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Abstract

Background: Tomato (Solanum lycopersicum), one of the world’s most important vegetable crops, is highly
susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance
through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in
introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural
variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect
mechanisms underlying resistance against B. cinerea.

Results: Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed
the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of
pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides
transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea,
differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then
rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually
increased, and genes with decreased expression. Homology-based searches also identified a limited number of
highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed
photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and
simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,
3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover,
cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal
pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection
with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism
explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related
categories of secondary metabolites.

Conclusions: In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the
Solanaceae, as well as novel sequence resources for S. lycopersicoides.
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Background
Plant pathogens are classified as necrotrophs, biotrophs,
or hemibiotrophs based on their modes of nutrition
[1-3]. Biotrophs feed on living tissue and subtly manipu-
late host physiology to obtain nutrients [1,2]. Necrotrophs
kill host cells to obtain nutrients, often inducing expand-
ing, necrotic lesions [1,4]. Hemibiotrophs undergo a bio-
trophic stage of nutrition before shifting to a necrotrophic
strategy for nutrient uptake [1,3]. Due to their fundamen-
tally distinct mechanism of pathogenesis, biotrophs have
evolved mechanisms to suppress cell death while necro-
trophs promote it as a virulence strategy [5-8]. When
hosts fail to constrain necrosis caused by necrotrophs and
hemibiotrophs, diseases can culminate in the death and
decay of the entire plant. Toxins and hydrolytic enzymes
are central to virulence in necrotrophs but have minimal
contributions to biotrophic pathogenesis [2,4,8]. Conse-
quently, host responses to pathogen infection vary de-
pending on the nature of the pathogen. Whereas the
molecular basis of resistance against biotrophic infec-
tion strategies is becoming increasingly well understood
[9,10], the current understanding of plant resistance
against necrotrophic fungi is fragmentary.
Necrotrophs are classified as either broad host-range or

host-specific pathogens [8]. While broad-host-range necro-
trophs produce a variety of cell wall-degrading enzymes,
phytotoxic metabolites, and cell death elicitors that kill host
cells and induce necrosis, the ability of host-specific necro-
trophs to cause disease is generally attributed to the pro-
duction of toxins that have activity on a limited number of
related plant species [11,12]. The broad host-range necro-
troph, Botrytis cinerea, is a ubiquitous and cosmopolitan
pathogen that causes gray mold disease on more than 200
host plants [13] with worldwide losses in affected crops es-
timated at 20% [14]. B. cinerea induces necrosis by produ-
cing toxins and reactive oxygen species [15,16], and also
manipulates hosts into producing oxidative bursts that fa-
cilitate colonization [17,18]. Two classes of toxins have
been identified in B. cinerea that exhibit non-specific phyto-
toxicity: the sesquiterpene toxin, botrydial, and related me-
tabolites, and the polyketide toxin, botcinic acid, and its
derivatives [15,19-21]. In contrast to B. cinerea, Alternaria
solani primarily infects members of the Solanaceae such as
tomato, potato, peppers, and eggplant [22]. Like B. cinerea,
A. solani uses toxins to induce necrosis in its hosts [23].
While as many as eleven toxins have been identified in
cultures of A. solani, alternaric acid and solanopyrones
A, B, and C, have been implicated as the primary
necrosis-inducing toxins [22,24,25]. Although necrosis
of host tissues is known to be induced by toxins, add-
itional, unknown factors may be involved in the host
specificity of A. solani [24].
The Solanaceae is one of the world’s most economic-

ally important plant families and includes vegetables,
ornamentals, and medicinal plants [26]. Among the so-
lanaceous crops, tomato (Solanum lycopersicum) is par-
ticularly susceptible to B. cinerea and A. solani [27,28].
Due to a lack of genetic resistance against necrotrophic
fungal pathogens in commercial tomato cultivars, B. cinerea
and A. solani inflict heavy losses, and thus frequent applica-
tions of fungicides are required for disease management.
In the absence of chemical protection, over 50% of the
annual tomato crop can be lost to necrotrophic pathogens
[29]. Although tomato lacks resistance to B. cinerea and
A. solani, robust resistance against some necrotrophic fun-
gal pathogens has been identified in closely related species
within the Solanaceae [30,31]. However, the underlying
mechanisms of resistance have not been characterized at
the molecular level, in part due to a lack of molecular re-
sources for many members of the Solanaceae, particularly
non-crop species.
Identification and characterization of genetic resist-

ance against necrotrophic fungi would provide a crucial
biological foundation for crop improvement within the
Solanaceae. The overarching goal of this study was to
identify and characterize resistance to necrotrophic fun-
gal pathogens among members of the Solanaceae. To
this end, we screened a panel of Solanum species for re-
sistance to B. cinerea and A. solani and found that S.
lycopersicoides (LA2951) showed a high level of resist-
ance to both pathogens. This resistance manifested as
constrained lesion expansion as well as reduced patho-
gen growth. Then, we generated gene expression profiles
from S. lycopersicoides 24 and 48 hours after inoculation
with B. cinerea, as well as a pre-infection baseline, via
high-throughput RNA-sequencing (Roche-454). Analyses
of the transcriptomes revealed that numerous genes
were differentially expressed in S. lycopersicoides in
response to B. cinerea, including pathogenesis-related
proteins, proteases, a glucanase, and genes involved in
biosynthesis of secondary metabolites. Additionally, a set
of highly expressed B. cinerea genes was identified,
which could facilitate the elucidation of fungal genes in-
volved in necrotrophic pathogenesis.

Results
Evaluation of resistance against necrotrophic fungi
among wild Solanum species
Resistance to B. cinerea has been previously reported in
wild solanaceous plants [30,32,33]. However, to date, no
study has quantitatively compared resistance to multiple
necrotrophic fungal pathogens in Solanum species, and
it is not known whether mechanisms of resistance to B.
cinerea are the same for other necrotrophs. Therefore,
three tomato varieties and eight wild Solanum species
were evaluated for resistance against B. cinerea and A.
solani (Figure 1). The tomato varieties VF-36 (S. lycoper-
sicum, LA0490) and M-82 (S. lycopersicum, LA3475) are



Figure 1 Comparison of resistance to necrotrophic fungal pathogens among Solanum species. Quantitative comparison of resistance to
(A) B. cinerea and (B) A. solani among Solanum species. Visual comparison of disease development on S. lycopersicum and S. lycopersicoides
96 hours after inoculation with B. cinerea (C) and A. solani (D).
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parents for introgression lines created from S. lycopersi-
coides and S. pennellii, respectively, and were selected as
susceptible checks [34,35]. The variety Castlemart II was
selected because of its common usage in tomato genetics
studies. All of the wild Solanum species selected are na-
tive to South America; the center of origin for tomato is
the Andean region of South America and thus wild species
from this area are more likely to be naturally adapted to
challenge by pathogens [36].
Of the eleven lines tested, Solanum lycopersicoides

(LA2951) was the most resistant to both B. cinerea and
A. solani (Figure 1A, B), suggesting the presence of broad-
spectrum resistance to necrotrophs. B. cinerea caused
indistinguishably high levels of necrosis in all three S. lyco-
persicum varieties tested. In contrast, the wild Solanum
species showed varying levels of resistance, which mani-
fested as a reduction in lesion diameter compared to the
S. lycopersicum varieties. The reduction in lesion diameter
ranged from 13% for S. arcanum (LA1708) to 51% for
S. lycopersicoides (LA2951). A high level of resistance to
B. cinerea was also observed in S. pennellii (LA0716),
which showed a 47% reduction in lesion diameter as com-
pared to S. lycopersicum. Interestingly, resistance re-
sponses to A. solani followed a different pattern than
observed for B. cinerea. Among the eleven lines tested,
VF-36 (S. lycopersicum, LA0490) was the most susceptible.
The S. lycopersicum varieties were not equally susceptible
to A. solani; M-82 and Castlemart II exhibited a 26% and
25% reduction in lesion diameter respectively as compared
to VF-36. Among the wild species tested, S. lycopersicoides
(LA2951) was the most resistant to A. solani, and ap-
peared to exhibit even higher levels of resistance to A.
solani than B. cinerea. In contrast, S. pennellii (LA0716)
was only moderately resistant to A. solani but was
highly resistant to B. cinerea. Therefore, given the high
level of resistance of S. lycopersicoides to both necro-
trophic pathogens, this accession was selected to investi-
gate molecular mechanisms of resistance to necrotrophs
(Figure 1C, D). B. cinerea was chosen to serve a model
necrotroph in this study because it has a sequenced gen-
ome [37], readily sporulates in culture, and causes disease
on all tomato varieties tested.
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Characterization of resistance against B. cinerea in S.
lycopersicoides
To further define resistance against B. cinerea in S. lyco-
persicoides, the sequenced wild-type strain of B. cinerea
(B05.10) was inoculated on S. lycopersicoides accession
LA2951 (resistant to B. cinerea) and S. lycopersicum cv.
Bradley (susceptible to B. cinerea). Symptoms of infec-
tion were observed by 48 h after inoculation in both
S. lycopersicum and S. lycopersicoides (Figure 2A), al-
though lesions were 61% larger on S. lycopersicum than
S. lycopersicoides (Figure 2B). Symptoms initially ap-
peared as small, water-soaked lesions that quickly be-
came necrotic and spreading. By 72 h after inoculation,
lesions on S. lycopersicum began to coalesce. Likewise,
due to the leaf morphology of S. lycopersicoides, some
lesions began to reach the edges of leaflets. However,
Figure 2 Comparison of disease development on Solanum lycopersicu
S. lycopersicum and S. lycopersicoides was observed at 0, 24, 48, and 72 hou
(B) Lesion diameter and (C) ergosterol content were measured to quantify di
(Blue) and S. lycopersicum (Red). (B) For lesion diameter, values represent the m
error. (C) For ergosterol content, values represent the mean of 3 separate leav
diameter increased in S. lycopersicum compared to S. lycopersicoides at 72 h af
lesions on S. lycopersicum were nearly twice the diam-
eter of those on S. lycopersicoides (Figure 2B).
To determine whether the smaller lesions on S. lycoper-

sicoides were due primarily to reduced pathogen growth,
ergosterol was quantified from S. lycopersicum and S. lyco-
persicoides leaves inoculated with B. cinerea. Interestingly,
fungal growth was not significantly different between S.
lycopersicum and S. lycopersicoides 48 h after inoculation
(Figure 2C). However, by 72 h after inoculation, the ergos-
terol content of S. lycopersicum was over twice that of
inoculated S. lycopersicoides leaves (Figure 2C). The in-
creased detection of B. cinerea in S. lycopersicum as com-
pared to S. lycopersicoides 72 h after inoculation correlated
closely with observed levels of necrosis and indicates that
suppression of fungal growth may be a primary component
of resistance to B. cinerea in S. lycopersicoides.
m and Solanum lycopersicoides. (A) Lesion development on
rs after inoculation (hai) with B. cinerea. White bars represent 10 mm.
sease development and fungal growth, respectively, on S. lycopersicoides
ean diameter of 32 individual lesions, and error bars indicate standard

es, and error bars indicate standard error. Both fungal growth and lesion
ter inoculation.
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De novo assembly of the S. lycopersicoides transcriptome
Currently, a reference genome sequence is not available
for S. lycopersicoides and a very limited number of nu-
cleotide sequences are deposited in GenBank for this or-
ganism. Thus, to elucidate mechanisms of resistance to
necrotrophs and provide a novel sequence resource, 454
pyrosequencing was used to sequence the transcriptome
of S. lycopersicoides leaves 24 and 48 h after inoculation
with B. cinerea, as well as leaves collected immediately
after inoculation (0 h) to provide a baseline for compari-
son. A total of 654,159 reads consisting of nearly 165 Mb
were obtained (Table 1). Over 550,000 of the reads were
assembled into 13,008 contigs, which were then assembled
into 11,916 isotigs and 10,255 isogroups. Isogroups cor-
responded to genes, while isotigs within an isogroup
represented splice variants of the gene. To reduce over-
representation of genes with multiple splice variants,
read counts from each isotig within an isogroup were
summed. A representative isotig from each isogroup
and the remaining contigs that were not assembled into
isotigs accounted for a total of 10,385 unigenes.
The BLASTx algorithm was used to distinguish uni-

genes of S. lycopercicoides from those of B. cinerea and
to remove sequences from contaminating species (e.g.
bacteria and viruses). Of the 10,385 unigenes, 382 did
not match any sequence in the non-redundant protein
sequences database (nr, NCBI) or matched contaminat-
ing organisms and were thus excluded from further ana-
lyses. Of the remaining 10,003 unigenes, 9,414 (94.1%)
had significant matches with sequences from plant spe-
cies and were thus determined to be S. lyocpersicoides
sequences, whereas 589 (5.9%) were determined to be of
fungal origin. Among the 9,414 unigenes determined to
Table 1 Summary of Roche 454 GS-FLX assembly of
S. lycopersicoides transcriptome sequences

Metric Sequence (n) Bases (bp)

Total reads 654,159 164,925,531

Average read length 252

Aligned reads 554,524 (84.77%) 140,923,440 (85.45%)

Average trimmed read length 254

All contigs 13,008 9,327,270

Average contig length 717

Large contigs 8,431 7,863,766

Average large contig length 932

N50 large contig length 988

Largest contig 4,469

Isotigs 11,916 1,0722,599

Average isotig length 899

N50 isotig length 1,041

Largest isotig 4,504
be of plant origin, nearly 91% (8,566) were highly similar
to genes from S. lycopersicum, which has a sequenced
reference genome [38], and an additional 5% (466) were
highly similar to genes from other species of Solanaceae,
including S. tuberosum, Nicotiana tobacum, and Capsi-
cum annuum. The remaining 4% (382) of S. lycopersi-
coides unigenes were most similar to sequences found in
comparatively distant plant species, including A. thali-
ana, Medicago truncatula, and Populus trichocarpa. The
high percentage of S. lycopersicoides unigenes matching
sequences from other members of the Solanaceae validates
the de novo assembly of the S. lycopersicoides transcrip-
tome and indicates high levels of sequence conservation
between S. lycopersicoides and related species.

Cluster analyses reveal distinct patterns of gene
expression in response to B. cinerea
Differentially expressed S. lycopersicoides unigenes
(Additional file 1) grouped into four distinct clusters.
Cluster 1 contained genes induced 24 h after inocula-
tion with decreased expression thereafter (Figure 3).
Cluster 2 contained genes induced 24 h after inocula-
tion whose expression remained up-regulated (Figure 4).
Cluster 3 represented genes whose expression increased
continually throughout the time course (Figure 5), and
Cluster 4 represented genes in S. lycopersicoides that
were down-regulated in response to B. cinerea infection
(Figure 6). To examine potential relationships between
expression pattern and biological function, unigenes in
each cluster were assigned gene ontology (GO) terms in
three categories: biological processes, molecular func-
tions and cellular components. However, this initial
assignment of GO terms was too broad, resulting in
hundreds of terms, and thus a GO slim analysis was
performed. GO slim is a defined list of high-level GO
terms that cover broad aspects of processes, functions,
and components [39].
GO slim analyses revealed many similarities between

clusters 1 and 2. The major GO slim terms for biological
processes associated with cluster 1 were “transport”,
“generation of precursor metabolites and energy”, and
“response to stress” (Figure 3B), and the major GO slim
terms for molecular function were “nucleotide binding”
and “hydrolase activity” (Figure 3C). The major GO slim
terms for cellular component were “chloroplast”, “mito-
chondrion”, and “plasma membrane” (Figure 3D). Simi-
lar to cluster 1, the major GO slim terms for biological
processes associated with cluster 2 were “transport”,
“response to stress”, and “generation of precursor me-
tabolites and energy” (Figure 4B), and the major GO slim
terms for molecular function were “protein binding”,
“hydrolase activity”, and “nucleotide binding” (Figure 4C).
The major GO slim terms for cellular component were
“mitochondrion”, “chloroplast”, and “plasma membrane”



Figure 3 GO terms associated with unigenes in expression cluster 1. (A) K-means clustering was used to visualize the expression pattern of
unigenes in cluster 1. Expression increased rapidly from 0 to 24 h after inoculation then decreased to basal levels by 48 h after inoculation. Unigenes
were annotated with GO terms corresponding to (B) biological processes, (C) molecular functions, and (D) cellular components. Pie charts represent
the distribution of unigenes annotated with each GO term.
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(Figure 4D). The similarities between biological processes,
molecular functions, and cellular components for clusters
1 and 2 suggest that these two groups of genes are in-
volved in similar responses to B. cinerea.
For cluster 3, GO slim terms were substantially differ-

ent than clusters 1, 2, or 4. Specifically, the major GO
Figure 4 GO terms associated with unigenes in expression cluster 2.
unigenes in cluster 2. Expression increased rapidly from 0 to 24 h after inoc
corresponding to (B) biological processes, (C) molecular functions, and (D)
annotated with each GO term.
slim terms for biological processes associated with clus-
ter 3 were “response to stress”, “protein metabolic
process”, “signal transduction”, and “electron transport”
(Figure 5B), and the major GO slim terms for molecular
function were “hydrolase activity”, “protein binding”, and
“nucleotide binding” (Figure 5C). The major GO slim
(A) K-means clustering was used to visualize the expression pattern of
ulation then plateaued. Unigenes were annotated with GO terms
cellular components. Pie charts represent the distribution of unigenes



Figure 5 GO terms associated with unigenes in expression cluster 3. (A) K-means clustering was used to visualize the expression pattern of
unigenes in cluster 3. Expression increased continually from 0 to 48 h after inoculation. Unigenes were annotated with GO terms corresponding
to (B) biological processes, (C) molecular functions, and (D) cellular components. Pie charts represent the distribution of unigenes annotated with
each GO term.
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terms for cellular component were “nucleus”, “extracel-
lular region”, and “mitochondrion” (Figure 5D). The in-
duction of cluster 3 genes after pathogen attack is
consistent with induced defense responses, however, the
substantial differences in major GO slim terms in cluster
Figure 6 GO terms associated with unigenes in expression cluster 4.
unigenes in cluster 4. Expression decreased from 0 to 48 h after inoculation
logical processes, (C) molecular functions, and (D) cellular components. Pie
GO term.
3 as compared to clusters 1 and 2 may reflect distinctly
separate mechanisms of defense.
Cluster 4 contained the most pronounced differences

in GO slim terms among the four clusters. The major
GO slim terms for biological processes associated with
(A) K-means clustering was used to visualize the expression pattern of
. Unigenes were annotated with GO terms corresponding to (B) bio-
charts represent the distribution of unigenes annotated with each
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this cluster were “protein metabolic process”, “gener-
ation of precursor metabolites and energy”, “transport”,
and “response to stress” (Figure 6B), and the major GO
slim terms for molecular function were “hydrolase activity”
and “nucleotide binding” (Figure 6C). The major GO slim
term for cellular component was “chloroplast” (Figure 6D).
Overall, these results strongly suggest a rapid and
intense suppression of primary metabolism upon chal-
lenge with B. cinerea, presumably due to resource reallo-
cation to defense responses.
To complement the broad overview of the processes,

functions, and components provided by GO slim terms,
an enrichment analysis identified individual GO terms
Figure 7 Enrichment analysis of biological processes associated with
determine which biological processes were present at significantly higher f
bars), and cluster 4 (green bars). The X-axis indicates the number of unigen
that were significantly over-represented in each cluster
of unigenes (Figure 7). In cluster 1, 13 biological pro-
cesses were significantly enriched, all of which were as-
sociated with the production of ATP. Peak expression of
genes involved in ATP biosynthesis at 24 h after inocula-
tion is consistent with the rapid conversion of precursor
metabolites to energy upon pathogen attack. Conversely,
two terms were enriched in cluster 2, with one unigene
assigned to each term. The two GO terms enriched in
cluster 2 are broad and somewhat uninformative; “oxida-
tion-reduction process” and “metal ion transport” could
be involved in many aspects of metabolism. Additionally,
the small number of significantly over-represented GO
each expression cluster. Enrichment analysis was performed to
requency in cluster 1 (red bars), cluster 2 (blue bars), cluster 3 (black
es annotated with a given GO term.
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terms in cluster 2 suggests that unigenes in this cluster
share similar overall functional annotation with other
clusters. Cluster 3 was enriched with terms involved in
“signaling”, “protein degradation”, and “response to stim-
uli”. Enrichment of the term “signaling” is in agreement
with the findings of Windram et al. [40], who showed
that genes involved in signaling were rapidly upregulated
in Arabidopsis as early as 16 hours after inoculation with
B. cinerea. Furthermore, De Cremer et al. [41] demon-
stated that genes involved in signaling were upregulated
in lettuce, 48 hours after inoculation with B. cinerea.
Enrichment of these terms indicates that S. lycopersicoides
mounts an early and sustained signaling response to infec-
tion by B. cinerea, as would be expected by the require-
ment for continual containment of a necrotrophic fungal
pathogen. Cluster 4 was significantly enriched with mul-
tiple terms relating to photosynthesis, which is consistent
with the rapid down-regulation of genes involved in
photosynthesis in B. cinerea infected plants described by
Berger et al. [42], Windram et al. [40], and De Cremer
et al. [41]. Taken together, the cluster analyses provided
insight into potential linkages between gene expression
patterns and biological responses underlying resistance to
B. cinerea in S. lycopersicoides.

Comparative expression analysis of selected genes in
S. lycopersicoides and S. lycopersicum
To confirm the RNA-seq data from S. lycopersicoides
and provide insight into differential transcriptional re-
sponses to B. cinerea in S. lycopersicum, six differentially-
expressed genes (induced and suppressed in response to
B. cinerea) were assessed in S. lycopersicoides and S.
lycopersicum with quantitative PCR (qPCR). Four genes
reported to be involved in resistance to necrotrophs
(pathogenesis-related protein 1 (PR1) [43,44], a beta-
1,3-glucanase (glucanase) [44], a subtilisin-like protease
[45], and glutathione S-transferase [46,47]) were chosen
to represent defense-related genes induced upon attack
by B. cinerea, and two genes involved in photorespir-
ation (ribulose-1,5-bisphosphate carboxylase (Rubisco)
small subunit and glycolate oxidase 1) were chosen to
represent down-regulated genes. Upon challenge with
B. cinerea, potentially important differences in expres-
sion profiles of the selected genes were observed in
comparisons between S. lycopersicum and S. lycopersi-
coides. Among the genes induced during infection by
B. cinerea in S. lycopersicoides, several differences in
induction patterns were observed in S. lycopersicum. As
an example of delayed induction, expression of PR1
rapidly increased in S. lycopersicoides from 0 to 24 h
after inoculation as observed in the RNA-seq analysis,
whereas induction in S. lycopersicum was not observed
until 48 h after inoculation, at which time expression
levels were comparable to S. lycopersicoides (Figure 8A).
As an example of delayed and reduced induction, ex-
pression of glucanase continually increased in response
to B. cinerea in S. lycopersicoides as previously deter-
mined through transcriptomics, but the induction in to-
mato was consistently later and at lower levels than
observed in S. lycopersicoides (Figure 8B). Expression of
a subtilisin-like protease in S. lycopersicum provided an
even more pronounced example of delayed and reduced
induction, whereas the induction pattern observed in
S. lycopersicoides was consistent with results from
RNA-seq analyses (Figure 8C). However, at least some
genes were similarly induced in S. lycopersicoides and
S. lycopersicum in response to B. cinerea, as evidenced
by glutathione S-transferase (Figure 8D). Additionally,
expression of the genes involved in photorespiration,
particularly Rubisco, dropped more dramatically in S.
lycopersicoides than in S. lycopersicum (Figure 8E, F),
which suggests that the speed at which photosynthesis
is suspended after pathogen attack may play a critical
role in defense-related resource reallocation.

Metabolic pathway analysis
For metabolic pathway mapping, KEGG (Kyoto Ency-
clopedia of Genes and Genomes) orthology (KO) identi-
fiers were assigned throughout the four differentially
expressed clusters of S. lycopersicoides genes which were
then mapped individually to pathway maps in the KEGG
database. This process identified potential shunts in
metabolism resulting from B. cinerea infection, the
most striking example of which was in the pathway for
terpenoid backbone biosynthesis (Additional file 2).
Specifically, several genes in the 2-C-methyl-D-erythri-
tol 4-phosphate (MEP) pathway were suppressed in re-
sponse to B. cinerea, while genes in the mevalonate
pathway were induced. The mevalonate pathway is
used by plants for the biosynthesis of sesquiterpene
phytoalexins [48-50], while the MEP pathway is local-
ized in plastids and is the pathway for the production
of structurally distinct terpenoids including caroten-
oids and the phytol chain of chlorophyll [50]. Recently,
the MEP pathway was also implicated in stress re-
sponse [51,52]. The MEP pathway acts as stress sensor
and, through the biosynthesis of retrograde signaling
molecules, an inducer of stress response genes. How-
ever, accumulation of methylerythritol cyclodipho-
sphate (MEcPP), a stress-induced, retrograde signaling
molecule produced via the MEP pathway, is associated
with abiotic stress and results in increased resistance
to biotrophs and enhanced susceptibility to B. cinerea
[51]. Thus, the coordinated change in gene expression
from the MEP pathway to the mevalonate pathway, in
S. lycopersicoides during defense against B. cinerea, is
consistent with a shift away from abiotic stress re-
sponse and biotrophic pathogen resistance and with



Figure 8 Relative expression of selected genes measured by qPCR. Different patterns of gene expression were observed for S. lycopersicoides
and S. lycopersicum inoculated with B. cinerea. Induction of (A) a PR1 protein-encoding gene was delayed in S. lycopersicum compared to
S. lycopersicoides, but expression at 48 hours after inoculation (hai) was comparable in both Solanum species. Induction of (B) a beta-1,3-glucanase-
encoding gene and (C) a subtilisin-like protease-encoding gene was also delayed in S. lycopersicum; however, expression at 48 hai was reduced
compared to S. lycopersicoides. Induction and expression of (D) a glutathione S-transferase-encoding gene were comparable between S. lycopersicum
and S. lycopersicoides. Expression of (E) a ribulose-1,5-bisphosphate carboxylase-encoding gene and (F) a glycolate oxidase-encoding gene decreased
over time in both S. lycopersicum and S. lycopersicoides, but the rate and overall reduction of expression was greater in S. lycopersicoides. Genes were
selected for qPCR analysis based on expression and predicted role in pathogen defense. Blue bars represent expression of genes in S. lycopersicoides
relative to timepoint 0. Red bars represent expression of genes in S. lycopersicum relative to timepoint 0.
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the increased phytoalexin biosynthesis observed in other
solanaceous plants [48,53].

Identification of B. cinerea genes highly expressed during
infection
GO slim analyses were performed on the 589 unigenes
determined to be of fungal origin (Additional file 3). The
biological processes most represented in B. cinerea were
“catabolic process”, “translation”, “carbohydrate meta-
bolic process”, and “generation of precursor metabolites
and energy” (Figure 9A). The abundance of unigenes
associated with catabolic processes and carbohydrate
metabolic processes is suggestive of the induction of cell
wall degrading enzymes, while the presence of numerous
unigenes associated with translation and energy gener-
ation is consistent with rapid colonization of S. lycopersi-
coides by B. cinerea. Furthermore, the term “secondary
metabolic process” suggests a prominent role for the bio-
synthesis of phytotoxic compounds during pathogenesis.
The molecular functions associated with B. cinerea in-
fecting S. lycopersicoides are consistent with the bio-
logical processes. The most represented function was
“nucleotide binding” (Figure 9B), which suggests widespread
and dynamic reprogramming of the fungal transcriptome



Figure 9 GO analysis of B. cinerea unigenes expressed during infection of S. lycopersicoides. Fungal unigenes were annotated with GO
terms corresponding to (A) biological processes (red bars), (B)molecular functions (blue bars), and (C) cellular components (black bars). The X-axis
indicates the number of unigenes annotated with a given GO term.

Smith et al. BMC Genomics 2014, 15:334 Page 11 of 18
http://www.biomedcentral.com/1471-2164/15/334
required to sustain pathogenesis and counteract host
defense responses. Additionally, the enrichment of the
term “structural molecule activity” is consistent with
the activation of diverse genes involved in fungal
growth. Given the presence of numerous genes with
predicted functions associated with protein synthesis in
B. cinerea during early infection of S. lycopersicoides, it
is not surprising that the two most represented cellular
components were “ribosome” and “protein complex”.
Furthermore, representation of the term “mitochondrion”
was enriched, as would be expected in a fungus displaying
intense metabolic activity during pathogenesis.
For each B. cinerea gene identified, expression profiles
were analyzed throughout the infection time course.
Very few sequences from B. cinerea were detected at the
0 h time point (immediately after inoculation with fungal
conidia), and thus expression of all fungal unigenes were
significantly higher at 24 and 48 h after inoculation.
Interestingly, genes implicated in pathogenesis and necro-
sis were abundantly expressed 24 and 48 h after inocula-
tion, such as genes encoding an endopolygalacturonase
(Bcpg1) demonstrated to play a role in virulence on
tomato [4,54], a superoxide dismutase (bcsod1) required
for lesion expansion on Phaseolus vulgaris [55], and two
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cytochrome p450 monooxygenases (BcBOT1 and BcBOT2)
required for biosynthesis of the phytotoxin, botrydial
[56,57] (Additional file 3). The observed induction patterns
of toxin biosynthetic genes, genes encoding cell wall de-
grading enzymes, and genes involved in scavenging re-
active oxygen species indicate that B. cinerea actively
induces necrosis in its host as early as 24 h after con-
tact. In addition to genes involved in disease develop-
ment, genes related to growth and energy production
were among the most highly expressed in B. cinerea
during pathogenesis, such as elongation factor 1 alpha and
glyceraldehyde 3-phosphate dehydrogenase (Additional
file 3). Although the primary objective of this study was to
generate a sequence-based resource to identify genes in
S. lycopersicoides involved in resistance to B. cinerea, the
dataset created could assist efforts to identify novel genes
in B. cinerea involved in early stages of infection.

Discussion
Previous research has demonstrated that S. lycopersi-
coides is tolerant to abiotic stresses such as cold injury
and nutrient deficiency, and is simultaneously resistant
to diverse pathogens that are problematic on tomato,
including viruses (tomato mosaic virus and cucumber
mosaic virus), oomycetes (Phytophthora parasitica), and
fungi (Cladosporium fulvum and Botrytis cinerea) [30,31,58].
In this study, S. lycopersicoides was confirmed to ex-
press resistance against B. cinerea, and newly found to
be resistant to A. solani. S. lycopersicoides is a wild
solanaceous species native to the Andean region of
Chile and Peru, which is the center of diversity for many
Solanum species [31,58], and thus has likely evolved ro-
bust resistance responses to broad-range and host-
specific necrotrophic fungal pathogens. Because S. lyco-
persicoides is closely related to and can be crossed with
tomato [31], introgression lines have been created in
which chromosomal segments from S. lycopersicoides
have been incorporated into the genome of cultivated
tomato [34]. Introgression lines provide a powerful
resource for future determination of genes conferring
resistance to B. cinerea and/or A. solani. Thus, genetic
compatibility with cultivated tomato, a high level of
resistance to necrotrophs, and availability of genetic
resources make S. lycopersicoides an ideal source of
novel genes to be harnessed through transgenic or con-
ventional breeding techniques to improve the resistance
of tomato to necrotrophic pathogens. By sequencing the
transcriptome of S. lycopersicoides during early infec-
tion by B. cinerea, this work provides a novel and im-
portant resource for future work.
The molecular basis of resistance against B. cinerea

and A. solani is not known. In general, plant resistance
mechanisms to necrotrophic pathogens are believed to
be distinct from or antagonistic to plant responses to
biotrophs, which is consistent with their contrasting
pathogenesis strategies [7,8,11]. Multiple examples signify
differences in host resistance to these groups of pathogens
[7,59]. R-gene mediated resistance (e.g., effector triggered
immunity, ETI) is normally activated upon recognition of
race specific effector proteins by R-proteins and confers
resistance to biotrophic pathogens [59]. ETI is a wide-
spread and strong form of resistance but is not known
to be effective against necrotrophs. Indeed, R-gene me-
diated susceptibility to necrotrophs has been docu-
mented [60-62]. The major manifestation of ETI is
often the hypersensitive response (HR), a form of cell
death, is central to plant resistance to biotrophs but
promotes susceptibility to necrotrophs [6]. Production
of reactive oxygen species (ROS) orchestrates HR and
modulates resistance to biotrophs but may act as a viru-
lence factor in some necrotrophs such as B. cinerea
[63]. The signaling molecule salicylic acid (SA) pro-
motes resistance to biotrophs but actually suppresses
defense against necrotrophs [64,65]. Systemic acquired
resistance (SAR) is an SA-dependent resistance re-
sponse that protects plants against many biotrophic
pathogens [66-70] whereas its efficacy in conferring re-
sistance to necrotrophs is unclear. Arabidopsis mutants
impaired in SAR show normal resistance to necro-
trophic fungi [67], whereas mutants that constitutively
express SAR are more susceptible [71,72]. Systemic and
local defenses mediated by ethylene (ET) and jasmonate
(JA) are required for resistance to necrotrophic patho-
gens [67,73], whereas SA is generally associated with re-
sistance to biotrophic infection [66,69,74,75]. Although
the scientific literature is replete with examples of an-
tagonistic interactions between pathways mediated by
SA and JA/ET in Arabidopsis, such interactions are not
studied in other plant systems including tomato [7,76-78].
These and many other examples suggest defense strategies
that have evolved to guard plants against necrotrophs that
operate distinctly or by antagonizing other responses.
The regulatory mechanism involved in host responses

to broad-host necrotrophs such as B. cinerea is slowly
emerging, predominantly from studies in Arabidopsis, but
also to a limited extent in tomato. Diverse and unique pro-
cesses that specifically mediate basal resistance to necro-
trophs without any effect on biotrophic pathogens have
been described. The tomato TPK1b and AIM1 function in
defense against necrotrophic fungi with no role in resist-
ance to other obligate or biotrophic pathogens [79,80].
TPK1b function in defense is through modulation of ET
signaling while AIM1 functions in ABA dependent im-
mune responses. Many transcription-factors (TFs) that
mediate defense response to necrotrophic infection
have been identified through microarray and genetic
analysis [46]. Among these, WRKY33, ZFAR1, ERF1
and ERF104, MYB, AS1, and HD-Zip homeodomain
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proteins are required for resistance to necrotrophic
fungi, underlining the importance of transcriptional
regulation in defense to these pathogens [46,81-86].
The role of transcriptional regulation is further rein-
forced by the recent discovery of the immune response
functions of subunits of the transcriptional coactivator
Mediator complex as specific regulators of plant im-
mune responses to necrotrophs [87,88]. Genetic evi-
dence linking chromatin modifications such as histone
ubiquitination, methylation, and deacetylation and
chromatin remodeling to defense responses to necro-
trophs due to their effects on expression of genes en-
coding various plant defense responses have been
established [88-91]. Components of the plant cell wall
and cuticle, predominantly considered physical barriers
to infection, have found new and unexpected defense
roles with mutants harboring defects in cuticle and cell
wall components becoming more resistant to necro-
trophs, thus revealing the dependence of virulence in
necrotrophic fungi on critical host components [78,92-96].
While the mechanisms of resistance to necrotrophic

fungal pathogens are not fully understood, the ability of
S. lycopersicoides to rapidly shift metabolism from
photosynthesis to the production of resistance associated
proteins and secondary metabolites appears to be a key
factor for resistance to B. cinerea. Several classes of
genes including pathogenesis related protein genes
(PR1), protease genes (subtilisin) and glucanase genes
(beta-1,3-glucanase) are rapidly and strongly induced in
S. lycopersicoides in response to B. cinerea infection.
However, this increased expression of defense related
genes coincides with a reduced expression of genes in-
volved in photorespiration such as ribulose-1,5-bispho-
sphate carboxylase and glycolate oxidase. This metabolic
shunt occurs in S. lycopersicum as well as S. lycopersi-
coides, but at a slower rate and to less dramatic levels.
Furthermore, metabolic pathway analysis in S. lycopersi-
coides demonstrates a shift within terpenoid biosynthesis
away from the plastidic MEP pathway involved in pig-
ment biosynthesis [97] to the mevalonate pathway in-
volved in the synthesis of phytoalexins [98]. Taken
together, these results point to a global change in metab-
olism that allows S. lycopersicoides to more effectively
react to infection by necrotrophs.
In addition to identifying genes and metabolic changes

associated with resistance to necrotrophs, this research
has uncovered a number of fungal genes that are highly
expressed during the early stages of infection of S. lycoper-
sicoides. Several highly expressed genes, such as elongation
factor 1 alpha and glyceraldehyde 3-phosphate dehydro-
genase, are not surprising due to their fundamental roles
in fungal growth. However, several genes coding hydrolytic
enzymes, including an endo-polygalacturonase and
an aspartic protease, as well as other genes, such as a
cytochrome p450 monooxygenase required for the biosyn-
thesis of phytotoxic secondary metabolites, were also in-
duced. These findings demonstrate the potential value of
the transcriptomic data generated in this research for
identifying novel genes required for necrotrophy.
Another distinct value of this RNA-seq dataset is that

it represents the first large-scale public sequence resource
for S. lycopersicoides. Analogous to an EST sequencing ex-
periment before the advent of next-generation sequencing,
this study provides a dataset of species-specific sequence
data for future validation of genome sequencing and iden-
tification of genes (based on homology as well as expres-
sion pattern) for functional characterization. Prior to this
study, little information was available regarding molecular
mechanisms of resistance in S. lycopersicoides. Based on
the analyses of fungal growth and changes in host gene
expression during the resistance response, a key mechan-
ism of resistance appears to be constraining the growth
of the pathogen through rapid and extensive repro-
gramming of the S. lycopersicoides transcriptome. In
this study, numerous candidate defense-related genes
were identified through clustering analyses; extensive
functional characterization will be required to determine
the genetic regulatory network underlying resistance.
It is important to note that RNA samples were pooled

prior to sequencing in our approach, and thus the ex-
pression values obtained from sequencing the S. lycoper-
sicoides transcriptome are indicative of qualitative trends
in expression rather than exact quantitative measures of
gene expression. Replicates were pooled to maximize
the number of biological conditions evaluated within
the experiment, and clustering analyses were performed
to assess changes in expression. Sequencing separate
replicates would have provided certain advantages, par-
ticularly with respect to calculating more precise digital
expression values with greater rigor. However, pooled
RNA samples are inherently normalized; expression is
averaged among individuals, and thus this approach re-
duces the impact of isolated variability among individ-
uals within a treatment. Similarly, pooled samples have
proven useful to analyze differential expression in various
other systems, including plants [99], animals [100,101],
and fungi [102,103].
Research into mechanisms of plant resistance to necro-

trophic fungal pathogens has been generally limited. A
majority of studies, to date, have focused on Arabidopsis.
Tomato, as a model for studying necrotrophic interac-
tions, has been problematic due to the universal suscepti-
bility of all tested varieties to important necrotrophs
including B. cinerea. However, the availability of a resistant
species that can be crossed with tomato provides a unique
opportunity to study plant/necrotroph interactions in a
commercially important crop species. Furthermore, the
availability of this transcriptome data could be effectively
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used in conjunction with existing tomato lines containing
defined introgressions of S. lycopersicoides chromosomal
segments to identify features of the S. lycopersicoides gen-
ome that are crucial for resistance to necrotrophs.

Conclusions
Tomato (Solanum lycopersicum), one of the world’s most
important vegetable crops, is highly susceptible to necro-
trophic fungal pathogens such as Botrytis cinerea and
Alternaria solani. Improving resistance through conven-
tional breeding has been hampered by a shortage of resist-
ant germplasm and difficulties in introgressing resistance
into elite germplasm without linkage drag. Screening of
wild Solanum species uncovered a relative of tomato,
S. lycopersicoides, that is resistant to both B. cinerea and
A. solani. Transcriptome analysis of S. lycopersicoides at 0,
24, and 48 hours after inoculation with B. cinerea revealed
possible mechanisms for resistance to necrotrophs and
identified genes from B. cinerea that are induced during
pathogenesis. Taken together, this research provides new
insight into resistance to necrotrophs while providing a
novel sequence resource for S. lycopersicoides.

Methods
Plant materials and fungal isolates
Accessions: LA0490 (S. lycopersicum, VF-36), LA2951 (S.
lycopersicoides), LA3475 (S. lycopersicum, M-82), LA1932
(S. chilense), LA1708 (S. arcanum), LA1589 (S. pimpinelli-
folium), LA0716 (S. pennellii), LA0317 (S. galapagense),
LA1777 (S. habrochaites), and LA1223 (S. habrochaites
f. glabratum, Chimbalo) were developed by and/or ob-
tained from the UC Davis/C.M. Rick Tomato Genetics Re-
source Center and maintained by the Department of Plant
Sciences, University of California, Davis, CA 95616. S. lyco-
persicum cv. Bradley was obtained from the New England
Seed Company (http://www.neseed.com/); Hartford, CT
06120). S. lycopersicum cv. Castlemart II was kindly
provided by Greg Howe (Michigan State University). B.
cinerea (B05.10) was maintained on 2xV8 agar in the
dark at 25°C and A. solani (AR18, isolated from tomato
in Arkansas) was maintained on V8 agar.

Pathogen inoculation
Wild relatives of tomato and tomato cultivars were eval-
uated for their resistance to B. cinerea and A. solani by
inoculating detached leaves. Inoculum of B. cinerea was
prepared by cutting blocks of agar from 10-day-old cul-
tures and agitating in 1% Sabouraud maltose broth
(SMB). Conidia were separated from agar and mycelium
by filtration through sterile cheesecloth. The spore con-
centration was checked with a hemacytometer and ad-
justed to 5×105/ml with SMB. Detached leaves of S.
lycopersicum and S. lycopersicoides (4 each per time
point) were inoculated with 8 drops (5 μl each) of the B.
cinerea spore suspension and placed on sterile filter
paper moistened with sterile H2O in a covered petri
dish. Inoculated leaves were incubated in a growth
chamber with a 12/12 light/dark cycle at 21°C day and
18°C night temperatures. Lesion diameters were mea-
sured daily and a subset of leaves was collected each day
for RNA extraction and ergosterol analysis. Due to low
sporulation of the pathogen, mycelial fragments of A.
solani at a concentration of 400 mg/mL was used for
drop inoculation; otherwise conditions were similar to
those described for B. cinerea.

Quantification of ergosterol by HPLC
Inoculated leaves were frozen in liquid nitrogen and ground
to a fine powder with a mortar and pestle. Ergosterol was
then extracted from ground leaf tissue (150–550 mg) and
analyzed by high pressure liquid chromatography as de-
scribed by de Sio et al. [104] with minor adjustments.
Briefly, ground leaves were added to 2.0 ml of 2:1 chloro-
form:methanol and extracted overnight. The extract was fil-
tered through a 0.2 μm filter and 20 μl was injected onto a
25 mm C18 column (phenomenex, Torrance, CA). The
mobile phase consisted of 80% methanol in H2O (solv-
ent A) and 100% dichloromethane (solvent B). The gra-
dient program consisted of a linear increase from 0% to
50% solvent B over 20 minutes followed by 15 minutes
at 50% solvent B. Ergosterol was measured based on ab-
sorbance at 282 nm and was quantified based on compari-
son of peak area to pure standards (Alfa Aesar, Ward Hill,
MA). Ergosterol concentration was then normalized to
the mass of the extracted tissue and leaf mass.

RNA extraction and cDNA synthesis
Inoculated leaves were frozen in liquid nitrogen and
ground with a mortar and pestle. Total RNA was ex-
tracted from the ground tissue with TRIzol Reagent (Life
Technologies, Grand Island, NY) according to the man-
ufacturer’s instructions. RNA quantity and quality was
determined with a NanoDrop spectrophotometer (Thermo
Scientific, Wilmington, DE) and by visual inspection after
electrophoresis. A total of 1 μg of RNA from each sample
was treated with RQ1 DNase (Promega, Madison, WI) ac-
cording to the manufacturer’s instructions. The DNase
treated RNA (1 μg) was used as template to generate cDNA
with M-MLV Reverse Transcriptase (Promega, Madison,
WI) according to the manufacturer’s instructions.

454 sequencing and data processing
For transcriptome sequencing, S. lycopersicoides plants
were spray inoculated with spores of B. cinerea at a con-
centration of 3×105/ml. Total RNA was collected from
inoculated leaves from 2 plants per time point at 0 hours,
24 hours, and 48 hours after inoculation. RNA from
replicate leaf samples was pooled prior to sequencing.

http://www.neseed.com/
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Conceptually, RNA pooling was performed as described
by TJ Huth and SP Place [100], PA Olsvik, V Vikeså, KK
Lie and EM Hevrøy [101] Library construction, sequen-
cing, and de novo assembly were performed by the Pur-
due Genomics Core Facility (West Lafayette, IN). Read
counts at each time point from individual isotigs within
an isogroup were summed to reduce overrepresentation
of genes with multiple splice variants. To identify uni-
genes from S. lycopersicoides and B. cinerea, as well as
to remove contaminating sequences, Blast2GO (version
2.6.6) [105] was used to query the assembled unigenes
against the nr database. The Audic and Claverie method
[106] was used to identify plant unigenes that were dif-
ferentially expressed between 0, 24, and 48 hours after
inoculation with a false discovery rate of <0.0033. K-
means clustering was performed on the differentially
expressed plant genes with the genesis software (ver-
sion 1.7.6) [107]. For K-means clustering, unigenes
were assigned to one of four clusters. The basis for
choosing four clusters was the closeness of fit of uni-
genes within each cluster, as well as the biological rele-
vance of the expression patterns observed for each
cluster. Blast2GO was used to functionally characterize
unigenes within each plant cluster, as well as all fungal
unigenes. InterProScan [108] was used to annotate uni-
genes with conserved protein domains. To identify GO
terms that were enriched within each plant cluster, the
Audic and Claverie method [106] was applied to all GO
terms identified in all plant clusters. To make the number
of GO terms associated with each cluster more manage-
able, GO slim analysis was performed with The Arabidop-
sis Information Resource (TAIR) GO slim for plants, while
the Generic GO slim was applied to fungal unigenes.

Analysis of gene expression with qPCR
cDNA from S. lycopersicum and S. lycopersicoides obtained
immediately after (0 hours after inoculation), 24 hours
after, or 48 hours after inoculation with B. cinerea was
used as template for qPCR. qPCR was performed by
combining SYBR green master mix (Life Technologies,
Grand Island, NY) with primers (Additional file 4) and
template according to the manufacturers instructions
and monitoring fluorescence during template amplifi-
cation in a stratagene M×300 P real-time PCR system
(Agilent Technologies, Inc., Santa Clara, CA). The mean
gene expression of three technical replications was nor-
malized to expression of beta tubulin and calculated,
relative to expression at 0 hours after inoculation, with
the 2-ΔΔCT method [109].

Metabolic pathway analysis
Plant unigenes in each cluster were analyzed with the
KEGG Automatic Annotation Server (KAAS) [110] to
detect KEGG Orthologs (KO). KOs from clusters 1, 2,
and 3 were combined into a single cluster representing
up-regulated genes, while cluster 4 was kept separate to
represent down-regulated genes. The KEGG Mapper –
Reconstruct Pathway tool was then used to highlight
genes within KEGG pathways that were up- or down-
regulated in response to B.cinerea.

Availability of supporting data
The 454 reads for S. lycopersicoides inoculated with B.
cinerea have been submitted to NCBI sequence read
archive (SRA, http://www.ncbi.nlm.nih.gov/sra) under
the accession number SRR1054293.

Additional files

Additional file 1: Excel file of expression and predicted identity of
S. lycopersicoides unigenes.

Additional file 2: KEGG analysis of the terpenoid backbone
biosynthesis pathway in Solanum lycopersicoides. The KEGG
Automatic Annotation Service was used to assign KEGG Orthology (KO)
identifiers to differentially expressed unigenes. The KO identifiers were
then used to map unigenes to metabolic pathways. Genes highlighted in
red indicate up-regulation in response to fungal infection. Genes
highlighted in green indicate down-regulation in response to fungal
infection. The pattern of gene expression indicates an activation of the
mevalonate pathway in response to infection by B. cinerea.

Additional file 3: Excel file of expression and predicted identity of
B. cinerea unigenes.

Additional file 4: Excel file of primers used for analysis of gene
expression by qPCR.
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