 23 59 %
4.1 ** ** 29 40 % 18 19 3.1 ** **

4.2 *x 24 17 29 0 ** *x 24 % *x
42 25 % 6.0 57 41 18 32 A **
6.5 *x x> 73 73 0 22 78 77 0% 26
35 *x 36 % *x *x 34 36 35 0% 35

The transcriptional abundance of DEGs from 12 pair-wise comparisons (1/3, 1/4, 1/5, 1/6, 2/3, 2/4, 2/5, 2/6, 7/3, 7/4, 7/5, and 7/6) made between three sensitive
genotypes [CK60 (1), BTx623 (2) and the low-NUE bulk (7)] with each of the four with each of the four tolerant genotypes [San Chi San (3), China17 (4), KS78 (5)
and the high-NUE bulk (6)] were summarized. **Not significant when FDR < 0.001; Log(FC) is the log, ratio of gene transcript between sensitive and tolerant
genotypes; If Log(FC) >0, positive values indicate transcript is abundant in sensitive genotypes.

fertilizer) and N-stress (0 Kg ha™). The phenotypes of five
sorghum genotypes, five best and worst performing RILs
tested under contrasting N-regimes showed that the mean
values of plant height, biomass and grain yields were re-
duced from NN to LN field conditions (Table 1). Under
controlled conditions, the average weights of roots and

shoots of three week-old seedlings were also reduced from
full N (100% Hoagland solution) to N-stress (Table 2). In
maize, a 38% reduction in grain yield was observed from
high-N to low-N conditions [37], which likely results from
limitation of photosynthetic output caused by lower pro-
duction of proteins like Ribisco [17]. Under N-stress
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Table 6 List of DEG transcripts abundant in tolerant genotypes

Log(FC) =log, (sensitive/tolerant genotype)

Gene annotation Gene id 173 14 15 16 2/3 2/4 2/5 2/6 7/3 7/4 7/5 7/6
Ankyrin repeat Sb07g002190 75 84 77 69 0* x* x* x* ** 30 22
LHT1 lysine histidine transporter 1 Sb01g038720 -70 77 0% -67 -70 76 % -6.7  ** ** ** **
SEC14 cytosolic factor Sb05g026380 -78 64 77 ** 37 % 36 % ** ** ** **
Drought induced 19 protein Sb04g013790 38 46 0 32 23 3010 -7 23 0 **
Translation elf- Tu Sb02g007166 47 46 % 45 41 40 % -39 24 23 0% **
BTB-POZ and MATH domain 1 Sb07g026735 51 560 % ** 73 78 65 230 x*
Ribosomal protein (L16p/L10e) Sb01g036330 27  -34  -23 20 17 ** x* -14 0 **
Glutathione S-transferase Sb09g003700 21 260 0% ** 24 30 % -3 -19 25 0% **
Phosphatases Sb08g019110 21 29 21 20 29 36 -29 28 ** -6 x*
Leucine-rich receptor-like kinase Sb04g003840 27 26 27 0* -9 18 19 0 ** ** -15 0 0
Phosphoglycerate mutase Sb06g000380 34 -33 0 360 -15 0 -7 ** ** -13
RmIC-like cupins Sb01g019830 35 50 -32 32 % -2.1 ** ** ** 20 % **
Homeobox associated leucine zipper Sb079029150 36 27 0% ** 42 34 -3 -28 % ** ** **
Expressed protein Sb08g019270 -3.7  -37 % 30 -39 40 ** 33 % ** ** **
Transducin Sb04g022100 -38 -36 % 33 32 29 26 % ** ** **
Expressed protein Sb04g000700 -39 -39 % xx 69 -69 ¥ *x 35 35 % **
Trypsin family protein with PDZ domain ~ Sb08g015916 43 % ** 49 42 0% ** -48 310 ** -3.7
3-oxo-5-alpha-steroid 4-dehydrogenase Sb02g003510 -49 45 % 32 -32 28 ** -6 -28 24 % -1.1
F-box domain containing protein Sb02g001640 54 % ** 44 53 % ** -43 35 % ** 24
DNA binding transposon protein Sb05g020750 70 740 74 70 73 0% -73 26 0% **
Expressed protein Sb04g000690 77 79 % 70 76 -79 ** 70 -55 58 % -4.9
Leucine Rich Repeat family protein Sb06g001645 79 76 0 72 79 75 0 AN *x ** **
Expressed protein Sb04g012640 -83  ** ** -82 60 ** ** -59 -39 ¥ ** -3.7
Cell wall invertase 2 Sb00675002240  -9.1 74  ** 71 67 510 0% 48 35 ¥ ** **
Hypothetical protein Sb04g012541 91 ** 93 90 * ** 93 42 0 ** -4.5
Cupin domain containing protein Sb079g005307 ** 29 % ** -77 92 -80 -79 ** 27 0% **
UDP-Glycosyltransferase Sb04g027470 ** ** ** ** -62 45 52 43 23 ** -2 %

The transcriptional abundance of DEGs from 12 pair-wise comparisons (1/3, 1/4, 1/5, 1/6, 2/3, 2/4, 2/5, 2/6, 7/3, 7/4, 7/5, and 7/6) made between three sensitive
genotypes [CK60 (1), BTx623 (2) and the low-NUE bulk (7)] with each of the four tolerant genotypes [San Chi San (3), China17 (4), KS78 (5) and the high-NUE bulk
(6)] were summarized. **Not significant when FDR < 0.001; Log(FC) is the log, ratio of gene transcript between sensitive and tolerant genotypes; If Log(FC) <0,

negative values indicate transcript is abundant in tolerant genotypes.

conditions, the lower root and shoot weights of three
week old seedlings and lower biomass and grain yields of
CK60, BTx623 and RILs 1-5 from field conditions, indi-
cates their sensitivity to the limited N. San Chi San,
Chinal?7 and RILs 6-10 grow taller and have higher bio-
mass and grain yields in the field conditions and had
higher root and shoot weights in the seedling stage, indi-
cating their greater tolerance to the limited N. The RILs
showed transgressive segregation and this suggested a
polygenic inheritance of the traits. Maranville and Madha-
van [28] showed that assimilation efficiency indices were
significantly greater for the tolerant Chinese lines (San Chi
San and Chinal7) compared to sensitive US-lines (CK60
and BTx623) at both low and high N levels and the

Chinese lines retained greater phosphoenolpyruvate carb-
oxylase (PEPcase) activity under N-stress. This suggests
that PEPcase and enzymes associated with PEP synthesis
are perhaps responsible for maintaining relatively high
photosynthesis under N-stress, and resulted in greater bio-
mass accumulation of the tolerant genotypes [28].

Comparison of transcriptomes between sorghum
genotypes

To identify common DEGs between genotypes having
differential response to N-stress, RNA-seq was used to
compare the transcriptomes of root tissues of genotypes
grown under N-stress. From RNA-seq data, a total of 12
pair-wise comparisons were made by comparing three
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sensitive genotypes with each of the four tolerant ge-
notypes to find common DEG transcripts across all ge-
notypes. In order to differentiate non-specific DEG
transcripts from those related to N-stress, the tran-
scripts between four tolerant genotypes and three sen-
sitive genotypes were inter-compared one by one. The
transcripts that showed differential expression among
tolerant (Additional file 3) and sensitive (Additional
file 4) genotypes were discarded from the list of DEGs
between 12 pair-wise comparisons. A total of 115 com-
mon DEG transcripts were observed between three
sensitive and four tolerant genotypes, which could be
related to N-stress (Additional file 7).

Expression analysis using qRT-PCR of selected genes
confirmed their differential expression under low-N con-
ditions (Additional file 5b). Furthermore, the differential
expression of these genes was either absent, reduced or
even reversed when plants were grown under full-N
conditions (Additional file 5c). This is consistent with
the suggestion that the selected genes are differentially
expressed as a specific response to N-deficiency.

Differential expression of known nitrogen metabolism
genes in sorghum genotypes

In general, N-starvation increases the expression of high-
affinity transport systems for nitrate and ammonium [7].
Here, N-stress increased the abundance of high affinity ni-
trate transporter gene transcripts (NRT2.5 or NRT2.7,
NRT2.2, NRT2.3, and NRT2.6) in tolerant genotypes one
to four-fold relative to sensitive genotypes (Table 4). Earlier
reports showed that high affinity nitrate transporters were
expressed in N-starved seedlings of Arabidopsis [38,39]. In
rice, the nitrate transporter (OsNRT2.2) in association with
OsNAR?2.1 transports nitrate in the high affinity concentra-
tion range in roots [40]. The increased nitrate could pro-
mote the elongation of lateral roots [5]. Conversely, the
abundance of nitrate assimilatory gene transcripts, NR-1
and NiR, and ammonia assimilatory gene, GS-2 was higher
in sensitive genotypes. GS-2 transcript increased in CK60
compared to Chinal7, KS78 and the high-NUE bulk. How-
ever, San Chi San had higher levels of GS-2 transcript com-
pared to BTx623 and low-NUE bulk, indicating a lack of
functional redundancy in the expression of gene tran-
scripts. The nitrate assimilation genes and GS-2 could be
highly expressed to sustain the stress conditions. Overall,
known nitrate transporter and assimilation genes showed
very little change in expression between the tolerant and
sensitive genotypes, indicating that the expression of basic
N metabolism genes may be genotype independent. In the
analysis of gene expression profile comparisons of rice
using microarray, Lian et al [23] observed similar results;
genes involved in N uptake and assimilation showed little
response to N-stress.
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Abundance of transcripts in sensitive genotypes under
N-stress

DEG transcripts associated with secondary metabolism
like flavonoids and anthocyanin biosynthesis, as well as
those associated with abiotic stress responses, were
abundant in sensitive genotypes (Table 5). Such expres-
sion changes may be involved in the plant’s tolerance to
N-stress. The role flavonoids play in the sensitive geno-
types under N-stress is not known. However, expression
of flavonoid biosynthetic pathway genes was also reported
in soybean [26] and Arabidopsis [30] when genotypes
grown under severe N-stress. In addition, the transcripts
encoding Cytochrome P450s were abundant in sensitive
genotypes (Table 5). Cytochrome P450s catalyze oxidation
of a wide range of chemical reactions by activating dioxy-
gen [41] and were reported to play an important role in
biosynthesis of anthocyanin’s in response to stress [42].
Similarly, four Cytochrome P450s were expressed higher
in rice seedlings under N-stress [43].

A transcript encoding putative MYB transcription fac-
tor was abundant in sensitive genotypes (Table 5). It was
reported that MYB genes contribute to the control of
flavonoid biosynthesis in a wide range of plant species
(maize, petunia) often in combination with other regula-
tory genes [44]. A DEG transcript encoding choline
monooxygenase gene, an iron sulphur enzyme involved
in synthesis of glycine betaine in plants [45], was abun-
dant in low-N sensitive genotypes CK60 and BTx623. It
was reported that many species (maize, soybean, rice,
and wheat) of transgenic plants with its over-expression
had significantly increased glycine betaine content. Gly-
cine betaine is a nitrogenous compound and acts as an
osmoprotectant and its accumulation was associated
with abiotic stress tolerance [46]. In addition, transcript
encoding Glutathione-S-transferase (GST) was also abun-
dant in sensitive genotypes. GST catalyzes the glutathione-
dependent detoxification reactions and the reduction of
hydroperoxides. GSTs may act as binding proteins that se-
questrate flavonoids in the vacuole for protection against
environmental stresses [47]. Therefore, induction of the
flavonoid pathway may be a characteristic response of ge-
notypes sensitive to N-stress.

Alteration in the lipid composition of plant cell mem-
branes is one of the multiple defense strategies [48].
Here, the transcripts encoding genes involved cell wall
modification like peroxidases, peroxin-13, hydrolases
like glycosyl hydrolase 17, were abundant in sensitive ge-
notypes CK60 and BTx623. These proteins may be im-
portant for wall assembly, remodeling during growth,
development and stress responses. Since nitrogen stress
causes reduction in cell growth, it was not surprising to
find abundance of a B-expansin gene transcript. Expan-
sins play important roles in root growth and develop-
ment under nutrient and abiotic stress conditions and
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are also involved in cell wall expansion [49,50]. There-
fore, the sensitive genotypes defend the stress and main-
tain the growth by altering the cell wall.

Phytohormones such as auxins and cytokinins were
also reported to play important roles during the adapta-
tion to limited N [51]. The transcripts encoding auxin
response factors (SAUR-like, ARF2) and auxin inducible
proteins, 5NG4, were abundant in CK60 and BTx623
compared to tolerant genotypes (Table 5) under stress.
Earlier reports showed that inhibition of auxin transport
resulted in increased levels of MtN21-like-a/b and 5NG4
[52], led to localized increase in auxin concentration
through a blockage of the PINI cycling [53], and re-
sulted in reduced number of emerging lateral roots. The
abundance of transcripts encoding auxin inducible pro-
teins in sensitive genotypes could have resulted in their
reduced root mass under N-stress (Table 2).

Kinases play important roles in the development of
eukaryotic cells, such as cell cycle control and cell-type
determination and differentiation [54]. Kinases help the
organism to cope with changing conditions and stresses
in the environment. Because some of their targets are
transcription factors, they also play a role in regulating
transcription [55]. In this study, DEG transcripts en-
coding five kinases were abundant in sensitive geno-
types, which include cysteine-rich receptor like kinases
(Table 5). Previous research indicated that receptor-like
kinases play important roles in plant growth and develop-
ment [56] and had differential expression in soybean
genotypes grown under N-stress [26]. Therefore, we
hypothesize that these kinases might be important for
adaptation to N-stress in sensitive genotypes of sorghum.

Abundance of transcripts in tolerant genotypes under
N-stress

Under N-stress, plants tend to increase their N uptake
ability by regulating physiological, biochemical activities
and by changing root morphology including increased
root length, root hair density and lateral root number
[57]. We found that tolerant genotypes adapt to N defi-
ciency by producing higher root mass compared to sen-
sitive genotypes (Table 2). Also, many gene transcripts
involved in nitrate transport (Table 4) were present at
higher levels in tolerant genotypes. It is proposed that N-
metabolism related gene transcripts especially those en-
coding transporters, were increased in tolerant genotypes
in order to uptake nitrate or amino acids from soil more
efficiently and to produce more nitrogen containing me-
tabolites required for their survival under N-stress.

The soil contains significant amounts of organic nitro-
gen derived from decomposition of organic matter by
microorganisms, which is rich in amino acids. Plants
have different capacities to take up these amino acids
through putative amino acid transporters localized on
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the root epidermal cells [58]. In this study, a DEG tran-
script encoding high affinity amino acid transporter,
LYSINE HISTIDINE TRANSPORTER1 (LHT1), was
massively expressed in San Chi San and Chinal7 com-
pared to sensitive genotypes (Table 6). It was reported
that being expressed in the root, LHT1 is responsible
for uptake of amino acids from soil into root tissue
[59], and distributes from roots to shoots through
xylem [60] for further metabolism especially under N-
limited conditions. The amino acid uptake, and thus ni-
trogen use efficiency of the tolerant genotypes, could
be higher with increased LHT1 expression under lim-
ited inorganic N supply.

To survive under N-stress, some genes involved in al-
leviating the detrimental effect of stress are abundantly
expressed, which could facilitate tolerance to the stress.
In this study, cell wall invertase-2 (CWINV2) transcript
was massively increased in San Chi San and Chinal?7
(Table 6), indicating that sucrose degradation was in-
creased in tolerant genotypes. A similar observation was
made in the leaves of a water stress resistant cultivar of
wheat [61]. It is believed that the enhanced invertase ex-
pression in the roots of tolerant genotypes may contrib-
ute to the rapid cycling of sucrose, thus promoting
carbon partitioning in favor of sucrose accumulation for
counteracting the stress condition [20]. In addition, the
transcript of SEC14 cytosolic factor family protein was
abundantly expressed in tolerant genotypes compared to
CK60 and BTx623 (Table 6). It is also known as phos-
phatidylinositol/phosphatidylcholine transfer protein, and
is located in the Golgi membrane. There, it acts as a signal
precursor and activates stress responsive genes, phospho-
lipids and galactolipids [62], which increase the membrane
stability and provides stress tolerance [63]. Gene tran-
scripts responsible for numerous cellular activities, includ-
ing protein biosynthesis, modification, and degradation
enzymes were abundantly expressed in tolerant genotypes.
Transcripts encoding ribosomal genes involved in protein
biosynthesis, including structural constituent of ribosome
L16p/L10 and translation elongation factors (EF1A) were
also abundant in tolerant genotypes (Table 6).

Conclusion

Identification of common DEG transcripts between sor-
ghum genotypes with contrasting stress tolerance would
facilitate a better understanding of the genetic bases of
low-N tolerance. Here, Illumina RNA-seq analysis dem-
onstrated that gene transcripts involved in abiotic stress
response, and secondary metabolism were abundantly
expressed in sensitive genotypes of sorghum under N-
stress. Higher expression of these gene transcripts could
enable the sensitive genotypes to thrive under stress
conditions.
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The magnitude of expression changes in N transporter,
assimilation genes between tolerant and sensitive geno-
types was less. Conversely, many genes not directly in-
volved in nitrate metabolism had differential expression
under N-stress. In addition, the magnitude of change in
the expression of these genes was different between the
genotypes with varying degrees of tolerance to N-stress.
While sorghum seems to have a typical nitrate metabol-
ism process, it appears that many genes indirectly in-
volved in nitrate metabolism that respond to an nitrogen
stress treatment, are important for the observed differ-
ences between tolerant and sensitive genotypes of sor-
ghum. The DEG transcripts found between sensitive and
tolerant genotypes of sorghum in this study should pro-
vide useful information for understanding how different
sorghum genotypes encounter the N-stress at seedling
stage and how tolerant and sensitive genotypes can
adapt to N-stress conditions. Furthermore, the transcrip-
tomes of stress tolerant and sensitive genotypes grown
under full nitrogen were evaluated, suggested that the
selected genes were differentially expressed as a specific
response to N-deficiency. The DEGs from tolerant geno-
types would be the potential candidates to study further
for improving NUE of sorghum and related crop plants.
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