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Abstract

Background: Although our microbial community and genomes (the human microbiome) outnumber our genome by
several orders of magnitude, to what extent the human host genetic complement informs the microbiota composition is
not clear. The Human Microbiome Project (HMP) Consortium established a unique population-scale framework with
which to characterize the relationship of microbial community structure with their human hosts. A wide variety of taxa
and metabolic pathways have been shown to be differentially distributed by virtue of race/ethnicity in the HMP. Given
that mtDNA haplogroups are the maternally derived ancestral genomic markers and mitochondria’s role as the generator
for cellular ATP, characterizing the relationship between human mtDNA genomic variants and microbiome profiles
becomes of potential marked biologic and clinical interest.

Results: We leveraged sequencing data from the HMP to investigate the association between microbiome community
structures with its own host mtDNA variants. 15 haplogroups and 631 mtDNA nucleotide polymorphisms (mean
sequencing depth of 280X on the mitochondria genome) from 89 individuals participating in the HMP were accurately
identified. 16S rRNA (V3-V5 region) sequencing generated microbiome taxonomy profiles and whole genome shotgun
sequencing generated metabolic profiles from various body sites were treated as traits to conduct association analysis
between haplogroups and host clinical metadata through linear regression. The mtSNPs of individuals with European
haplogroups were associated with microbiome profiles using PLINK quantitative trait associations with permutation and
adjusted for multiple comparisons. We observe that among 139 stool and 59 vaginal posterior fornix samples, several
haplogroups show significant association with specific microbiota (q-value < 0.05) as well as their aggregate community
structure (Chi-square with Monte Carlo, p < 0.005), which confirmed and expanded previous research on the association
of race and ethnicity with microbiome profile. Our results further indicate that mtDNA variations may render different
microbiome profiles, possibly through an inflammatory response to different levels of reactive oxygen species activity.

Conclusions: These data provide initial evidence for the association between host ancestral genome with the structure
of its microbiome.
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Background
Humans are remarkable hosts to microbes, and we have in
fact co-evolved as highly plethoric communities. The NIH
Roadmap initiative, known as the Human Microbiome
Project (HMP) [1], enabled sequence-based compre-
hensive characterization of the adult human microbiota.
Human-associated microorganisms are present in numbers
exceeding the quantities of human cells by at least 10-fold
beginning in the neonatal period, and the collective micro-
biome metagenome exceeds our human genome in terms
of gene content by orders of magnitude (>150 fold) [2-4].
We now appreciate that the microbiota are a metabolically
and antigenically vibrant diverse community, which may
function as mutualists (symbiotically beneficial), commens-
alists (of neither harm nor benefit), or pathogens (detrimen-
tal to the host). However, we do not yet understand how
the host genomic content influences its establishment.
The HMP Consortium [2-5] established just such a

population-scale framework with which to characterize the
relationship of microbial communities with their human
hosts. The signature frameworks of as many as 18 body
sites of 242 screened and phenotyped adults from the target
population of 300 subjects have been described. To
minimize exogenous and environmental exposure that may
influence taxonomy abundance, rigorous clinical standards
were applied to screen subjects to assure that the cohort
were similar in baseline health status [4]. The majority of
the subjects were non-vegetarian, non-smokers, non-obese
and yet diverged with respect to race/ethnicity, and parental
country of origin. Of interest, although no taxa were uni-
versally present among all body habitats and individuals,
the carriage of metabolic pathways was surprisingly alike,
with a greater degree of similarity observed among related
race or ethnic groups [2,3]. These carriage patterns were
functionally relevant, and genomic variation in microbial
strains (gains, losses, and polymorphisms) underscored
inter-individual variation in the microbiome. Taxonomic
profiling associating both clades and metabolism with host
covariates (namely age, gender, BMI, blood pressure, race
and ethnicity, etc) demonstrated that most microbial varia-
tions are not well explained by examined clinical covariates
other than race/ethnicity [2].
Race and ethnicity exert their effects through innate or

genetically determined biologic mechanisms, and have
broader implications with relation to socioeconomic sta-
tus, diet habit, life style, etc. Therefore, it is not surpris-
ing to see the strong association of race/ethnicity with
the microbiome. However, self-defined race/ethnicity is
not always accurate and further complicated by second-
ary associations of race and ethnicity with diet, birth
country, etc. Thus, further investigation down to the
molecular level is essential to gain more knowledge on
the underlying mechanism of association and to prevent
potential misclassification bias.
One recent study has reported on both the com-
monality and the distinctions in the gut metagenome
when compared among children and adults from rural
Venezuela, Malawi, and the urban U.S. Of note, the
study cohort was comprised of 531 subjects from a lim-
ited number of families (151). While relatively few dis-
tinctions in the gut microbiome were observed across all
cohorts through the first 3 years of life, pronounced dif-
ferences in the gut microbiome and functional gene
repertoires were noted among geographic locations.
However, there was no clustering observed among adult
Malawians, Amerindians, nor regional U.S. populations.
The investigators concluded that the host age/stage of
development and geography served as primary determi-
nants of the gut microbiome [6]. However, it bears men-
tion that the potential for shared or divergent host
ancestral genomic variation (mitochondrial or nuclear
DNA) among their study cohorts was not investigated,
and thus, this study may have failed to recognize an in-
dependent contribution of the host genome by examin-
ing likely homogenous populations (e.g., 34 Malawian
and 19 Venezuelan families with a significant number of
mono and dizygotic twin pairs). Moreover, when ana-
lyzed by the degree of familial relatedness (mono and di-
zygotic pairs, siblings, and unrelated children and
adults) and cohabitation, significant UniFrac distance
metrics was observed with greater heterogeneity. Similar
studies have not been duplicated in larger genetically di-
vergent population-based cohorts living in the same re-
gion with relatively common diets and exogenous
exposures [7].
In contrast, there are several lines of evidence suggest-

ing that the host genomic ancestry may structure the
microbiome. A large murine advanced intercross line de-
tected a core measurable microbiota (CMM) consisting
of 64 conserved taxonomic groups. In this cohort, 13
murine genomic regions and five quantitative trait loci
significantly associated with 26 CMM taxa at both the
genus and species level of operational taxonomic unit
(OTU) projections [8]. With respect to humans, previ-
ous studies have largely utilized twin and unrelated sib-
ling pairs as surrogates for host genomic identity
[7,9,10]. Turnbaugh et al [7] employed 16S rRNA based
analysis and observed that the gut microbial community
structures of adult monozygotic (haplotype identical)
twin pairs had a degree of similarity comparable to di-
zygotic pairs, and only slightly more similar to their
mothers. Of note, there was a roughly comparable de-
gree of covariation between adult monozygotic and di-
zygotic twin pairs and deviations from this “core” gut
microbiome were associated with adult obesity [7,9,10].
Total community DNA and RNA was relatively deep se-
quenced from one set of obese monozygotic twins, and
comparative analysis indicated that the majority of
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species-level projections were shared with relatively sig-
nificant variations in abundance [10]. These findings ex-
panded upon earlier unrelated infant and dizygotic twin
pair studies across the first year of life, which similarly
demonstrated that a higher degree of host relatedness
was associated with akin gut microbiome profiles [11].
However, these studies were limited to associations with
gut microbiota, failed to consider whether the host nu-
clear or mitochondrial genome (which is solely mater-
nally inherited) might be driving these associations, nor
controlled for the potential impact of perinatal co-
morbidities known to accompany human twin gestations
[12]. This is of potential importance, as twinning in hu-
man is an independent risk factor for the development
of common perinatal morbidities and mortalities as pre-
maturity, growth discordance, and twin-twin transfusion
syndrome, all of which are recognized to render risk of
adult obesity [13-15]. Despite these potential limitations,
such early studies at relatively lower microbial finger-
printing resolution collectively suggest that that the
structure of microbial communities is in some part influ-
enced by their human host’s genome.
Human populations can be divided into mtDNA hap-

logroups based on SNPs scattered throughout the mito-
chondrial genome, reflecting mutations accumulated by
the maternal lineage. Although there is association be-
tween ethnic groups and haplogroups, mtDNA variants
are most broadly representative of ancient ancestral
roots from tens of thousands of years ago. As people mi-
grated to form isolated groups, small changes accumu-
lated over generations to set genetic diversity. Ergo,
haplogroups may be regarded as broadly representative
of genomic ancestry but are neither the sole nor defini-
tive ancestral tags and may exist in linkage with other
nuclear DNA markers [16,17]. Given that race and eth-
nicity are delineated by haplogroup, and that mtDNA is
more susceptible to DNA damage and acquires muta-
tions across an individual’s lifetime at a higher rate than
nuclear DNA, we hypothesized that mtDNA haplogroup
and polymorphisms may be associated with variations in
the human microbiome [2].
There are additional inherent characteristics of mtDNA,

which make it an attractive candidate for host-microbiome
association studies. Mitochondria derive from ancestral
endosymbiont bacteria and have 16.5 kb circular double-
stranded DNA molecules in multiple copies per cell (het-
eroplasmy). Consistent with their role as the generators of
cellular ATP by oxidative phosphorylation, they play crucial
roles in energy metabolism and apoptosis [18], and serve as
the primary cellular source of reactive oxygen species [19].
The central role of mitochondrial proteins in cellular en-
ergy also makes mtDNA an ideal system for rapid human
adaptation to new climate and dietary conditions [20]. The
mtDNA genome encodes 13 protein-coding genes involved
in respiration and oxidative phosphorylation, alongside two
rRNAs and a complete set of 22 tRNAs that are important
for protein synthesis (http://www.mitomap.org). Likely due
to high levels of reactive oxygen species, lack of protective
histones, and a limited DNA repair capacity, somatic
mtDNA mutations (primarily in the D-Loop) are known to
accumulate in individuals over time [21]. However, the ma-
jority of mtDNA variants are benign polymorphisms related
to SNPs in the nuclear genome. The frequencies of these
variants differ among populations and serve as the founda-
tion of haplogrouping. The mutations in mtDNA have been
related to a series of diseases related to neurological, mus-
cular or metabolic disorder [22,23]. Recent population gen-
etics studies also indicate the association of mtDNA
variants with complex human diseases, such as Alzheimer’s,
Parkinson disease and cancer [24,25]. Of interest to our
studies, mitochondria have been recently suggested to play
a pivotal role in the innate immune response [19,21,26-29].
In this study, we sought to provide initial evidence re-

garding the contribution of the host genome to its micro-
biome through robust interrogation of sequencing data and
clinical metadata from the HMP [2-4]. Our aim was to de-
termine whether there exists a significant association be-
tween haplogroups and mtDNA variants with microbiome
taxonomic abundance and functional profiling.

Results
16S and WGS profile construction
The Human Microbiome Project screened 554 individ-
uals to enroll 300 subjects (149 males, 151 females,
mean age 26, mean BMI 24, 20.0% racial minority and
10.7% Hispanic) [4]. A longitudinal sampling strategy
yielded 11,174 primary specimens, from which 12,479
DNA samples were submitted to four centers for meta-
genomic sequencing. While the majority of the samples
were targeted for 16S (V3-V5 region) profiling on 454
FLX Titanium platform [2,3], whole genome shotgun se-
quencing (WGS) data were generated for a subset of 681
samples. In this analysis, we utilized a robust cohort of
samples from 89 individuals, which were sequenced at a
single center and retained both 16S and WGS data. The
Operational Taxonomic Unit (OTU) table [30] was gen-
erated using the HMP 16S pipeline with high stringency
approach on V3 to V5 (v35) variable regions [2-4]. For
each body site, OTU counts from samples belonging to
individuals in the cohort were extracted to construct the
OTU table (Additional file 1). The abundance of each
taxonomic level (Phylum, Order, Family, Genus, Species)
was binned and calculated based on the OTU table [2].
WGS was performed on the Illumina GAIIx platform.

After identification and removal of human reads, micro-
bial sequences were quality filtered and trimmed. The
remaining sequences were aligned to protein families,

http://www.mitomap.org
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and the abundance of each KEGG pathway and module
[31] was generated to reveal the functional activities of
each sample.
Host SNP and haplogroup identification
Mitochondrial genomic sequences were extracted from
whole genome sequencing of human samples by aligning
with Cambridge Reference Sequence (NC_012920) through
BWA (Burrows-Wheeler Aligner) [32]. High sequencing
depth was achieved on all samples (mean 280X), thereby
enabling a high degree of accuracy and precision of variant
call. In total, 631 mitochondrial single nucleotide polymor-
phisms (mtSNP) from across the whole mitochondrial gen-
ome were identified by both GATK (Genome Analysis Tool
Kit) [33] and SAMtools (Sequences Alignment/Map tool
set) [34] as detailed in Methods.
Human mtDNA is characterized by variants, which

in turn define haplogroups and polymorphisms. Mito-
chondria haplogroups are defined on the basis of hap-
logroup associating mtSNPs corresponding to the original
RFLP (Restriction fragment length polymorphism)-defining
loci [35]. All common European haplogroups (H, J, K, T, U,
V, W, X, I), Asian haplogroups (B, F), African American
haplogroups (L2, L3) and Mexican American haplogroups
(A,C) were observed at high confidence with correlation to
subject self-identified race and ethnicity [36]. Since the ma-
jority of enrolled subjects in HMP are Caucasian, the
dominant haplogroups in our study are European hap-
logroups, especially HV and UK, and are in accordance
with prior population-based cohorts [37].
Figure 1 Family level abundance distribution over haplogroups at va
at each body site (posterior fornix, stool, anterior nares, tongue dorsum) wa
than 90% of the total abundance for each body site.
Association with haplogroup
In our first pass analysis, we tried to observe the difference
of 16s-based microbiome community profiles among hap-
logroups at various body sites. OTUs from four body sites
(stool, posterior fornix, anterior nares and tongue dorsum)
representing four distinct body areas (gastrointestinal tract,
vagina, skin and oral) were extracted separately to compare
the distribution of top family level abundance in relation to
haplogroup. To reduce the effect of low counts in less com-
mon haplogroups, based on the distance in the accepted
haplogroup evolutionary tree [36], individuals were further
binned into HV, JT, IWX, UK, A, BF, C and L2L3 groups
[38]. As shown in Figure 1, although the overall family
abundance at each body site is consistent with anticipated
microbial community profiles [2], the abundance varies by
virtue of host mtDNA haplogroup. Lactobacillaceae is de-
cidedly the dominant taxa in the vaginal posterior fornix
among most of subjects, yet the relative abundance of Lac-
tobacillaceae is lower in haplogroup BF with high variance
(mean 0.63, s.d. 0.42) compared with other haplogroups,
such as haplogroup UK, which has a high and relatively
stable Lactobacillaceae abundance (mean 0.96, s.d. 0.03)
(Figure 1). Similarly, stool has a diverse taxonomic profile
with familial taxa-projections dominated by the high abun-
dance of Bacteroidaceae, Ruminococcaceae and Lachnospir-
aceae; however, a clear difference in Bacteroidaceae
abundance between BF (mean 0.67, s.d. 0.15) and IWX
(mean 0.29, s.d. 0.16) haplogroups is observed (Figure 1).
The anterior nares has the highest number of families iden-
tified and the tongue dorsum samples are the most eco-
logically rich, the difference among haplogroups is also
rious body sites. The abundance of top five most abundant families
s selected to represent the community. Top families represent more
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observable. There is marked difference of taxonomy abun-
dance among individuals from various haplogroups, which
may reflect the influence of maternal lineage on the
microbiome.
Given our initial observation described above, we next

sought to interrogate genus-level association with hap-
logroups using stool samples. Recent research shows that
niche selection, rather than neutral process, drives the as-
sembly of the gut microbiome [39]. We therefore con-
ducted multiple linear regression analyses to derive stool
genus level abundance association with haplogroup to-
gether with other metadata. Assigning genus abundance as
the dependent variable, we modeled host haplogroup and
clinical metadata (including age, gender, race, BMI, blood
pressure) as independent variables [2]. The linear regression
modeling revealed a persistent association of genus abun-
dance by virtue of haplogroups. For example, the IWX hap-
logroup has the highest abundance of Coprococcus (p value
0.016), while the BF haplogroup has the lowest abundance
of Coprococcus. Similarly, the UK haplogroup demonstrated
Figure 2 The distribution of four genus level abundance over haplog
the genus in corresponding haplogroups. The haplogroup box marked in r
discovered by multiple linear regression using genus level relative abundan
metadata as independent variables. The number of samples in each haplog
JT(18), L2L3(5), UK(22).
a preferential high abundance of Roseburia (p value
0.00025) and Streptococcus (p value 0.0086); JT haplogroup
demonstrated a low abundance of Akkermansia (p value
0.0038) (Figure 2). Gender, BMI, age and blood pressure
were neither modifiers of the haplogroup association, nor
were they associated with projections of above genus
abundance.

Association with microbiome traits
Despite the evident complexity of the microbiome, two
studies [40,41] have described microbial clusters dominated
by Bacteroides, Prevotella and Ruminococcus in stool [40]
and the relative dominance, absence, or presence of various
species of Lactobacillus in vaginal samples [41]. However,
the existence of discrete clusters is challenged by recent re-
search [42], which demonstrates community gradients
based on taxonomic abundance. As it was not a primary
aim of our study to define or refute the existence of discrete
clusters, we alternately tested the association of hap-
logroups with microbiome traits generated from gradients-
roups in stool samples. The Y-axis shows the relative abundance of
ed is the haplogroup associated with corresponding genus, which is
ce as dependent variable and using haplogroup assignment, clinical
roup is parenthetically annotated, A(6), BF(11), C(10), HV(56), IWX(11),
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based taxonomic abundance. We therefore investigated if
individuals in our study of 89 subjects displayed identifiable
traits based on taxonomic profile, then tested if these
microbiome traits associated with the host haplogroup in
the cohort.
Since the vaginal microbiome is dominated by Lactoba-

cillus in most individuals, variance is primarily determined
by the relative abundance of Lactobacillus spp [41]. Based
on recent work on structure, function and diversity of the
microbiome [2,3,43], posterior fornix taxonomy profiles
were constructed using species abundance of Lactobacillus
and genus abundance of other microbiota. All subjects
could be assigned to one of groups primarily based on the
abundance of specific Lactobacillus species, subtype I dom-
inated by L. crispatus, subtype II dominated by L. gasseri,
subtype III dominated by L. iners, subtype V dominated by
L. jensenii, subtype IV not dominated by Lactobacillus
(Figure 3A). These subtypes could then serve as traits for
subsequent tests of association. As shown in Figure 3B, the
distribution of subtype varies by virtue of host haplogroups
(Chi-square test with Monte Carlo test of 2000 replicates, p
value 0.001). 60% of individuals in Subtype IV, which inter-
estingly is not dominated by Lactobacillus spp, have non-
European haplogroups, while 90% of subtype I and all
subtype V individuals are in European haplogroups
(Figure 3B).
Although PAM (Partitioning Around Medoids) clus-

tering failed to identify enterotype-like clustering in our
cohort, we observed that the variance of the relative
abundance of Bacteroides and Prevotella are the highest
among all genus level clades, with an observed trade-off
between Prevotella and Bacteroides as previously de-
scribed [6,42]. Samples were therefore assigned to one of
two gut microbiome traits by virtue of their gradient
Bacteroides/Prevotella ratio: group 1 with higher Prevo-
tella abundance, and group 2 with higher Bacteroides
abundance (Figure 4A). Akin to the vaginal microbiome
trait projections, we again observed significant variation
by virtue of host haplogroup (Chi-square test with
Monte Carlo test of 2000 replicates, p value 0.002). The
proportion of group 1 is significantly higher among the
IWX haplogroup, and lower among the haplogroup BF
(Figure 4B). The proportion of the two trait groups var-
ies by large region-defined haplogroups, with bias by
virtue of European haplogroups (HV, IWX, JT, UK) rela-
tive to Asian, Mexican American (BF, C) haplogroups.
Of interest, we failed to observe a strong association of
non-haplogroup defining mtSNPs to any microbiome
trait.

Association with SNP
To avoid potential confounding with subject-defined
population stratification, we alternately stratified the co-
hort by haplogroup and performed SNP association
exclusively on individuals classified into European hap-
logroups (namely H, J, K, T, U, V, W, X, I, 57 stool sam-
ples, 25 posterior fornix samples) [36]; this is as
anticipated given that the majority of our subjects self-
identified their ethnicity as Caucasian. Adjacent mtSNPs
with similar profile could be represented by tagging
SNPs instead of genotyping every individual mtSNP
[44,45]. 158 tagging SNPs were identified using Tagger
through Haploview [46] on mtSNPs identified in Euro-
pean haplogroups. These tagging mtSNPs are located in
both regulatory and coding regions of the mitochondrial
genome.
The relative abundance of each clade was treated as a

quantitative trait and tested for association with 158 tag-
ging mtSNPs observed in the European cohort. In order
to overcome the potential normality of continuous vari-
able and rare allele testing, we adopted PLINK [47]
quantitative trait associations with permutation to derive
mtSNP associations. In gut samples, A13434G (q value
0.045) and T15784C (q value 0.045) are significantly as-
sociated with Eubacterium and Roseburia, which belong
to Clostridiale. G16390A (q value 0.003) was obser-
ved in robust association with Deltaproteobacteria and
Desulfovibrionaceae, which are both in the phylum of
Proteobacteria (Table 1) (Figure 5A). In posterior fornix
samples, a non-synonymous point mutation in cyto-
chrome b, T14798C (q value 0.065), is associated with
the Veillonellaceae family and one of its genus Dialister
(Figure 5B). Overall, SNPs in the mtDNA genomic re-
gions of ND5, CYTB and HV1 were in modest associ-
ation with stool taxonomies. SNPs associated with
microbiome profiles derived from the posterior fornix
samples were distributed across the mtDNA genomic
12S region, ND3, CYTB, HV1 and HV2 regions.
The results from whole genome sequencing of metage-

nomic samples were represented by KEGG pathway and
module relative abundance for carriage patterns. Inter-
estingly, we again observed a strong association between
host mtSNP and gut carriage patterns (Table 2). Notably,
the C3333T (q value 0.026) found in the ND1 coding
region (synonymous mutation) exhibited a strong as-
sociation with microbial metabolic pathways, includ-
ing Phenylalanine metabolism and Styrene degradation
(Table 2). In posterior fornix samples, a second syn-
onymous point mutation T6776C (q value 0.049) in COI
was observed in strong association with fatty acid
metabolism.

Discussion
By enabling concomitant analysis of host genomic vari-
ants with their respective microbiome community pro-
files, we can begin to address a number of crucial gaps
in our understanding. In this study, we observed signifi-
cant associations among both mtDNA haplogroups and



Figure 3 Haplogroup associations with vaginal microbial community profiles. (A) Heatmap of log10-transformed proportion of microbial
taxa found in the posterior fornix samples (color key is indicated in the upper left corner). Subtype (trait) I-V assigned based on the species
composition and abundance of vaginal microbial are shown on the top of the heatmap. (B) Vertical bar represent the distribution of each
subtype I-V across haplogroups. The number of samples in each haplogroup is parenthetically annotated, A(2), BF(6), C(2), HV(26), IWX(4), JT(6),
L2L3(4), UK(9).
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mtSNPs with microbiota taxa alongside their carri-
age patterns. These studies serve as robust initial
population-based interrogations into host genome-micro-
biome associations, and further clarify previously de-
scribed microbiome-ethnicity associations at the molecular
level.
First, mtSNPs were identified for individuals in the

HMP cohort with high confidence. Haplogroups were
identified for each individual based on mtSNPs. Given
the fundamental role of the mitochondrial genome in
cellular metabolism, evidence has already accumulated
that different human mtDNA lineages are functionally
different [48,49]. mtDNA haplogroups are also thought
to modify mitochondrial function because there is evi-
dence that they are formed by adaptation to thermal en-
vironments [50] and subsequent natural selection [20]. It



Figure 4 Association of haplogroups with gut microbial community profiles. (A) Relative abundance contributing to microbiome traits. The
number on the X-axis indicates group 1 and 2. (B) Vertical bar represent the distribution of each group across haplogroup. The number of samples
in each haplogroup is parenthetically annotated, A(6), BF(11), C(10), HV(56), IWX(11), JT(18), L2L3(5), UK(22).
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is clear that mitochondria haplogroup is more than a
genomic marker. It reflects the ancestral difference in
the human genome among the population. In publica-
tions from HMP consortium, association of clades and
metabolic pathways with host properties, such as age,
gender, BMI and race, have been preliminarily examined
and reported [2,3]. A wide variety of taxa and metabolic
pathways were differentially distributed by virtue of sub-
ject ethnicity at limited body sites. Although age was
Table 1 mtSNPs association with microbiome taxonomy profi

Sample origin SNP Allele frequency Rare SNP? Location C

Stool 16S

C16266T 1.82 N HV1 N

A13434G 0.41 Y ND5 M

T15784C 3.143 N CYTB P

T16519C 59.72 N D-loop N

G16390A 3.32 N D-loop N

Posterior fornix 16S

C16234T 3.59 N HV1 N

T14798C 8.06 N CYTB P

T1189C 3.85 N 12S N
shown to be associated with several metabolic pathways
and one skin clade, most other metadata (BMI, gender,
etc) are generally modest and non-significant [2]. Ergo,
other factors, such as host genetics, may play roles in
shaping the host microbiome profile [2]. We acknow-
ledge as a potential limitation to our study that while we
observed an association between certain mtDNA SNPs
and haplogroups with community microbial profiles,
these associations may be more broadly representative of
le in stool and posterior fornix samples

odon p-value q-value Taxa associated

/A 0.0001 0.008 Eggerthella

et- > Met 0.0006 0.045 Eubacterium,Roseburia

ro- > Pro 0.0006 0.045 Eubacterium,Roseburia

/A 0.00007 0.011 Alphaproteobacteria

/A 0.00002 0.003 Deltaproteobacteria, Desulfovibrionaceae

/A 0.0006 0.065 Bacteroidaceae

he- > Leu 0.0006 0.065 Veillonellaceae, Dialister

/A 0.0005 0.024 Veillonellaceae



Figure 5 Specific regions on mtDNA were shown to associate
with stool (panel A) and posterior fornix (panel B) taxonomy
profile. -log10(pvalue) is used to represent the strength of association
between specific mtSNP and clade. The –log10(pvalue) for each mtSNP
on each clade were displayed in one Manhattan plot. The X-axis is
labeled with mitochondrial gene names corresponding to their relative
position on the chromosome. Significant association between mtSNPs
and clade were marked in the plot.

Table 2 mtSNPs association with KEGG pathways and module

Sample origin SNP Allele frequency Rare SNP? Location Codon

Stool WGS

C3333T 0.073 Y ND1 Leu- >

G11914A 7.87 N ND4 Thr- >

Posterior fornix WGS

T6776C 2.55 N COI His- > H

A15924G 3.92 N tRNAThr N/A
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ancestral differences, which are in linkage with the mito-
chondrial genome.
Of interest to our data, Ravel et. al. [41] previously re-

ported on the relationship of racial or ethnic background
to vaginal bacterial community composition. Using a co-
hort of self-sampled subjects, they have previously re-
ported on the proportion of vaginal subtypes, which
significantly varied among Caucasian, Asian, African
American and Latino subjects. Similarly, other investiga-
tors with the MetaHIT have shown that stool enterotype
1 is observed in strong association with self-identifying
Japanese subjects [40]. Given that mtDNA haplogroups
are the maternally derived genomic markers of race/eth-
nicity, our results have confirmed and extended these
observations of others to molecular level.
Nevertheless, having defined mtDNA haplogroups

existing in significant association with specific taxa,
mtSNPs across mitochondria genome were further
tested to identify regions with higher association. We
observed several findings of potential relevance.
T14798C is a non-synonymous SNP that encodes an

amino acid substitution of phenylalanine (Phe) to leu-
cine (Leu). This mtSNP maps to cytochrome b and was
observed in strong association with differential abun-
dance of Dialister in the Veillonellaceae family specific-
ally in the vaginal posterior fornix. This is of potential
biological importance as the posterior fornix of the va-
gina is most proximal to the cervix and uterus and Dial-
ister has been found in both amniotic fluid and placental
tissue of women with preterm premature rupture of the
amniotic sac [51]. There is long-standing racial and eth-
nic disparity in the risk of preterm birth [52].
Turning to the gut microbiome, A13434G is a synonym-

ous mtSNP on ND5 and T15784C is a synonymous
mutation also on cytochrome b. Although synonymous
mutations are usually referred to as “silent”, increasing evi-
dence demonstrates significant effects on transcription,
splicing, and mRNA transport or translation, all of which
would alter phenotype [53]. Both of the above synonymous
mutations were observed in strong association with Eubac-
terium (belonging to Clostridium cluster IV) and Roseburia
(Clostridium cluster XIVa). Clostridial clusters IV and XIVa
are highly oxygen-sensitive anaerobes and produce butyrate
along the GI tract, which is excreted in feces [54]. No-
s in stool and posterior fornix samples

p-value q-value Pathway/module associated

Leu 0.0001 0.026 ko00360: Phenylalanine_metabolism

Thr 0.0001 0.014 M00335: Sec(secretion) System

is 0.0005 0.049 ko00071: Fatty acid metabolism

0.0001 0.003 M00193: Putative spermidine/ putrescine transport
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tably, decreased abundance in members of the butyrate-
producing Clostridial clusters IV and XIVa have been
reported in the gut of inflammatory bowel disease (IBD) pa-
tients, another prevalent human disease which displays
variable risk by virtue of race and ethnicity [55]. Function-
ally extending these observations to the microbiota meta-
bolic profile, several mtSNPs mapping to the mitochondrial
encoded NADH dehydrogenase genes were observed in
significant association with pathways in amino acid metab-
olism and protein secretion system from stool samples. It
has long been debated whether amino acid derived mole-
cules produced by intestinal bacteria affect host health by
regulating host immunity and cell function, or alternately
by varying microbial composition and community metabol-
ism [56]. Our findings suggest that the host mtDNA vari-
ants in key redox pathways inherently define the gut
microbiome, which in turn will structure their community
and carriage patterns. This is consistent with long standing
demonstrations that in microbiota, protein secretion trans-
port effector molecules function from the interior to exter-
ior. Moreover, protein secretion is known to play a central
role in modulating the interactions of bacteria with their
environments, particularly when symbiotic bacteria interact
with host cellular constituents [57].
The primary role of the mitochondria is to produce

energy for the cell. Overall, we observed more clades
and metabolic pathways to occur in significant associ-
ation with mtSNPs mapping to genomic loci encoding
for electron transport. The mitochondrial respiratory
chain, which is comprised of five multi-subunit protein
complexes, carries out oxidative phosphorylation. Dur-
ing oxidative phosphorylation, mitochondrial enzyme
complexes generate an electrical charge on either side of
the inner mitochondrial membrane through transferring
of electrons (membrane potential). This potential differ-
ence in electrical charge provides the energy for ATP
production. NADH dehydrogenase genes encoded by
mtDNA comprise complex I, which is responsible for
the first step in the electron transport process. Mito-
chondrial cytochrome b is a subunit of complex III,
which passes electrons to cytochrome c, which relays
them to complex IV; three of protein subunits of com-
plex IV are encoded by mitochondrial originated cyto-
chrome c oxidase.
Our observed mutations on mitochondrial genes are

known to disrupt normal activity of the electron trans-
port chain, which will affect the production of ATP and
increase the production of reactive oxygen species (ROS)
[58]. ROS have important roles in cell signaling and
homeostasis, but excessive amount of ROS could also
cause significant damage to cell structures [59]. In human
disease studies, oxidative stress is involved in the develop-
ment of many diseases, including cancer [60], Parkinson’s
disease, Alzheimer’s disease [61], and inflammatory bowel
disease [62]. In addition to generating cellular energy,
mitochondria are also involved in cell differentiation, cell
death, as well as the control of cell cycle and growth [63].
It is also well established that the mitochondrial genomes
are dynamic structures whose quantity and quality alter in
response to cellular oxidative and metabolic demands. Al-
though the mitochondrial genome is small, mtDNA en-
codes genes essential to perform the above functions and
maintain symbiotic host-microbiome relationships.
In sum, the regulation of metabolic function is highly

conserved in higher eukaryotes and is essential to the estab-
lishment of microbial communities. Although pathogenic
mutations on mtDNA result in severe disease, milder muta-
tions may have subtle phenotypic consequences. Ergo, the
mtDNA variations among individuals in the HMP cohort
may still render different microbiome profiles, possibly
through inflammation response to different levels of ROS
activity [58,64]. Although the detailed mechanism awaits
further analysis, individuals who have mtSNPs associated
with haplogroups discovered in our study may show differ-
ences in their capability of energy metabolism and thus
affect their own microbiome profile. We speculate that lar-
ger population-based and prospective analyses, which
would enroll both healthy and disease-afflicted subjects, will
provide further robust evidence for our initial associations
proposed herein.
Conclusions
We have described our approach to leverage sequencing
data from the HMP to demonstrate significant associ-
ation between the human microbiome with host mtDNA
variants (haplogroup and nucleotide polymorphisms).
We observe that among stool and vaginal posterior for-
nix samples, several haplogroups and mtDNA variants
show significant association with specific microbiota and
their community structure traits. Delving deeply into
both mtSNPs and metagenomic-derived carriage pat-
terns, we have further shown that our observed associa-
tions between host and microbe are of likely functional
relevance. Given the long-standing described role of mito-
chondria in cellular metabolism and oxidative stress, and
emerging data describing its role in innate immunity, our
findings may be of likely high significance. In sum, these
data provide initial evidence for the host mitochondrial
genome influencing the structure of its microbiome, and
underscore the capacity for metagenomics to explore
host-microbe interactions.
Methods
Subjects
Our initial study consists of 89 subjects with self iden-
tified NIH-defined race (74 Caucasians, 7 Asians, 4
African American and 4 Mexican American, 43 female, 46
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male) and ethnicity (Hispanic versus non-Hispanic) in the
Human Microbiome Project recruited at Houston, Texas
and St. Louis, Missouri. Subjects were all healthy individ-
uals and were sampled one to three times at 15 (male) or
18 (female) body habitats following a common sampling
protocol [4]. The subjects were between 18-40 (mean 26 s.
d. 5) years old to minimize the variability due to growth
and aging. The mean of BMI is 24 (s.d. 4). For 16S, there
are 139 stool samples from 81 individuals and 59 posterior
fornix samples from 37 individuals in the cohort. For
WGS, there are 116 stool samples from 79 individuals and
50 posterior fornix samples from 37 individuals available.
The HMP study shows that within-subject variation over
time is consistently lower than between-subject variation
at both taxonomy and metabolic level [2]. Since each indi-
vidual’s microbial community is stable over time relative
to the population as a whole, the microbial clades associ-
ation of clinical metadata analysis in HMP includes data
from all visits. Only the data from first visit was used for
mtSNPs association analysis in our study.
The 16S and WGS data used in this study were down-

loaded from hmpdacc.org. The detailed procedure for
data processing is described in the HMP publication.
Briefly, raw V3-V5 region 16S sequences were demulti-
plexed using QIIME [65]. OTU picking (including error
correction, chimera checking through QIIME and clus-
tering via UCLUST [66]) was performed by OTUPipe on
V3-5 region. Taxonomy was assigned using the RDP
classifier 2.2 [67]. For metabolic reconstruction, the
HMP Unified Metabolic Analysis Network (HUMAnN)
[68] was used to infer KEGG based community func-
tions from WGS reads. The OTU counts, pathway/mod-
ule abundance for subjects in our study were extracted
from summary OTU table and abundance files (HMQCP
for 16S, HMMRC for WGS metabolic reconstruction).

Variants identification
Sequence alignment, quality control, and variant calling
were performed with BWA (Burrows-Wheeler Aligner)
[32], SAMtools [34], Picard and the Genomic Analysis
Toolkit (GATK) [33]. In this study, we utilized the small
percentage of human reads from whom the microbiome
samples were collected. The whole genome sequencing
data without removal of human sequences could be ob-
tained from dbGaP (phs000228.v2.p1). Prior to variant
calling, mitochondrial genomic sequences were extracted
from whole genome sequencing of human microbiome
samples by aligning with Cambridge Reference Sequence
(NC_012920) through BWA. SAMtools were used to
convert, sort, and index the aligned data files. Picard was
then used to identify and remove duplicate reads from
each lane. Variants were identified with GATK’s variant
detection tools. Following base quality recalibration,
indel realignment and unified genotyper, the single-
nucleotide variants were filtered for the removal of
low-quality variant calls with GATK’s VariantFiltration-
Walker tool. In addition to GATK, SAMtools was also
used to call targeted bases, and any base call that devi-
ates from reference base was regarded as a potential
variation.

Haplogroup analysis
Based on published references [23], PhyloTree [69] and
the MITOMAP [36] database, genotypes of several
mtSNPs were combined to construct the haplogroups.
The most common European mtDNA haplogroups in-
clude H, HV, I, J, K, T, U, V, W and X. 70 individuals
were identified as European haplogroups. Typical hap-
logroups for Asian, African American, Mexican American
and the rest of Caucasian were identified as A, B, C, F and
L2. 19 individuals were classified into non-European
haplogroups.

Microbiome trait identification
Since the vaginal microbiome is dominated by one or
more species of Lactobacillus, the representative se-
quences of each OTU in the vagina microbiome was
aligned to Greengenes (4feb2011 version) [70] through
blast to achieve species level assignment. Greengenes
maintains a consistent multiple-sequence alignment of
both archaeal and bacterial 16S sequences to facilitate
this process. Major Lactobacillus species in the vaginal
microbiota (L.crispatus, L.iners, Ljensenii and L.gasseri)
were further checked for alignments. OTUs with assign-
ment to Lactobacillus species and other genera based on
RDP classifier were normalized (OTU relative abun-
dance were combined based on taxonomy assignment.
The abundance of Lactobacillus species and other gen-
era abundance sum to 1.) and then clustered through
complete linkage hierarchical clustering using R pack-
ages. Subjects were assigned to vaginal community
memberships according to dendrogram in the heat map
(Figure 3A).
The reconstructed OTU table of stool samples was

normalized (The OTU table column sum to 1.) and clus-
tered using partitioning around medoids (PAM) cluster-
ing over Euclidian distance. The optimal number of
clusters is two, which is validated by silhouette valid-
ation technique (silhouette score > 0.5). Group 1 has
higher abundance of Prevotella, group 2 has higher
abundance of Bacteroides. Our assignment of groups is
generally consistent with Wu et al [71].

Haplogroup associated mtSNPs
Since groups of mtSNPs were used for identifying hap-
logroups, it remained a formal possibility that some
other non-haplogroup identifying mtSNPs may be also
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linked to certain specific haplogroup. These haplogroup-
associated mtSNPs may be not as informative as non-
haplogroup associated SNPs. To identify haplogroup
associated SNPs among European, information from two
sources was used. Saxena et al. [37] cataloged all com-
mon sites in mtDNA (excluding the control region) from
928 Europeans. 144 sites has a frequency of >1% in these
individuals. 64 tagging SNPs were identified as being ne-
cessary to tag common mitochondrial variation as well
as nine haplogroups (H, V, J, T, U, K, I, W, X) with an r2

(squared correlation of the alleles at two SNPs) of 0.8
using Tagger. Based on Table four in Soxena et al., 69
SNPs out of 144 SNPs (19 tagging SNPs out of 64 tag-
ging SNPs) are identified as potential haplogroup associ-
ated SNPs. The other source used is phylotree.org,
which includes updated comprehensive phylogeny of
global human mtDNA variation and haplogroups. SNPs
used for assigning haplogroups down to one level lower
than the nine haplogroups mentioned above were identi-
fied as potential haplogroup associated SNPs. Only SNPs
identified from both sources are marked as haplogroup
associated SNPs.

Association analysis
Metadata for HMP individuals are available from dbGaP.
All OTU counts in the cohort stool or posterior fornix
communities were normalized to relative abundance,
where the OTU table columns sum to 1, and relative
abundance for each clade was inferred based on the
RDP annotation (The abundance of each genus in the
same sample sum to 1). There are 109 genera identified
from HMP stool samples and 51 genera identified from
HMP posterior fornix samples. To avoid bias caused by
rare genus, genus appears in less 5% of samples were not
included in association analysis. Haplogroup association
with quantitative trait was done through multiple linear
regression, with clade abundance as dependent variable,
and each identified haplogroup (with other haplogroups
as one group), BMI, gender, race, blood pressure and age
as independent variables. The linear regression was con-
ducted in R. The significance of each independent vari-
able was adjusted for multiple comparisons using R
package qvalue [72] with a list of p-values resulting from
testing on each clade as input and estimated q-value as
output. The q-value measures the false discovery rate of
the test.
Since several SNPs were correlated with other SNPs,

we used Tagger implemented through haploview [46] to
find tagging SNPs which have pairwise values r2 > =0.8.
Those mtSNPs tagged by other mtSNPs were not in-
cluded in the association analysis. mtSNP association
analysis with each quantitative trait (either arcsin square
root transformed clad abundance or pathway/module
abundance) is carried through PLINK [47]. Quantitative
trait association with adaptive permutation procedure
using default parameters. Given the property of our data,
permutation test could relax the assumption about nor-
mality of continuous phenotypes and dealing well with
rare alleles, as well as small sample size. To control for
multiple testing, empirical p-value for each SNP from
PLINK was adjusted for multiple comparisons through
R package qvalue. SNPs with a q-value less than 0.05 are
considered significant.

Data availability
The 16S and WGS data used in this study were down-
loaded from hmpdacc.org (HMQCP for 16S, HMMRC
for WGS metabolic reconstruction). Since there are large
amount of human sequences in the whole genome se-
quencing data, the sequencing data without removal of
human sequences could be only obtained from dbGaP
(phs000228.v2.p1). Metadata for HMP individuals are
also available from dbGaP.

Additional file

Additional file 1: OTU tables and KEGG module/pathway tables.
This spreadsheet has 8 tabs. The OTU tables of posterior fornix, stool,
anterior nares, tongue dorsum and HUMAnN generated KEGG module/
pathway activity files for posterior fornix, stool samples used in the study
were provided.
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