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Abstract

Background: Deep-sequencing has enabled the identification of large numbers of miRNAs and siRNAs, making
the high-throughput target identification a main limiting factor in defining their function. In plants, several tools
have been developed to predict targets, majority of them being trained on Arabidopsis datasets. An extensive and
systematic evaluation has not been made for their suitability for predicting targets in species other than Arabidopsis.
Nor, these have not been evaluated for their suitability for high-throughput target prediction at genome level.

Results: We evaluated the performance of 11 computational tools in identifying genome-wide targets in
Arabidopsis and other plants with procedures that optimized score-cutoffs for estimating targets. Targetfinder
was most efficient [89% ‘precision’ (accuracy of prediction), 97% ‘recall’ (sensitivity)] in predicting ‘true-positive’
targets in Arabidopsis miRNA-mRNA interactions. In contrast, only 46% of true positive interactions from
non-Arabidopsis species were detected, indicating low ‘recall’ values. Score optimizations increased the ‘recall’
to only 70% (corresponding ‘precision’: 65%) for datasets of true miRNA-mRNA interactions in species other than
Arabidopsis. Combining the results of Targetfinder and psRNATarget delivers high true positive coverage, whereas
the intersection of psRNATarget and Tapirhybrid outputs deliver highly ‘precise’ predictions. The large number of
‘false negative’ predictions delivered from non-Arabidopsis datasets by all the available tools indicate the diversity in
miRNAs-mRNA interaction features between Arabidopsis and other species. A subset of miRNA-mRNA interactions
differed significantly for features in seed regions as well as the total number of matches/mismatches.

Conclusion: Although, many plant miRNA target prediction tools may be optimized to predict targets with high
specificity in Arabidopsis, such optimized thresholds may not be suitable for many targets in non-Arabidopsis
species. More importantly, non-conventional features of miRNA-mRNA interaction may exist in plants indicating
alternate mode of miRNA target recognition. Incorporation of these divergent features would enable next-generation
of algorithms to better identify target interactions.
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Background
Regulatory non-coding small RNAs (smRNAs, 18–30
nucleotides (nt)) play important roles in the regulation of
cellular, physiological and ecological processes in plants
[1-5]. smRNAs recognize target mRNA molecules by
directing effector Argonaute (AGO) protein complexes
via base-pairing interactions with nucleic acid molecules,
which usually leads to the inhibition of gene expression.
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In plants, thousands of smRNAs are expressed at any
given condition [6,7]. Elucidation of the function of these
smRNAs would largely depend on recognition of their
target molecules. Rapid advances in ‘deep-sequencing’ (or
‘next-generation sequencing’; NGS) technology have en-
abled genome-wide identification of large numbers of
smRNAs (including the rare molecules) with greater effi-
ciency [8,9]. Thus, the current bottleneck in understand-
ing RNA mediated interaction is the correct identification
of genes that may be targeted by the numerous smRNAs
in the cell.
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Plant smRNAs are broadly classified into microRNAs
(miRNAs) and small-interfering RNAs (siRNAs). miRNAs
are endogenous and originate from specific locations in ge-
nomes. The primary transcripts of miRNAs are transcribed
in the nucleus in an RNA polymerase II-dependent man-
ner, and transported to the cytoplasm, where these stem-
loop structures generate mature miRNAs [10]. siRNAs
may have exogenous as well as endogenous origins from
viruses, inverted repeats, transposons, transgenes, conver-
gent mRNAs, natural sense-antisense pairs, hairpin RNAs
as well as phased siRNAs. Independent of their origin, both
the miRNAs and the siRNAs mechanistically depend on
the same two families of proteins, the Dicer-like (DCLs)
and the AGOs. smRNAs regulate gene expression by
binding to the target mRNAs through complementary
base-pairing [11].
Three modes of repression of targets have been pro-

posed in plants [12]. First, a large number of plant miRNA
targets undergo cleavage [13]. The PIWI domain of the
AGO proteins have endonuclease activity that cleave
target mRNAs that are complementary to the guide
smRNA strand. Plant miRNAs display complementarity to
their targets throughout their length and thus help AGOs
‘slice’ targets. This feature of complementarity of miRNA:
mRNAs has been (nearly universally) used by the tools
that computationally predict miRNA-target interactions in
plants [5]. Secondly, translational inhibition of targets, in
which the regulation of protein levels occurs without
changes in the target’s mRNA levels, has also been sug-
gested in plants [14-17]. Translational repression has gen-
erally been associated with the limited complementarity
between the miRNAs and the targets in animals. However,
the degree of complementarity between the miRNA and
mRNA necessary to support translational repression in
plants remains unknown [12]. The third mode of action is
the ‘destabilization of targets’, in which a minority of plant
targets in the degradome do not accumulate slicer
cleavage products [18]. Such targets may involve mRNA
destabilization instead of slicing. Moreover, the smRNA-
target interactions are complex, as one smRNA may
regulate the expression of more than one target and one
mRNA can be regulated by many smRNAs [14,19-21].
The role of smRNAs (including miRNAs) in inducible
adaptive responses of plants to quick changes in its
environment is rapidly being recognized [2,3,5,22,23].
It is conceivable that such rapid smRNA-mediated
adaptive responses may involve mRNA destabilization
and the reversible repression of targets in plants.
Although, initial studies in Arabidopsis proposed near-

perfect complementarity between the smRNAs and their
targets as a general rule, deviations from this rule were
soon evident, indicating that pairing at some sites may
be less perfect than others [1,24,25]. For instance, pos-
ition 19 of miR319 and position 16 in the target region
in the mRNAs were shown to be critical for pairing in
Arabidopsis [26]. Similarly, a mismatch at the 10th and
11th positions could lead to inhibition of translation
instead of cleavage of target [27]. Furthermore, comple-
mentarities at the 3’ end of the miRNA and 5’ end of
target has been shown to be more crucial for tasiRNA
formation than are the complementarities in the 5’ end of
miRNA in Arabidopsis [28]. Such studies indicate that the
criteria of perfect/near perfect complementarities between
miRNA/mRNAs need to be relaxed and additional fea-
tures should be included for accurate target prediction.
Therefore, features such as the conservation of targets in
related species, the location of target sites [in the coding
sequence or in the untranslated region (UTR)], cleavage
or repression of targets, presence of multiple target sites,
target site accessibility, and the integration of expression
profiles of both, miRNA and targets have been utilized for
predicting targets (as reviewed by [29,30] and references
therein).
Patscan [31] was one of the first tools for predicting

targets in Arabidopsis and rice [32] and several new tools
have been developed for miRNA target predictions in
Arabidopsis. miRU [33], the first tool for the plant-specific
miRNA target prediction, which was later upgraded to
psRNATarget [34], uses a dynamic programming approach,
aligning sequences using a modified Smith-Waterman al-
gorithm and applying the ‘RNAup’ algorithm [35] for target
site accessibility. Targetfinder [36] implements a ‘FASTA’
program along with a penalty scoring scheme for mis-
matches, bulges, or gaps for aligning the sequences. In
2010, two web-servers, TAPIR [37] and Target-align [38],
were introduced. TAPIR is imbedded with two search
options, the ‘FASTA’ search engine (for ‘fast’ searches), and
the ‘RNA hybrid’ search engine (for ‘precise’ results).
Target-align also employ the Smith-Waterman based scor-
ing method for predicting the complementarities between
miRNAs and mRNAs. Target-align is implemented both as
a web server and as a standalone tool, but its utility for
genome-wide target predictions for smRNAs has not been
tested. Target_Prediction [39] is based on ‘scanning’ targets
for miRNA-patterns followed by the calculation of the
minimum free energy (with the help of ‘RNAhybrid’) for
predicting miRNA-mRNA duplexes. miRTour [40], a web
server based program, implements a variety of resources
such as BLASTX, RNAfold and ClustalW for the pre-
diction of targets (and thus also involves energy mini-
mizations). imiRTP [41] is an integrated miRNA target
interaction prediction tool kit only for Arabidopsis tha-
liana miRNAs. Further, machine learning has been
implemented for predicting the plant miRNA targets, for
instance, p-TAREF [42] implements support vector regres-
sion (SVR) and uses a feature of information of ‘dinucleo-
tide density variation’ around the target site from datasets
of A. thaliana, Oryza sativa, Medicago truncatula and



Figure 1 Schematic representation of the strategy adapted to
evaluate smRNA target prediction tool in plants.
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Solanum lycopersicum. psRobot [43] is a server hosting a
toolbox for analyzing plant smRNAs: it has two modules
of stem-loop prediction and smRNA target prediction.
psRobot uses a modified Smith-Waterman algorithm and
target site conservation to predict targets in A. thaliana,
Brachypodium distachyon, Carica papaya, O. sativa,
Populus trichocarpa, Sorghum bicolor, Vitis vinifera and
Zea mays. psRobot have implemented parallel program-
ming to reduce the run-time during analysis of large data-
sets such as transcriptomes and genomes.
Although large numbers of tools are available for iden-

tifying smRNA-targets in-silico, a comprehensive evalu-
ation of these tools for large-scale, genome-wide target
identification has been lacking. In the post-genomics era
where microarrays and deep-sequencing technologies
have enabled unparalleled data production, genome-
wide target prediction with high accuracy is becoming
critical for the elucidation of functions of smRNAs. Here
we have examined the performance of 18 publically
available target prediction tools for plants, including the
three miRNA-target prediction tools that are extensively
used but not explicitly developed for plants (Targetscan
[44,45], miRanda [46], RNAhybrid [47,48]). We have
chosen an experimentally validated dataset from Arabi-
dopsis and other plant species comprising of 330 and 115
unique experimentally validated miRNA:mRNA interac-
tions, respectively, to evaluate the tools.

Results
Figure 1 shows an overview of the strategy used to evalu-
ate the performance of plant-specific and other available
tools for in-silico identification of smRNA-targets and to
study the features that may affect miRNA-mRNA interac-
tions. The evaluation and selection of tools was performed
in two stages, a) assessing algorithmic efficiency, and b)
determining performance of the algorithm on the experi-
mentally validated plant miRNA targets (Figure 1).

Algorithmic efficiency
While testing the performance of 18 published smRNA
target prediction tools (Additional file 1), we found that
some of these tools were either discontinued, or their
source codes or web servers were not available (for in-
stance miRNAassist [49]). Web miRNA designer, WMD3,
[50] is used to custom design artificial miRNAs to silence
expression of specific targets, this tool was also not con-
sidered fit for genome-wide target prediction, Similarly,
the slice detector module of SoMART [51] was not con-
sidered because it uses the degradome data for mapping
targets of miRNAs. Thus, a total of eleven tools (8 tools
specifically published for plant targets and 3 others - Tar-
getscan, miRanda, RNAhybrid) were selected for further
evaluation in this study. All the selected tools were
implemented either as stand-alone tools, web server
or both (Additional file 1). These tools predicted targets
for plant miRNAs (from miRBase version 18; [52,53]),
against the A thaliana’s trancriptome (Phytozome V8.0;
[54]) at their default settings. Initial evaluation of the
selected tools was based on a) execution time and b), the
average number of targets predicted per miRNA.
Execution time is the time required by a program to

predict targets in transcripts for a given set of smRNAs.
Execution time for the selected tools varied between
5 minutes to a few weeks (Figure 2). psRobot was the
only tool that allowed parallel processing of the dataset.
psRNATarget and Tapirfasta were among the fastest,
while Target-align and p-TAREF were the slowest tools,
each taking >2 weeks to complete target predictions.
Due to such long execution times, these tools may not
be suitable for high throughput analysis. Computation
time for exclusive web server tool (psRNATarget) was
not evaluated, since the target prediction may also de-
pend on factors such as load (number of jobs submitted)
on the server hosting the tool and/or the internet-speed
(Figure 2).
The average number of targets predicted by plant

specific tools ranged from 5–20 transcripts per miRNA
(Figure 3A). This observation is largely consistent with the



Figure 2 Computational time required for each of the tools to predict targets in Arabidopsis transcriptome at their default settings.
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Figure 3 Genome-wide evaluation of tools for target-prediction in A. thaliana. (A) Average number of targets predicted by the different
tools from the Arabidopsis transcriptome for a miRNA. (B) Number of predictions required by different tools for attaining a true positive rate of 1.
Error bars represent standard deviations.
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previous hypothesis, as a single miRNA is capable of tar-
geting multiple (around 6–7) transcripts and a single tran-
script could be targeted by several (4–5) miRNAs [14,18].
The majority of the selected tools were trained on the
Arabidopsis dataset; therefore these may return the same
pattern of target predictions. Indeed, plant specific tools
demonstrated a high degree of overlap in target pre-
dictions (Additional file 2). Notably, other tools such as
miRanda, RNAhybrid and Targetscan, which have been
routinely used for target prediction in humans and other
model organisms [55], predicted a large number of targets
(>4000 transcripts) per miRNA. Although sequence com-
plementarity has been regarded as one of the most critical
principles of miRNA target recognition, such high num-
bers of predictions indicate that these tools use algorithms
that may not be relevant to miRNA-targets in plants due
to the differences in the mechanisms of target recognition
in plants and animals (Figure 3A).

Performance of the algorithm on experimentally
validated plant miRNA targets
A. thaliana is one of the best studied plant species includ-
ing for its smRNAs. For the purpose of this evaluation we
broadly classified experimentally validated datasets into
two categories, one that originated from Arabidopsis
(‘Arabidopsis dataset’) and the other that were obtained
from species other than Arabidopsis (‘non-Arabidopsis
dataset’).

Evaluation of the tools on Arabidopsis dataset
A plot of the true positive rate (TPR) and the total num-
ber of targets predicted (Figure 3B) suggests that a major-
ity of plant specific tools followed a similar distribution:
an average of ~400 transcripts was predicted as targets to
achieve a TPR of close to one. At this TPR value, the total
number of predictions observed for other widely used
tools, miRanda, RNAhybrid and Targetscan, exceeded
5000 (Figure 3B). ‘Precision’ and ‘recall’ are important
evaluative parameters to measure accuracy and sensitivity
of predictions. At their default settings, ‘precision’ of the
selected tools were in the range of 0.81 to 0.89 while
‘recall’ ranged between 0.81 and 0.97. To determine the
most suitable threshold/cutoffs, ‘precision’ and ‘recall’ were
calculated at all possible scores (Figure 4). Scores at which
the ‘precision’ and ‘recall’ values intersected were con-
sidered to be optimal for the respective tools (Additional
file 3). This optimization marginally improved the ‘preci-
sion’ and ‘recall’ values for psRobot and Target_Prediction
(Additional file 4) in Arabidopsis.
p-TAREF, an algorithm that implements ‘machine learn-

ing’, gave a genome-wide prediction of 15,082 miRNA
target interactions with very low ‘precision’ of only 2%
(even though it had an increase in sensitivity from 12.7 to
96.3%). Due to extremely low ‘precision’ percentage, this
tool was not considered further. In addition, RNAhybrid,
miRanda, Target-align and Targetscan were also not fur-
ther considered as they returned low ‘precision’ and ‘recall’
rates throughout the analysis (Figure 4). Targetfinder per-
formed the best among the selected tools with a ‘recall’
rate of 88% and a ‘precision’ rate of 97% (Figure 4).
Thus, six tools were selected from the initial evaluation

of their algorithmic efficiency (run time and genome-wide
prediction; Additional file 1), which includes psRNATar-
get, psRobot, Tapirfasta, Tapirhybrid, Target_Prediction,
Targetfinder. Next, results from these six tools were
combined with other tools as unions and intersections to
improve their ‘precision’ and ‘recall’ (Figure 5). Compared
to the outcomes from individual programs, unions of re-
sults of two tools could achieve higher recalls. Similarly,
the intersections could attain higher precisions. After
score optimizations, the combination of tools had only
marginal effects on the performance of the tools (Figure 5).
Targetfinder performed best (‘precision’ 89%, ‘recall’ 97%)
among all the selected tools for the Arabidopsis species at
the optimal score of 4.0.

Evaluation of the tools on datasets from non-Arabidopsis
species
A maximum of 43% ‘recall’ was recorded when tools
were scanned against the datasets for species other than
Arabidopsis using the ‘optimal scores’ that were ob-
tained earlier for Arabidopsis datasets (Additional file 3).
This observation indicates that the optimal cut-off scores
for Arabidopsis and non-Arabidopsis datasets may differ
and warranted an independent optimization of the tools
for the non-Arabidopsis species as well. Optimal scores
were calculated for the non-Arabidopsis species in a way
similar to those calculated for Arabidopsis (Figure 6 and
Additional file 3). Indeed, use of independently evaluated
optimal scores for non-Arabidopsis datasets improved
the ‘recall’ rates of all the tools in the range of 56 to 69%
(Figure 6). Targetfinder (70% ‘precision’, 69% ‘recall’),
psRNATarget (74% ‘precision’, 62% ‘recall’), and Tapirhy-
brid (70% ‘precision’, 64% ‘recall’) were among the best
performing tools. In order to further improve the per-
formance of the tools on non-Arabidopsis datasets, differ-
ent computational approaches/algorithms were combined
(Figure 6B and C). We observed that the combination of
tools marginally improved the performance of the tools
(Figures 6B and C). The union of Targetfinder (I) and
psRNATarget (P) increased the prediction of TP by 7 but
increased the FP by 9. This would affect the ‘precision’ of
the combination at the genome level and may result in
prediction of one-third FP. Intersection combinations of
tools improved results by increasing ‘precision’ and redu-
cing number of FP. Although it was able to predict only
55% of the positive dataset, the intersection of psRNATar-
get (P) and Tapirhybrid (H) reduced 17 FP. Thus, the



Figure 4 Comparison of ‘precision’ and ‘recall’ rates for prediction by various tools to determine optimal scores for predictions of
targets in Arabidopsis dataset. The intersection of ‘precision’ and ‘recall’ designates the optimal score for an algorithm.
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union combination of Targetfinder (I) and psRNATarget
(P) may be used for high TP coverage with a greater risk
of FP. Similarly, intersection combinations of psRNATar-
get (P) and Tapirhybrid (H) may be recommended for
highly precise predictions.
In addition to the precision and recall analysis we have
also performed the ‘receiver operating characteristic
(ROC) analysis (Additional file 5) for evaluation of the
tools for both, Arabidopsis and non-Arabidopsis datasets.
Results of ROC analysis were consistent with the precision
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and recall analysis. A clear difference in the performance
of tools was observed between Arabidopsis and non-
Arabidopsis species (Additional file 5). Targetfinder was
confirmed as the best performer in both Arabidopsis (area
under curve (AUC) = 0.88) as well in non-Arabidopsis spe-
cies (AUC= 0.78).

Factors affecting prediction efficiencies
Effect of free energy
The interaction of miRNA with its target involves the
accessibility of targeting site in the mRNA by miRNAs.
Such accessibility of mRNA targeting site may be limited
by the formation of secondary structures due to folding
of the parts of mRNAs at favorable free energies (ΔG).
In other words, favorable ΔG condition may govern a
true interaction by limiting the accessibility of miRNA
binding sites. Interestingly, the majority of target predic-
tion tools incorporate free energy as one of the parameters
in their analysis [5,29,34,37,40,43]. We computed the free
energy to characterize its relationship to transcript length
(Figure 7). The free energy values for each of the TP
miRNA binding sites in the Arabidopsis dataset is plotted
against the length of the respective target. With target
length on the x-axis and its respective free energy on the
y-axis, a density plot was constructed. Loess curve fitting
is a commonly used, non-parametric based technique that
fits a smooth curve to the empirical data used for the data
points. Density plot and loess based curve fitting was done
in R v2.12. We observed that longer transcripts tend to
have less free energy (Figure 7). Our observation suggests
that depending on the length of the input mRNA se-
quence the free energy changes. It is important to note
here that none of the current tools provide any recom-
mendations on the length of mRNA for the input; this
could be potentially another source from where bias in
prediction could be introduced.
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Features of the false negative predictions
All the available tools predicted very high numbers of
FN when they were tested on non-Arabidopsis datasets
(Figure 6B). To characterize the differences in the TP
rates observed for the Arabidopsis and non-Arabidopsis
datasets, four features were determined, namely (a) the
GC content of the miRNAs (Additional file 6), (b) the
length of the miRNA seed region (Figure 8A), (c) the first
stretch of the stem region (Figure 8B), and (d) the ratio
of the number matches and the number of mismatches
(Figure 8C) for miRNA-mRNA targets in TP and FN for
Arabidopsis and non-Arabidopsis species. GC content of
miRNA plays an important role in determining the puta-
tive targets [56], however, this feature was not observed to
be significantly different across the datasets. In plants, it
has been hypothesized that the miRNA-mRNA complexes
are near perfect matches [30]. So, we have defined a
new metric, maximum matched region as a part of the
miRNA-target region with maximum number of continu-
ous matches. We found that this feature differs between
the TP and FN of the non-Arabidopsis species (Wilcoxon
rank test p-value = 1.7e-05, Figure 8A). This feature did
not show a significant difference between the TPs of
Arabidopsis and non-Arabidopsis species (Wilcoxon rank
test P-value > 0.01). This indicates that a sub-set of non-
Arabidopsis miRNAs may differ from Arabidopsis miR-
NAs in the way they interact with their targets. A variant
of this feature could be to characterize the first stretch of



Figure 7 Relationship between the free energy and the transcript length. Density plots show how the free energy changes with the increase
in length of the mRNAs that were used for the prediction of miRNA-targets. The red line represents the loess based curve fitted data points.
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the miRNA region that matches perfectly with its target
sequences until a mismatched base is observed. Such a
mechanism would be more consistent with the conven-
tional definition of the seed region [57]. When this idea
was tested, a similar trend of significant differences
between the TP and FN datasets of the non-Arabidopsis
species (Wilcoxon rank test P-value = 1.4e-11; Figure 8B)
but not between the TP datasets of Arabidopsis and non-
Arabidopsis species (Wilcoxon rank test P-value > 0.01;
Figure 8B) was observed. In order to assess if the differ-
ences in the continuous matching region is also affected
by the number of mismatches between the miRNA
and the mRNA target sequences, we calculated the ratio
of the total number of matches over total number of mis-
matches. Interestingly, the result was consistent as with
the previous analysis i.e. no significant differences were
observed for the TPs of the Arabidopsis and non-
Arabidopsis species (Wilcoxon rank test P-value > 0.01;
Figure 8C) while returning significant differences be-
tween the TPs and FNs of the non-Arabidopsis species
(Wilcoxon rank test P-value = 2.4e-13; Figure 8C).
The differences between the TP and FN at the alignment

level are summarized as a heatmap (Additional file 7). The
heatmap clustering is based on the alignment of first 20 nt
of miRNA-mRNA complementarity of the respective in-
teractions that were plotted with respect to miRNA 5’-3’
direction (Additional file 7). miRNA-mRNA seed inter-
action positions (2–12 position) can be represented either
as (i) less than two G:U wobbles, (ii) two mismatches and
one G:U wobble, (iii) only three mismatches and no G:U
wobble, with or without mismatch/gap/G:U wobble at the
3’ end of the miRNA target interaction. This indicates that
continuous pairing of miRNAs and mRNAs in TP dataset
is different from FN datasets in non-Arabidopsis species.
This observation is further confirmed by evaluating the
entropy values for each miRNA-mRNA positions in TP
and FN datasets (Figure 8D). Since, the numbers of FNs in
Arabidopsis dataset were too few to deduce any mea-
ningful statistics, we did not use Arabidopsis FNs dataset
for further comparisons. Wilcoxon rank-test between TP
datasets (Arabidopsis and non-Arabidopsis) were not ob-
served to be significant while Wilcoxon rank test between
non-Arabidopsis FN and TP datasets were observed to be
highly significant (Wilcoxon rank test P = 4.8e-07 for
Arabidopsis and for non-Arabidopsis datasets). This
suggests that the entropy values in FN datasets are sig-
nificantly higher when compared to the TP datasets
(Arabidopsis and non-Arabidopsis).

Discussion
The integration of smRNAs into the existing functional
genomics datasets is essential for a better understanding
of the cellular, physiological and ecological processes
[1,4,5,7]. In the post-genomics era where information on
identity, sequence and expression of smRNA is readily
attainable, the high-throughput characterization of their
targets is proving to be the limiting factor in under-
standing smRNA-functions. Although several models
and computational tools have been proposed for in-silico
identification of smRNA targets, predicting targets with
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significant statistical confidence in high-throughput ex-
periments still remains a challenging task. Successful
prediction of targets depend on the fine-tuning of several
factors effecting the miRNA-mRNA complex formation,
such as complementarity of smRNA and target sequence,
continuous stretches of matches and mismatches, local
structural properties, target site accessibility, free energy
of interaction, GC content, G:U pairs, etc. Previously
proposed models/tools have been theoretically shown
to have optimal performance but a critical comparative
evaluation of these algorithms based on experimentally
validated dataset has not been performed. In this study we
attempted to compare all the available tools for high-
throughput smRNA target prediction in Arabidopsis as
well as non-Arabidopsis species at optimized scores. In
addition, we have tried to understand the possible features
that significantly reduce the ‘precision’ and ‘recall’ of tools
when they are used for non-Arabidopsis species.
The initial evaluation of the selected eleven plant and

animal specific tools were based on the true positive
datasets obtained for the A. thaliana species (Figure 1).
Based on the execution time and the number of FP
target predictions, p-TAREF, RNAhybrid, miRanda, Target-
align and Targetscan were not considered suitable for
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genome-wide prediction in plants and therefore these tools
were not evaluated further (Figures 2 and 3).
In comparison to their default settings, the optimization

of cut-off scores led to an increase in the ‘precision’ of
Target_Prediction by 2% (Additional file 4, Figure 4), and
to an increase in ‘recall’ by 3% for psRobot. After score
optimization, Targetfinder was found to be the most
useful tool for predicting targets for Arabidopsis datasets
(Figure 5).
We carried out the same set of evaluations for interac-

tions known in non-Arabidopsis species. A maximum of
43% ‘recall’ rate could be obtained when the tools used
Arabidopsis ‘optimal score’. By recalculating the cut-off
scores for non-Arabidopsis datasets independently, the
‘recall’ rates were increased to the range from 56-69%
(Figure 6 and Additional file 4). For the non-Arabidopsis
species, we observed that psRNATarget and Tapirhybrid
displayed the best trade-off between ‘precision’ and ‘recall’
rates. Depending upon the context of usage (i.e. rapid sen-
sitive scans or highly specific predictions) a combination
of union or intersection for these tools could be recom-
mended for miRNA target prediction in non-Arabidopsis
species (see Results for details). This observation of
different ‘optimal score’ and low ‘recall’ rate might
suggest an alternate mechanism of target identification for
the smRNAs in non-Arabidopsis species.
It has been shown earlier that in the absence of ‘real’

TN dataset precision and recall might prove to be a
better measure for the tool evaluation [58-61]. Indeed, a
‘real’ TN dataset for miRNA-mRNA interaction has
largely been missing. Still, we have performed ROC ana-
lysis with the negative dataset for miRNAs downloaded
from a previously published study [42]. ROC analysis
clearly suggested that there was a stark difference in
the performance of tools between Arabidopsis and non-
Arabidopsis species, which is consistent with the precision
and recall analysis (Additional file 5, Figures 4 and 6).
We investigated the possible reason for differences in

the TP rates observed for the Arabidopsis and non-
Arabidopsis species by considering (a) commonality in the
prediction programs, and (b) characterizing features of
interactions for the miRNAs that were falsely predicted to
be negative. Several prediction programs use the hypoth-
esis that low free energy is required for the formation of
stable RNA-RNA duplex [33-35,37,40,43,47]. Due to the
limited numbers of solved secondary structures of RNA
duplexes, calculations of free energy mainly rely on mod-
eling efforts [62]. We observed that there was a negative
association of free-energy with transcript length (Figure 7).
This association could introduce bias in the analysis and
indicates that universal cut-off scores might not work for
all the transcripts of different lengths.
To characterize the attributes for the targets that were

falsely predicted to be negative, four features for miRNA-
mRNA targets in TPs and FN for Arabidopsis and non-
Arabidopsis species were determined (Additional file 6,
Figure 8A-C). With an exception of miRNA GC content,
we observed that all the other features were significantly
different between TP and FNs of the non-Arabidopsis
species while no significant differences were observed
between TP of Arabidopsis and non-Arabidopsis species.
These observations, in addition to the relatively high
values for the entropy (Figure 8D) in the FN datasets fur-
ther suggest that for a sub-set of the miRNAs belonging
to the non-Arabidopsis species, additional components of
mechanism of the target recognition are likely to exist.
Conclusions
In this study we have evaluated several miRNA target
prediction tools. We observed that the majority of the
plant specific tools may be made to predict targets with
a high specificity in the model organism, A. thaliana if the
parameters of predictions are optimized. We further con-
clude that such optimized ‘scores’ of Arabidopsis may not
be used as a threshold while analyzing non-model organ-
ism (i.e. non-Arabidopsis datasets); in addition, we have
optimized the scores for non-Arabidopsis species. Based
on our results of the evaluation of known interactions,
Targetfinder alone or in combination with psRNATarget
or Tapirhybrid for the miRNA target predictions provided
the most satisfactory results. While analyzing the FN
datasets, we noted that additional features of target
recognition likely exists, which indicates towards pos-
sible novel modes of miRNA-mRNA target recogni-
tion in non-Arabidopsis plants.
Methods
SmRNA target prediction tools
A total of 18 tools were found published but only 11
tools were quantitatively available for sequential evalu-
ation based on different criteria (Additional file 1). Plant
specific smRNA target prediction tools that are imple-
mented either in the form of a web server or as a stand-
alone tool were included in this study. A summary of all
the selected tools is presented in Table 1. Both the
source-codes and the web servers are publically available
for TAPIR version 1.1, Target-align (Windows version),
psRobot version 1.2 and p-TAREF (Linux version),
while for Targetfinder release 1.6, Target_Prediction and
psRNATarget, either only the source codes or web
servers are available. In addition, some of the widely
used tools that are not plant specific, such as mi-
Randa (August 2006) [46], RNAhybrid version 2.1 [47,48]
and Targetscan version 6.2 (non-conserved) [44,45] were
also included in our study. The Tapirfasta and Tapir RNA-
hybrid (Tapirhybrid) search engines [37] were independ-
ently evaluated.



Table 1 Comparison of parameters used in the different miRNA target prediction algorithms

Tool/Parameters Algorithm Seed
pairing

Target site
accessibility

Multiple
sites

Conservation
filter

Expression
profile

Translation
inhibition

Availability

Targetfinder FASTA + - - - - - Only source code

TAPIR FASTA/RNAhybrid + + + - - - Web server and source code

Target-align Smith-Waterman like - - + - - - Web server and source code

Target_Prediciton Scan for matches
and RNA hybrid

- + - - - - Only source code

psRNATarget Smith-Waterman - + + - - + Only web server

p-TAREF Support Vector
Regression (SVR)

- + + - + - Web server and source code

psRobot Modified
Smith-Waterman

- - + + + - Web server and source code

miRanda Local Alignment + + + - - + Web server and source code

RNAhybrid Intramolecular
hybridization

+ + + - - + Web server and source code

Targetscan 6.2
(Non- conserved)

Custom made + - + - - + Only source code

‘+’ Represent feature used, ‘-‘ indicates that these features were not used.
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SmRNA-target datasets and genome-wide target
prediction
A. thaliana is a widely used model flowering plant, for
which, the majority of the tools have been developed. As
expected, most miRNA-mRNA interactions have also
been experimentally validated in A. thaliana. These expe-
rimentally validated interactions of miRNAs and mRNAs
in A. thaliana were obtained from the Arabidopsis small
RNA project (ASRP) database [63,64], and by performing
a literature search [3,14,36,65]. A majority of these miR-
NAs were conserved in other species as reported in miR-
Base V18 [52,53]. miRNA targets for non-conserved
miRNAs (those not reported in A. thaliana) included
interactions from O. sativa, Glycine max and V. vinifera;
these were curated from the literature [66-71]. Non-
redundant miRNA-mRNA interactions add up to 330
for Arabidopsis and 134 for the other plant species
(Additional file 8). We have removed miRNAs miR414
and miR413 since they are marked as ambiguous in miR-
Base; the total number of interactions for other plant
species is now 115 (Additional file 8). Thus, our study pro-
vides a useful resource by curating a list of experimentally
validated miRNA-mRNA interactions in Arabidopsis as
well as those only in species other than Arabidopsis.
Mature miRNA sequences and target sequences for the
Arabidopsis dataset were extracted from miRBase V18
[52,53] and Phytozome V8.0 [54]. We then evaluated how
various computational tools performed in predicting
miRNA targets when subjected to large-scale datasets (at
genome scales) from Phytozome V8.0 [54]. These datasets
were used as inputs to various tools (at their default
parameters) for in-silico miRNA target identification. The
following metrics were evaluated: 1) execution time, and
2) the average of number of targets predicted per miRNA.
Ubuntu version 12.04 (64 bit) was used as an operating
system for the evaluation of selected tools on Intel® Core™
i7-2600 CPU with a clock rate of 3.40GHz and 16 GB
RAM.

Performance evaluation
Performance of the tools was evaluated by estimating
the parameters of ‘precision’ (TP/(TP + FP)) and ‘recall’
(TP/(TP + FN)) [72,73]. True positives (TP) were defined
as experimentally validated in-silico predictions; false
negatives (FN) are the experimentally validated interac-
tions but not predicted in-silico, and the false positives
(FP) are defined as in-silico predictions that were not
experimentally validated. Maximum TPR values were
obtained at the following threshold: psRNATarget: 5
(Maximum expectation), Tapirfasta: 10 (Score), Tapir-
hybrid: 10 (Score), psRobot: 5 (Penalty score threshold),
Target_Prediction: 4 (Penalty score), Targetfinder: 6.5
(Prediction Score), Target-align: 110 (Maximum Score),
p-TAREF: 4 (SVR score), RNAhybrid: 1 (p-value). ‘Preci-
sion’ and ‘recall’ are inversely related to each other: choos-
ing a score cut-off based on a high ‘precision’ value would
provide accurate results with low sensitivity and vice-
versa. Therefore, an optimal balance between these two
parameters is required. In this study, we have defined an
optimal score where the ‘precision’ and ‘recall’ values
intersect.
ROC analysis was performed by estimating the para-

meters of ‘specificity’ (TN/(TN + FP)) and ‘sensitivity’
(TP/(TP + FN)) [72,73]. True positives (TP) were defined
as experimentally validated in-silico predictions; false
negatives (FN) are the experimentally validated interac-
tions but not predicted in-silico, and the false positives
(FP) are defined as in-silico predictions that were not
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experimentally validated; true negative (TN) dataset
(119 sequences) was obtained from a previous publi-
cation [42].
Combinations of prediction algorithms
To further improve the ‘precision’ and ‘recall’ rates, pre-
dictions obtained from the selected tools at their optimal
scores were combined. Combinations of the tools were
assessed by either taking a union or an intersection of
the predictions.
Complementarity and free energy
The uncertainty in the alignment of miRNA:mRNA
interaction was measured using Shannon entropy. The
observed entropy value (Hn) at each position of the ex-
perimentally validated miRNA:mRNA interaction pairs
is obtained from the formula:

Hn ¼
X

pi⋅ln⋅pi

i ¼ match; mismatch

The experimentally validated dataset from Arabidopsis
were used for the free energy calculations using the
RNAhybrid free energy tool [47,48].
Evaluation of the ‘FN’ dataset
Four features were evaluated to characterize FN predic-
tions. (a) The GC content of miRNAs (percentage of GC
in the miRNA sequence) was calculated for the TP and
FN datasets in both Arabidopsis and non-Arabidopsis
datasets, (b) the length of the miRNA seed region, in
which, the miRNA seed region was defined as the
longest stretch of complementary bases between miRNA
and mRNA, (c) the first stretch of the stem region,
where this feature was defined as length of the continu-
ous matches from first matched base until a mismatched
base was observed, and (d) the ratio of the total number
matches and the total number of mismatches. Dif-
ferences in alignments are summarized as a heatmap.
The heatmaps are based on the alignment between TP
miRNA-mRNA pairs using ‘fasta’ sequence alignment
tool version 35 [74]. It is possible that different miRNAs
may have different lengths. To cope with the variability
in the alignment lengths, we have considered the first
20 nt for clustering. Match, mismatch/gap and G:U wob-
ble were given a score +1, −1, and 0.5 respectively. Clus-
tering is based on Euclidean distance and dendrogram
was computed using the complete clustering method. All
analyses were performed using R 2.15.2 [75].
Additional files

Additional file 1: Workflow for the selection of miRNA-target
prediction tools.

Additional file 2: Pair-wise comparisons of the predictions made by
the selected tools. Total number of predictions obtained from all the
selected tools is presented on the diagonal of the matrix and their
corresponding overlap with other tools is presented in the subsequent
columns.

Additional file 3: Optimal cut-off scores for the tools in Arabidopsis
and non-Arabidopsis datasets.

Additional file 4: Comparison of ‘precision’ and ‘recall’ parameters
at default and optimized scores for different tools in Arabidopsis
and non-Arabidopsis datasets.

Additional file 5: ROC plots to compare the sensitivity and
specificity of the predictions made by various tools in (A)
Arabidopsis and (B) Non-Arabidopsis species. (C) Area under curve
(AUC) is tabulated for both Arabidopsis and Non-Arabidopsis species.

Additional file 6: Comparison of the GC content distributions for
miRNA targets in TPs and FN for Arabidopsis and non-Arabidopsis
datasets. (A) and (B) show GC content distribution for the TP and FN
miRNAs in Arabidopsis dataset respectively, while (C) and (D) are the
plots of GC content distributions for TP and FN datasets in non-
Arabidopsis dataset respectively.

Additional file 7: Heatmaps representing the TP (A and B) and
FN (C and D) miRNA-mRNA interactions in Arabidopsis and
non-Arabidopsis datasets respectively.

Additional file 8: List of miRNA-mRNA interactions that are
reported in Arabidopsis and conserved in other species
(Arabidopsis dataset; A-C) and those reported from other species
but not conserved in Arabidopsis (non-Arabidopsis dataset; E-G).
Competing interests
Authors declare that they have no competing interests.
Authors’ contribution
PKS, SPP designed study, PKS, TRM, PP, SPP conducted study and analyzed
data, ITB and SPP provided resources, PKS, TRM, PP, ITB, SPP wrote
manuscript. All authors read and approved the final manuscript.
Acknowledgements
Funding from the Max Planck Society, Germany and the Department of
Science and Technology, India in form of the MPG-India Partner Group
Program, the CRP Wheat Program of CIMMYT and CGIAR and the startup
grant of IISER-Kolkata supported the work in SPP lab. We also thank the
Indo-German Science and Technology Center for help in execution of the
MPG-India Partner Program. TRM is supported by a fellowship of Integrated
MS-PhD program of IISER-Kolkata. We thank Avinash Sethi, Ravi Singh and
other SPP lab members for technical help to TRM with the analysis, and
Santosh Atanur and Claire Morgan of MRC clinical sciences centre, London
for their critical comments on the manuscript. We are thankful to the
anonymous reviewers for their comments and suggestions; this has considerably
improved the manuscript.

Author details
1Department of Biological Sciences, Indian Institute of Science Education and
Research- Kolkata, Mohanpur Campus, Mohanpur 741252, West Bengal, India.
2National Institute of Biomedical Genomics, Kalyani 741251, West Bengal,
India. 3Department of Molecular Ecology, Max Planck Institute for Chemical
Ecology, Hans-Knoell Str. 8, 07745 Jena, Germany. 4Current address:
Integrative Genomics and Medicine, MRC clinical sciences, Imperial College,
London, UK.

Received: 29 January 2014 Accepted: 1 May 2014
Published: 8 May 2014

http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S3.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S4.docx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S5.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S6.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S7.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-348-S8.xls


Srivastava et al. BMC Genomics 2014, 15:348 Page 14 of 15
http://www.biomedcentral.com/1471-2164/15/348
References
1. Jones-Rhoades MW, Bartel DP, Bartel B: MicroRNAS and their regulatory

roles in plants. Annu Rev Plant Biol 2006, 57:19–53.
2. Pandey SP, Baldwin IT: RNA-directed RNA polymerase 1 (RdR1) mediates

the resistance of Nicotiana attenuata to herbivore attack in nature.
Plant J 2007, 50(1):40–53.

3. Pandey SP, Gaquerel E, Gase K, Baldwin IT: RNA-directed RNA polymerase3
from Nicotiana attenuata is required for competitive growth in natural
environments. Plant Physiol 2008, 147(3):1212–1224.

4. Pandey SP, Somssich IE: The role of WRKY transcription factors in plant
immunity. Plant Physiol 2009, 150(4):1648–1655.

5. Pandey SP, Moturu TR, Pandey P: Roles of Small RNAs in Regulation of
Signaling and Adaptive Responses in Plants. In Recent Trends in Gene
Expression. Edited by Mandal SS. Hauppauge, NY: Nova Publishers;
2013:107–132.

6. Lu C, Tej SS, Luo S, Haudenschild CD, Meyers BC, Green PJ: Elucidation
of the small RNA component of the transcriptome. Science 2005,
309(5740):1567–1569.

7. Pandey SP, Shahi P, Gase K, Baldwin IT: Herbivory-induced changes in the
small-RNA transcriptome and phytohormone signaling in Nicotiana
attenuata. Proc Natl Acad Sci U S A 2008, 105(12):4559–4564.

8. Eldem V, Celikkol Akcay U, Ozhuner E, Bakir Y, Uranbey S, Unver T:
Genome-wide identification of miRNAs responsive to drought in peach
(Prunus persica) by high-throughput deep sequencing. PLoS One 2012,
7(12):e50298.

9. Sun LM, Ai XY, Li WY, Guo WW, Deng XX, Hu CG, Zhang JZ: Identification
and comparative profiling of miRNAs in an early flowering mutant of
trifoliate orange and its wild type by genome-wide deep sequencing.
PLoS One 2012, 7(8):e43760.

10. He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene
regulation. Nat Rev Genet 2004, 5(7):522–531.

11. Carthew RW, Sontheimer EJ: Origins and Mechanisms of miRNAs and
siRNAs. Cell 2009, 136(4):642–655.

12. Rogers K, Chen X: Biogenesis, turnover, and mode of action of plant
microRNAs. Plant Cell 2013, 25(7):2383–2399.

13. Ameres SL, Zamore PD: Diversifying microRNA sequence and function.
Nat Rev Mol Cell Biol 2013, 14(8):475–488.

14. Beauclair L, Yu A, Bouche N: microRNA-directed cleavage and
translational repression of the copper chaperone for superoxide
dismutase mRNA in Arabidopsis. Plant J 2010, 62(3):454–462.

15. Dugas DV, Bartel B: Sucrose induction of Arabidopsis miR398 represses
two Cu/Zn superoxide dismutases. Plant Mol Biol 2008, 67(4):403–417.

16. Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P:
The miRNA156/157 recognition element in the 3’ UTR of the Arabidopsis
SBP box gene SPL3 prevents early flowering by translational inhibition
in seedlings. Plant J 2007, 49(4):683–693.

17. Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F,
Raikhel N, Jiang L, Chen X: MicroRNAs inhibit the translation of target
mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 2013,
153(3):562–574.

18. German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan
V, Rymarquis LA, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers
BC, Green PJ: Global identification of microRNA-target RNA pairs by
parallel analysis of RNA ends. Nat Biotechnol 2008, 26(8):941–946.

19. Allen E, Xie Z, Gustafson AM, Carrington JC: microRNA-directed phasing
during trans-acting siRNA biogenesis in plants. Cell 2005, 121(2):207–221.

20. Allen RS, Millar AA: Genetic and Molecular Approaches to Assess
MicroRNA Function. In MicroRNAs in Plant Development and Stress
Responses, vol. 15. Edited by Sunkar R. Berlin, Heidelberg: Springer Berlin
Heidelberg; 2012:123–148.

21. Llave C, Xie Z, Kasschau KD, Carrington JC: Cleavage of Scarecrow-like
mRNA targets directed by a class of Arabidopsis miRNA. Science 2002,
297(5589):2053–2056.

22. Reynoso MA, Blanco FA, Zanetti ME: Insights into post-transcriptional
regulation during legume-rhizobia symbiosis. Plant Signal Behav 2012,
8(2):e23102.

23. Voinnet O: Origin, biogenesis, and activity of plant microRNAs.
Cell 2009, 136(4):669–687.

24. Jones-Rhoades MW, Bartel DP: Computational identification of plant
microRNAs and their targets, including a stress-induced miRNA.
Mol Cell 2004, 14(6):787–799.
25. Wang XJ, Reyes JL, Chua NH, Gaasterland T: Prediction and identification
of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol
2004, 5(9):R65.

26. Palatnik JF, Wollmann H, Schommer C, Schwab R, Boisbouvier J,
Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington JC,
Weigel D: Sequence and expression differences underlie functional
specialization of Arabidopsis microRNAs miR159 and miR319.
Dev Cell 2007, 13(1):115–125.

27. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P,
Yamamoto YY, Sieburth L, Voinnet O: Widespread translational inhibition
by plant miRNAs and siRNAs. Science 2008, 320(5880):1185–1190.

28. Zhang C, Ng DW, Lu J, Chen ZJ: Roles of target site location and
sequence complementarity in trans-acting siRNA formation in
Arabidopsis. Plant J 2012, 69(2):217–226.

29. Dai X, Zhuang Z, Zhao PX: Computational analysis of miRNA targets in
plants: current status and challenges. Brief Bioinform 2011, 12(2):115–121.

30. Ding J, Zhou S, Guan J: Finding microRNA targets in plants: current status
and perspectives. Genomics Proteomics Bioinform 2012, 10(5):264–275.

31. Dsouza M, Larsen N, Overbeek R: Searching for patterns in genomic data.
Trends Genet 1997, 13(12):497–498.

32. Bonnet E, Wuyts J, Rouze P, Van de Peer Y: Detection of 91 potential
conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa
identifies important target genes. Proc Natl Acad Sci U S A 2004,
101(31):11511–11516.

33. Zhang Y: miRU: an automated plant miRNA target prediction server.
Nucleic Acids Res 2005, 33(Web Server issue):W701–W704.

34. Dai X, Zhao PX: psRNATarget: a plant small RNA target analysis server.
Nucleic Acids Res 2011, 39(Web Server issue):W155–W159.

35. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler
PF, Hofacker IL: ViennaRNA Package 2.0. Algorithms Mol Biol 2011, 6(1):26.

36. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS,
Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC: High-throughput
sequencing of Arabidopsis microRNAs: evidence for frequent birth and
death of MIRNA genes. PLoS One 2007, 2(2):e219.

37. Bonnet E, He Y, Billiau K, Van de Peer Y: TAPIR, a web server for the
prediction of plant microRNA targets, including target mimics.
Bioinformatics 2010, 26(12):1566–1568.

38. Xie F, Zhang B: Target-align: a tool for plant microRNA target
identification. Bioinformatics 2010, 26(23):3002–3003.

39. Sun Y-H, Lu S, Shi R, Chiang V: Computational Prediction of Plant miRNA
Targets. In RNAi and Plant Gene Function Analysis, Volume 744. Edited by
Kodama H, Komamine A. Heidelberg: Springer Protocols; 2011:175–186.

40. Milev I, Yahubyan G, Minkov I, Baev V: miRTour: plant miRNA and target
prediction tool. Bioinformation 2011, 6(6):248–249.

41. Ding J, Yu S, Ohler U, Guan J, Zhou S: imiRTP: An Integrated Method to
Identifying miRNA-target Interactions in Arabidopsis thaliana. In IEEE
International Conference on Bioinformatics and Biomedicine: 2011. 2011:100–104.

42. Jha A, Shankar R: Employing machine learning for reliable miRNA target
identification in plants. BMC Genomics 2011, 12(1):636.

43. Wu HJ, Ma YK, Chen T, Wang M, Wang XJ: PsRobot: a web-based
plant small RNA meta-analysis toolbox. Nucleic Acids Res 2012,
40(Web Server issue):W22–W28.

44. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP: Weak
seed-pairing stability and high target-site abundance decrease
the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 2011,
18(10):1139–1146.

45. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP:
MicroRNA targeting specificity in mammals: determinants beyond seed
pairing. Mol Cell 2007, 27(1):91–105.

46. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS: MicroRNA targets
in Drosophila. Genome Biol 2003, 5(1):R1.

47. Kruger J, Rehmsmeier M: RNAhybrid: microRNA target prediction
easy, fast and flexible. Nucleic Acids Res 2006, 34(Web Server issue):
W451–W454.

48. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R: Fast and effective
prediction of microRNA/target duplexes. RNA 2004, 10(10):1507–1517.

49. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM: Computational
identification of novel microRNAs and targets in Brassica napus.
FEBS Lett 2007, 581(7):1464–1474.

50. Ossowski S, Schwab R, Weigel D: Gene silencing in plants using artificial
microRNAs and other small RNAs. Plant J 2008, 53(4):674–690.



Srivastava et al. BMC Genomics 2014, 15:348 Page 15 of 15
http://www.biomedcentral.com/1471-2164/15/348
51. Li F, Orban R, Baker B: SoMART: a web server for plant miRNA, tasiRNA
and target gene analysis. Plant J 2012, 70(5):891–901.

52. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ: miRBase:
tools for microRNA genomics. Nucleic Acids Res 2008,
36(Database issue):D154–D158.

53. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA
annotation and deep-sequencing data. Nucleic Acids Res 2011,
39(Database issue):D152–D157.

54. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T,
Dirks W, Hellsten U, Putnam N, Rokhsar DS: Phytozome: a comparative
platform for green plant genomics. Nucleic Acids Res 2012,
40(Database issue):D1178–D1186.

55. Rajewsky N: microRNA target predictions in animals. Nat Genet 2006,
38(Suppl):S8–S13.

56. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V,
Sundaresan V: Computational prediction of miRNAs in Arabidopsis
thaliana. Genome Res 2005, 15(1):78–91.

57. Bartel DP: MicroRNAs: target recognition and regulatory functions.
Cell 2009, 136(2):215–233.

58. Sohn S, Comeau DC, Kim W, Wilbur WJ: Abbreviation definition
identification based on automatic precision estimates. BMC Bioinforma
2008, 9:402.

59. Monastyrskyy B, D’Andrea D, Fidelis K, Tramontano A, Kryshtafovych A:
Evaluation of residue-residue contact prediction in CASP10. Proteins 2014,
82(Suppl 2):138–153.

60. Krzyzanowski PM, Andrade-Navarro MA: Identification of novel stem cell
markers using gap analysis of gene expression data. Genome Biol 2007,
8(9):R193.

61. Huang YJ, Powers R, Montelione GT: Protein NMR recall, precision, and
F-measure scores (RPF scores): structure quality assessment measures
based on information retrieval statistics. J Am Chem Soc 2005,
127(6):1665–1674.

62. Eddy SR: How do RNA folding algorithms work? Nat Biotechnol 2004,
22(11):1457–1458.

63. Backman TW, Sullivan CM, Cumbie JS, Miller ZA, Chapman EJ, Fahlgren N,
Givan SA, Carrington JC, Kasschau KD: Update of ASRP: the Arabidopsis
Small RNA Project database. Nucleic Acids Res 2008, 36(Database issue):
D982–D985.

64. Gustafson AM, Allen E, Givan S, Smith D, Carrington JC, Kasschau KD: ASRP:
the Arabidopsis Small RNA Project Database. Nucleic Acids Res 2005,
33(Database issue):D637–D640.

65. Hewezi T, Maier TR, Nettleton D, Baum TJ: The Arabidopsis microRNA396-
GRF1/GRF3 regulatory module acts as a developmental regulator in the
reprogramming of root cells during cyst nematode infection.
Plant Physiol 2012, 159(1):321–335.

66. Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G,
Axtell MJ, Zhang W, Sunkar R: Transcriptome-wide identification of
microRNA targets in rice. Plant J 2010, 62(5):742–759.

67. Macovei A, Tuteja N: microRNAs targeting DEAD-box helicases are
involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol
2012, 12:183.

68. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J:
Identification of grapevine microRNAs and their targets using
high-throughput sequencing and degradome analysis. Plant J 2010,
62(6):960–976.

69. Shamimuzzaman M, Vodkin L: Identification of soybean seed
developmental stage-specific and tissue-specific miRNA targets by
degradome sequencing. BMC Genomics 2012, 13(1):310.

70. Zhang B, Pan X, Stellwag EJ: Identification of soybean microRNAs and
their targets. Planta 2008, 229(1):161–182.

71. Zhou M, Gu L, Li P, Song X, Wei L, Chen Z, Cao X: Degradome sequencing
reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica).
Front Biol 2010, 5(1):67–90.

72. Hu LL, Huang Y, Wang QC, Zou Q, Jiang Y: Benchmark comparison of ab
initio microRNA identification methods and software. Genet Mol Res 2012,
11(4):4525–4538.
73. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K,
Funk C, Verspoor K, Ben-Hur A, Pandey G, Yunes JM, Talwalkar AS, Repo S,
Souza ML, Piovesan D, Casadio R, Wang Z, Cheng J, Fang H, Gough J,
Koskinen P, Törönen P, Nokso-Koivisto J, Holm L, Cozzetto D, Buchan DW,
Bryson K, Jones DT, Limaye B, et al: A large-scale evaluation of computational
protein function prediction. Nat Methods 2013, 10(3):221–227.

74. Lipman DJ, Pearson WR: Rapid and sensitive protein similarity searches.
Science 1985, 227(4693):1435–1441.

75. Team RC: R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing; 2013.

doi:10.1186/1471-2164-15-348
Cite this article as: Srivastava et al.: A comparison of performance of
plant miRNA target prediction tools and the characterization of features
for genome-wide target prediction. BMC Genomics 2014 15:348.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Algorithmic efficiency
	Performance of the algorithm on experimentally validated plant miRNA targets
	Evaluation of the tools on Arabidopsis dataset
	Evaluation of the tools on datasets from non-Arabidopsis species

	Factors affecting prediction efficiencies
	Effect of free energy
	Features of the false negative predictions


	Discussion
	Conclusions
	Methods
	SmRNA target prediction tools
	SmRNA-target datasets and genome-wide target prediction
	Performance evaluation
	Combinations of prediction algorithms
	Complementarity and free energy
	Evaluation of the ‘FN’ dataset

	Additional files
	Competing interests
	Authors’ contribution
	Acknowledgements
	Author details
	References

