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Abstract

Background: Lichen is a classic mutualistic organism and the lichenization is one of the fungal symbioses. The
lichen-forming fungus Endocarpon pusillum is living in symbiosis with the green alga Diplosphaera chodatii Bialsuknia as
a lichen in the arid regions.

Results: 454 and lllumina technologies were used to sequence the genome of £ pusillum. A total of 9,285 genes were
annotated in the 37.5 Mb genome of E. pusillum. Analyses of the genes provided direct molecular evidence for certain
natural characteristics, such as homothallic reproduction and drought-tolerance. Comparative genomics analysis
indicated that the expansion and contraction of some protein families in the E. pusillum genome reflect the
specific relationship with its photosynthetic partner (D. chodatii). Co-culture experiments using the lichen-forming fungus
E. pusillum and its algal partner allowed the functional identification of genes involved in the nitrogen and carbon transfer
between both symbionts, and three lectins without signal peptide domains were found to be essential for the symbiotic
recognition in the lichen; interestingly, the ratio of the biomass of both lichen-forming fungus and its photosynthetic
partner and their contact time were found to be important for the interaction between these two symbionts.

Conclusions: The present study lays a genomic analysis of the lichen-forming fungus £. pusillum for demonstrating its
general biological features and the traits of the interaction between this fungus and its photosynthetic partner D. chodatii,
and will provide research basis for investigating the nature of its drought resistance and symbiosis.
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Background

A lichen is a symbiotic association of a fungus (myco-
biont) and a photosynthetic partner (photobiont), which
may be an alga (phycobiont) or a cyanobacterium (cyano-
biont). In the association the fungus produces a thallus,
or body, within which the photobionts are housed [1].
Around 20% of all Fungi and 40% of all Ascomycota are
lichen-forming. Recent estimates of global diversity sug-
gest that there are between 17,500 and 20,000 species [2].
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Most lichens and isolated lichen-forming fungi grow
extremely slow, but the lichen-symbiosis is a very suc-
cessful association as lichens can survive in almost all
adverse terrestrial conditions [3]. They are also famous
for their particular secondary products, which are fre-
quently used as antibacterial and antiviral compounds
[4,5]. The lichen-forming fungi differ from non-lichenized
fungi by their adaptations to symbiosis with photobiont
[6]. This mutualistic association, as called lichenization, is
one of the most important fungal lifestyles and the licheni-
zation, considered by some researchers, has evolved many
times in the phylogeny of fungi [7,8], and also some major
fungal lineages may have derived from lichen symbiotic
ancestors [9].

The principal problem about lichenization is the neces-
sity of fungal propagules meeting a suitable photosynthetic
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partner for the resynthesis of the symbiosis [3,10]. The
recognition step is complicated, involving many morpho-
logical and molecular changes. Scanning electron micros-
copy (SEM) has been used to investigate the changes in
morphology during the early resynthesis of the lichen
thallus [11-13]. However, few studies have explored the
resynthesis events in lichen using molecular tools. Pre-
vious studies suggest that the mycobiont-derived lectins
(sugar-specific, cell agglutinating proteins) may play a
key role in recognition [14-17] between both symbionts.

The interdependent relationship between mycobiont
and photobiont is the foundation of lichenization, which
required for both symbionts to maintain each other. In
the lichen thallus, the photobiont provides its mycobiont
with photosynthetic products [18,19], previous reports
showed that lichen-forming fungi absorb polyol (ribitol,
sorbitol, and erythritol) or glucose from algae or cya-
nobacteria, respectively [20,21], and in most green algae
lichens, the hyphae of the mycobionts wrap tightly
around photobiont cells, thereby protecting the photo-
biont cells from a range of biotic and abiotic stress,
including drought, high light and mechanical damage. The
protection from light-injury is associated with secondary
metabolic substances, such as melanins, produced by
lichen-forming fungi [22]. However, little is known about
the signals and mechanisms that lead to symbiotic recog-
nition and maintenance in lichen, although it can be pre-
dicted that some metabolic products and macromolecules
are essential.

The whole life cycle of lichen is rarely observed in the
laboratory or in nature [11,13]. The detail of lichenization,
whereby a lichen-forming fungus contacts with a compat-
ible photosynthetic partner, recognizes it and captures it,
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has become a hot topic in recent studies [23,24]. Endocar-
pon pusillum is the most successful cases on artificial re-
synthesis of the fertile (perithecia-bearing) thalli from
isolated mycobiont and phycobiont [12], and it will be very
useful to reveal the origin of symbiosis between fungi and
photosynthetic organisms.

Endocarpon is a special genus, which have hymenial
algal cells in their perithecia and the ascospores are dis-
charged together with the hymenial algal cells [25]. The
systematics and physiology of E. pusillum (Figure 1) have
been studied well. The mycobiont E. pusillum exhibits
much stronger desiccation-tolerant than other non-
lichenized fungi as it can survive for 7 months under
desiccation stress in combination with starvation stress
[26]. Although a large number of fungal genomes have
been published, no lichen-forming is included, and only
two mitochondrial genomes from lichen-forming fungi
(Peltigera membranacea and Peltigera malacea) and a
transcriptome from the lichen Cladonia rangiferina have
been reported until now [27,28]. Therefore, the genome
of E. pusillum was sequenced and analyzed to ascertain
the biological features of this lichen-forming fungus and
the traits of lichenization.

Results and discussion

General features of the genome

The genome of the lichen-forming fungus E. pusillum
was sequenced to about 78-fold coverage using both 454
and Illumina technologies (Additional file 1: Table S1).
All sequences were assembled into 908 scaffolds (> 2 kb;
N50, 178 kb) containing 1,731 contigs, with a genome
size of 37.5 Mb (Table 1), which was almost identical to
the result calculated by real-time polymerase chain
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Figure 1 Endocarpon pusillum. A. The lichen E. pusillum. B. The isolated mycobiont and phycobiont [26]. C. Cross section of a perithecium with
hymenial algal cells inside. D. Cross section of a thallus under scanning electron microscopy (SEM). E. The algal layer (SEM). F. An algal cell is
clasped and surrounded by some hyphae (SEM).
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Table 1 Main features of the Endocarpon pusillum
genome

Features Endocarpon pusillum
Assembly size/Mb 375

Scaffold N50/kb 178

Coverage/fold 78

G+ C content 46.01%

GC Exonic 51.73%

GC Intronic 47.05%

Repeat rate 1.68%

Protein-coding genes 9,285

Gene density 250.8 per Mbp

Exons per genes 253
tRNAs 72
rRNAs 19
SM (Secondary Metabolism) genes 28
TE 15%

reaction (PCR) [29]. The average GC content of the gen-
ome is 46.1%, and exonic region has a 4% higher GC
content than the intronic region. Repetitive sequences
represent 15% of the genome. A circular map was gener-
ated for the 30 largest scaffolds to illustrate the genome
features more clearly (Figure 2).

The whole project has been deposited at DDBJ/EMBL/
GenBank under accession number APWS00000000. A
total of 9,285 protein-coding genes were predicted, and
1,479 (15.7%) of these genes have no significant matches
to known proteins from public databases. A total of
2,754, 3,787 and 7,589 proteins were assigned to Gene
Ontology (GO) terms, the eukaryotic orthologous
groups (KOG) and functional catalogue (FunCat) data-
bases, respectively. The distributions of the top 10 GO,
KOG, and FunCat terms of the sequences are presented
in Figure 3.

Phylogenetic analysis of E. pusillum

The orthologous genes from the lichen-forming fungus
E. pusillum and 14 other non lichen-forming fungi
whose genomes were available were identified using
Inparanoid [30] with default parameters (Figure 4).
Phylogenetic analysis was performed using 1,893 single-
copy orthologous genes identified among the genomes
of above mentioned 15 fungi from the subkingdom
Dikarya, and a linearized phylogenetic tree was con-
structed with estimates of the divergence times among
these taxa (Figure 4). The phylogenomic analysis shows
that the E. pusillum lineage is more closely related to
the human pathogen Exophiala dermatitidis, which is
the anamorph species of Capronia belonging to the
Chaetothyriales, and the E. pusillum belongs to the
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Figure 2 Genome of Endocarpon pusillum. A-E represent the
circles from the outside to inside. A: Scaffolds of the genome, filtered
by size (= 280 Kb). B: ORFs/genes. C: Gene density represented as
number of genes per 100 kb (non-overlapping, window size 100 kb).
D: Percentage coverage of repetitive sequences (non-overlapping
windows, window size 100 kb). E: GC content was estimated by the
percent GC in 100 kb non-overlapping windows.

Verrucariales. Both the orders belong to the same sub-
class Chaetothyriomycetidae, and the divergence be-
tween the lichenized Verrucariales and nonlichenized
Chaetothyriales occurred approximately 131 million
years (Myr) ago (Figure 4). This result is consistence
with the phylogenetic analysis for Ascomycota using
ribosomal RNA [9].

Repeat-induced point mutation
Repeat-induced point mutation (RIP) is a gene silencing
mechanism that can cause C-G to T-A mutations on re-
petitive DNA sequences, and the mutations from C to T
mostly occur at CpA dinucleotides [31]. According to
the method proposed by Margolin et al. [32], sequences
with a high TA/AT ratio (>0.89) and a low (CA +TG)/
(AC + GT) ratio (< 1.03) are thought to indicate RIP [33].
A quantitative alignment-based method, RIPCAL [34],
was used to search for evidence for RIP in E. pusillum
genome. The RIP indices of the repetitive sequence are
1.46927 and 0.697168, and those of non-repetitive se-
quence are 0.565627 and 1.42277, which indicates that



Wang et al. BMIC Genomics 2014, 15:34
http://www.biomedcentral.com/1471-2164/15/34

Page 4 of 18

\

B Metabolism 1400

B Cellulartransport 772

M Subcellular localization 737

B Proteinfate 679

B Protein with binding function 621

B Transcription 537

B Cellrescue, desenseand virulence 537

B Cellcycleand DNA processing 477

W Interaction with the cellular environment 326

B General function prediction only 780

M Cellwall/membrane/envelope biogenesis 401

B Posttranslational modification, protein turnover, chaperones 345

M Lipidtransport and metabolism 269

M Functionunknown 215

M Signaltransduction mechanisms 211

M Cytoskeleton 194

B Secondary metabolites biosynthesis, transport and catabolism 193
W Energy production and conversion 189

M Translation, ribosomal structure and biogenesis 164

B Transmembrane transport 352
B Protein modification process 279
m Cellular protein metabolic process 204
B Translation 195
m Cellular macromolecule biosynthetic process 157
m DNA metabolicprocess 153
1 Phosphate metabolic process 141
" lon transport 124
Proteolysis 113
M RNA processing 102

B Metalion binding813

M Purine ribonucleotide binding 731

m Adenylnucleotide binding 639

W Hydrolase activity 290

m Kinase activity 225

m Phosphotransferase activity 213

m Peptidase activity 110

© lon transmembrane transporter activity 109
Methyltransferase activity 99

m Guanyl nucleotide binding 97

Figure 3 Functional classification for the Endocarpon pusillum genome. A. FunCat database classification in the second level. B. KOG
database classification. C. The top 10 Gene Ontology biological process. D. The top 10 Gene Ontology molecular functions.

the regions of repetitive sequence in E. pusillum have
undergone RIP. In addition, the percentage of genes in
multigene families shows that E. pusillum has a low propor-
tion of genes in multigene families (Figure 5A). The analysis
of amino acid similarities in multigene families among eight
fungi indicates that there are fewer best-matching (> 80%)
genes in the E. pusillum genome (Figure 5B), which implies
that some genes in the multigene families in E. pusillum
are RIP mutated. However, the function of RIP in lichen-
forming fungi still remains unclear.

The mating systems and reproduction

The genes involved in the mating process were identified
in E. pusillum genome. The result shows that there is a
single mating type (MAT) locus containing both a MAT«
and HMG domain in the genome, which provides the mo-
lecular evidence for homothallic lifestyle of E. pusillum
(Figure 6). Genes for conidiophore development and
asexual reproduction were also identified, together with
those involved in fruit body development and sexual
reproduction (Additional file 1: Table S2), and genes with
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Figure 4 Phylogenetic analysis of 15 fungi based on 1,893
orthologous genes. The times of divergence of clades are
indicated in millions of years by arrows. The symbols correspond to
certain model fungi (open circles), mycorrhizal fungi (filled circles),
plant pathogen (filled triangles), animal pathogen (open triangles)
and fungi symbiosis with fungi (open squares). C. cinerea and L.
bicolor belonging to the Basidiomycota were used as an outgroup.

the function of pheromone precursor (alpha-factor like),
pheromone receptor (for alpha-factor like pheromone),
ascus development (rhamnogalacturonase B), and recep-
tors preventing improper sexual development have been
lost in E. pusillum. However, it need more experimental
evidence to determine whether these missing genes con-
tribute to the special reproduction mode of E. pusillum.
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Secreted proteins

Secreted proteins are important effectors that modulate
the interaction between pathogenic microbes and hosts
[35-37], and many small secreted proteins (SSPs) are viru-
lence factors [38]. However, E. pusillum has fewer secreted
proteins than other phytopathogenic fungi (e.g. Fusarium
graminearum, Magnaporthe oryzae and Metarhizium ani-
sopliae) according to the blast results (Additional file 1:
Table S3), and the function of 66% of SSPs is unknown.
Lichen-forming fungus and pathogenic fungi are different,
even though they both live with another organism and
absorb nutrients from their partner. The analysis of the
secreted proteins suggests that the SSP-mediated inter-
action between symbionts in E. pusillum is weaker than
the virulence in parasitism (pathogenic fungi).

Secondary metabolism

To date, several polyketide synthase (PKS) genes have
been identified in different lichen-forming fungi [39-42],
but no non-ribosomal peptide synthetase (NRPS) genes
have been found. Analysis of the lichen-forming fungus
E. pusillum genome revealed 2 NRPS genes and 14 PKS
genes (Additional file 1: Table S4). The information of
genes for secondary metabolism is helpful to the research
of the secondary metabolites of E. pusillum and the
synthesis conditions.

Candidate genes for drought tolerance

At least 93 genes involving in these drought resistant
mechanisms were identified in the genome of E. pusillum
(Additional file 1: Table S5), which will provide us many
important clues to resolve the question about why E.
pusillum can survive in extreme drought environment.
Recently, most studies on mechanisms about desiccation-
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Figure 6 Configuration of the MAT locus in Endocarpon pusillum.
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tolerance in lichens have focused on the scavenging re-
active oxygen species [43]. However, genes involved in
regulating osmotic pressure, correcting protein misfold-
ing, and scavenging the reactive oxygen species were
identified in E. pusillum genome, which were worthy of
further investigation.

Multigene families expansion

Up to 1,889 protein families (containing at least two genes
in all selected species) were identified from E. pusillum
and 14 other fungi using Markov cluster (MCL) method.
Based on BadiRate analysis, we found that 1,129 protein
families were expanded and 760 protein families had
undergone contraction in E. pusillum. The outlier results
generated by BadiRate analysis are presented in Table 2.
The expansion of these protein families might reflect spe-
cific characteristics of lichen-forming fungus E. pusillum.

Protein families involved in signal transduction
Compared with other fungi, the lichen-forming fungi
are special because they can form mutualistic symbiosis
with photosynthetic organisms and this specialty is
reflected in its genome. Little is known about the func-
tional genes in lichens, and most expanded protein
families are function-unknown in E. pusillum (Table 2);
however, it is likely that many of these expansion families
are related to symbiosis. For example, the expressions of
WD-repeat domain-containing proteins are up-regulated
in the early developmental stages of lichen-symbiosis in
Cladonia grayi [23].

Similarly, G protein-coupled receptors (GPCRs), which
sense molecules outside the cell and activate signal
transduction pathways inside the cell [44], are also likely
to provide lichen-forming fungi with a strong ability to
response to such signals, and all GPCR families have
undergone obvious expansion (Table 3).

Heterokaryon incompatibility protein families

There are 261 genes in the E. pusillum genome that were
annotated to have heterokaryon incompatibility (HET)-re-
lated functions, and 182 of them are homologous to those
in N. crassa and Podospora anserina (Additional file 1:
Table S6). HI (Heterokaryon incompatibility) is a common
characteristic among filamentous fungi; it can prevent the
formation of heterokaryotic cells in which two different
genomes coexist. Once the fusion between two individuals

with incompatible %et loci occurs, the HET genes would
trigger the HI reaction, which is characterized as growth
inhibition, repression of asexual sporulation, hyphal
compartmentation and death of the heterokaryotic cell
[45-47]. However, the biological significance of HI is
still unknown. The expansion of HET protein families
suggests that E. pusillum is likely to have a strict regula-
tion of its vegetation [48], and may represent a strategy
for stable genotype by defending against the transfer of
exogenous genes.

Lineage-specific protein families involved in self-splicing
of insertions

The genes encoding ribonuclease H and transposase,
which are predicted to be able to target some insertions,
such as group I introns that can be stably integrated into
the genome following the reverse splicing reaction [49],
belong to lineage-specific multigene families in E. pusillum
(Table 2).

The genomic sequencing data reveal that there are three
group I introns in the large-subunit ribosomal DNA (LSU
rDNA) of E. pusillum 707020 at position 856, 2169, and
2721 (corresponding to the sequence of Pichia methyli-
vora with NCBI accession number EU011611), and one
group I intron in the small-subunit ribosomal DNA (SSU
rDNA) at position 1769 (corresponding to the sequence of
Saccharomyces cerevisiae with NCBI accession number
Z75578).

Group I introns can self-splice themselves from an
RNA transcript, requiring protein factors to facilitate the
correct folding of the ribozyme core [49]. There are
multiple group I introns present in the nuclear rDNA of
many lichen-forming fungi [50-53], and they are consid-
ered to decrease the growth rate of lichen-forming fungi
by interfering with rRNA maturation [54]. It is consid-
ered an adaption for lichenization: most lichens grow
very slowly because the symbiosis would be disrupted if
the mycobionts too many nutrients from the photobionts.
Therefore, it is reasonable that the protein families in-
volved in RNA reverse splicing have undergone expansion
in a lichen-forming fungal genome that harbors abundant
self-splicing introns.

Protein families involved in transport
The exchange of ions and metabolites between the myco-
biont and photobiont is the foundation of the symbiotic
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Table 2 Expanded and lineage-specific protein families in Endocarpon pusillum

Protein family ID Number of proteins in E. pusillum p-value HMMPfam description

group10696 20 0 Hypothetical protein CIMG_07368
group10024 15 0 Ankyrin and HET domain-containing protein
group14580 14 0 Ankyrin repeat

group10771 13 0 P-loop containing nucleoside triphosphate hydrolases
group11690 13 0 MFS general substrate transporter
group10071 11 0 Putative transposase

group10011 10 0 Hypothetical protein NECHADRAFT_87861
group14903 8 0 Heterokaryon incompatibility protein
group17019 7 1E-07 DNA/RNA polymerases

group10674 10 3E-07 Magnesium transport protein CorA, transmembrane region
group10674 10 3E-07 Hypothetical protein AN9301.2

group10038 8 5E-07 Hypothetical protein SS1G_06795
group10340 8 5E-07 Conserved hypothetical protein
group15154 6 5E-07 Hypothetical protein CHGG_10108
group16626 6 5E-07 Hypothetical protein

group18347 6 5E-07 Hypothetical protein

group10002 9 24E-06 Ribonuclease H-like

group10015 9 24E-06 Ankyrin repeat

group10097 7 4.6E-06 Ankyrin repeat

group10201 7 4.6E-06 ARM repeat

group10224 7 4.6E-06 Heterokaryon incompatibility protein
group10843 7 4.6E-06 Predicted protein

group11854 7 4.6E-06 Cytochrome P450

group10000 11 0.000001 P-loop containing nucleoside triphosphate hydrolases
group10705 5 0.000005 Hypothetical protein

group11683 5 0.000005 Dimeric alpha + beta barrel

group11909 5 0.000005 Unnamed protein product

group13886 5 0.000005 Ankyrin repeat

group15448 5 0.000005 FabD/lysophospholipase-like

group16624 5 0.000005 Protein kinase-like (PK-like)

group16962 5 0.000005 Hypothetical protein NFIA_004500
group17139 5 0.000005 Cytochrome P450

group18335 5 0.000005 Predicted protein

group18344 5 0.000005 Conserved hypothetical protein
group19016 5 0.000005 Hypothetical protein

group19022 5 0.000005 Hypothetical protein

group10704 8 1.78E-05 Conserved hypothetical protein
group10239 6 3.81E-05 P-loop containing nucleoside triphosphate hydrolases
group10495 6 3.81E-05 Unnamed protein product

group10677 6 3.81E-05 Unnamed protein product

group11482 6 3.81E-05 Predicted protein

group11606 6 3.81E-05 Hypothetical protein AOR_1_1448144
group15933 6 3.81E-05 Purine and uridine phosphorylases
group16361 6 3.81E-05 Hypothetical protein SS1G_13793
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Table 2 Expanded and lineage-specific protein families in Endocarpon pusillum (Continued)

group16513
group17376
group10014
group10175
group10238
group11337
group12140
group16268
group17166
group17167
group17374
group17553
group17955
group18350
group19010 4

A A A DD DD DM DM DA DO O OO

Lineage-specific protein families
Protein family ID Number of proteins in E. pusillum
group19669
group19844
group19847
group19848
group19850

group19853

N N S

3.81E-05
3.81E-05
4.84E-05
4.84E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05

p-value

4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05
4.94E-05

Conserved hypothetical protein
Hypothetical protein

POZ domain

Hypothetical protein CIMG_05613
WD40 repeat-like

TPR-like

WDA40 repeat-like

Hypothetical protein MGYG_01629
Predicted protein
Alpha/beta-Hydrolases
Hypothetical protein FRAAL5044
Protein kinase-like (PK-like)
Conserved hypothetical protein
Hypothetical protein CHGG_08502
NTF2-like

Pfam description
Ribonuclease H-like
Transposase

Hypothetical protein
Hypothetical protein
Protein kinase-like (PK-like)

Ankyrin repeat

association. For this reason, genes encoding transporter
proteins are expected to exhibit some traits in the lichen-
forming fungus genome. There are 10 genes belonging to
the magnesium transport protein CorA family, which
showed significant expansion in the E. pusillum genome
(Table 2). The CorA proteins were the first family to be
identified that could transport Mg2+ in bacteria [55,56].
The mechanism of action of the CorA family has been
well characterized in yeast and members of this family can
transfer Mg”>* both into and out of the cell [57]. Magne-
sium is the most important divalent cation in cells, and is
particularly important for photosynthesis [58]. Magnesium
deficiency has been reported to affect plant photosynthesis

Table 3 Evolutionary changes of GPCR protein families in
Endocarpon pusillum

GPCRs Number of protein Evolutionary changes Annotation

family in E. pusillum in E. pusillum

Class A 6 Gain Rhodopsin-like
family

ClassB 2 Gain Secretin receptor

ClassD 5 Gain Fungal mating
pheromone
receptor

Class E 1 Gain CAMP receptor

and growth [59,60]. In the lichen thallus, the special struc-
ture of the symbionts (Figure 1D—F) makes it difficult for
algal cells to absorb magnesium from the environment.
However, genes for magnesium transport protein are ex-
panded in E. pusillum, which led us to suspect that during
symbiosis the mycobiont could provide magnesium to the
phycobiont to meet the needs of their life cycles.

A striking finding is that most nitrogen transporter fam-
ilies are expanded but most sugar transporter families
have been lost from the E. pusillum genome (Table 4).
Though the mechanisms of substance transfer in lichen
are not completely understood, it has been reported that
the mycobiont absorbs certain carbohydrates gener-
ated by photosynthesis of the photobiont [61]. The re-
duction of sugar transporter genes, especially those for
common sugars, such as glucose and fructose, which
can be utilized by many organisms, suggests that the
mycobiont simply absorbs certain uncommon carbohy-
drates from their photosynthetic partner. Therefore,
the genes for many unnecessary sugar transporters
have been lost during evolution. The lichen-forming
fungi do not rely on common sugars because these car-
bon sources can be used by numerous microorganisms
and lichen cannot compete with them for its slow
growth and metabolism.
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Table 4 Evolutionary changes of transporter protein
families in Endocarpon pusillum (partial results)

Transporter Number of Evolutionary Annotation

family protein in  changes in
E. pusillum E. pusillum

1.A1133 3 Gain Ammonium transporter-
Hebeloma cylindrosporum

2A31020 1 Gain Lysine/arginine permease-
Candida albicans

2A342 16 Gain Gaba permease-Emericella
nidulans-Aspergillus nidulans

2A384 6 Gain High affinity methionine
permease-Saccharomyces
cerevisiae

2A3933 1 Gain Uridine permease-
Saccharomyces cerevisiae

8.A9.1.1 3 Gain Amino acid transport related
protein (RBAT)-Oryctolagus
cuniculus

2A.1.1.10 0 Loss Maltose permease MAL6T-
Saccharomyces cerevisiae

2A11.11 1 Loss General alpha-glucoside
permease-Saccharomyces
cerevisiae

2A.1.1.33 0 Loss Hexose transporter-
Kluyveromyces lactis

2A1.1.38 2 Loss Sugar transporter STL1-
Saccharomyces cerevisiae

2.A.1.139 3 Loss High-affinity glucose
transporter-Kluyveromyces
lactis

2.A1.157 1 Loss Monosaccharide transporter-
Aspergillus niger

2.A1.1.58 0 Loss Monosaccharide transporter-
Aspergillus niger

2.A.1.1.68 0 Loss Glucose transporter/Sensor
OS-Pichia stipitis

2A119 0 Loss Lactose permease-Kluyvero
myces lactis

2A1223 1 Loss Fructose facilitator-

Zygosaccharomyces bailii

By contrast, the expansion of nitrogen transporters
suggests that the lichen-forming fungi need to transfer
(export or import) various nitrogen sources. Nitrogen is
an indispensable substance for the growth of organisms,
and lichens whose photosynthetic partners are green algae
must obtain inorganic and organic nitrogen [62-64]. There
is no evidence for nitrogen transfer between symbionts
in lichen. However, owing to the particular structure of
lichen thallus in which the photobiont cells are tightly
entwined by mycelia (Figure 1D-F) and the photobiont
cells cannot absorb substances from their surroundings
directly, it can be deduced that the necessary components
for their growth, such as ions and nitrogen sources, must
be transferred from the mycobiont to the photobiont. The
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phycobiont may be have a preference for certain forms of
nitrogen; for example, in the alga-bacteria association, the
algae prefer NH; and NOj, which are release by bacteria
when cultured in organic nitrogen conditions [65]. Thus,
the mycobiont may absorb and transform the nitrogen
forms that are preferred by its photosynthetic partner.
Therefore, the expansion of nitrogen transporters should
be related to this physiological process. Recently, it was
reported that the ammonium transporter, MEP-«, in
lichen-forming fungi was obtained though horizontal gene
transfer [66], which can partly explain the mechanism of
the expansion of the nitrogen transporter superfamily.
This gene appears to have been lost in some groups of
lichens, such as in those that are symbiotic with nitrogen-
fixing cyanobacteria or those that inhabit high-nitrogen
niches [67]. However, for the lichens whose photobiont is
a green alga that cannot fix nitrogen, the expansion of
nitrogen transporter families is of great significance in
promoting the growth of the lichen thallus, as seen in
E. pusillum.

Expression analysis of symbiosis-related genes by quanti-
tative real-time PCR (qRT-PCR)

A qRT-PCR experiment was performed to determine the
changes of some symbiosis-related genes in the lichen-
forming fungus at transcription level when E. pusillum
pre-contacted with its photosynthetic partner, Diplo-
sphaera chodatii.

Symbiosis-related genes selection

Thirty-two genes encoding lectins were identified in the
E. pusillum genome. They belong to four superfamilies:
concanavalin A-like lectin, fucose-specific lectin, mannose-
binding lectin and ricin B-related lectin. For the qRT-PCR
assay, six lectin genes were selected as representatives of
the four superfamilies, according to the difference in the
number of transmembrane helices and signal peptides
(Additional file 1: Table S7).

The expansions of nitrogen transporters and the con-
tractions of sugar transporters imply that they are closely
related to maintenance of both symbionts. Hence, cer-
tain genes encoding these transporters were chosen for
the qRT-PCR assay. Among them, two ammonium
transporters and one nitrate transporter that displays
high homology to those in other fungi (Additional file 1:
Table S8) were included. It has been reported that eight
sugar transporters are able to transfer photosynthesis
products in other fungi, and they are predicted to be
functional at the interface of lichen association [68-75].
Thus, the homologous proteins were identified in the
E. pusillum genome (Additional file 1: Table S9). The
genes sharing homology with known transporters were
obtained using BlastP and each of them appeared in sev-
eral BlastP results; their expressions were determined by
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the qRT-PCR assay (Additional file 1: Table S10). Nitro-
gen metabolism and sugar metabolism in fungal cells
would be active after nitrogen and carbohydrates were
assimilated or transferred. Therefore, genes encoding
glutamate synthase and nitrite reductase (Additional file 1:
Table S8), and that encoding the Golgi GDP-mannose
transporter, which is functional in the glycosylation of
secreted proteins [76] and five enzymes involved in
galactose and nucleotide sugar metabolism (Additional
file 1: Table S10) were also included. The gene encoding
the tetracycline resistance protein was chosen as a control,
because it recognizes and exports tetracycline from the
cell [77,78] and is expected to show no expression change
under the experimental conditions in the present study.

Differences in expression levels of genes involved in
symbiosis under co-culture conditions

From the results presented in Figure 7, the expression
levels of most genes increased only under the condition for
experimental group IV (Table 5) (weight ratio of lichen-
forming fungus and phycobiont is 10:3, and culture time is
72 hours), which indicated that the contact time and bio-
mass ratio of both symbionts affects their recognition and
nutrient transfer significantly.

Three lectin genes (F481_01961, F481_04092, F481_
02882) showed significant increases (log, fold change > 2)
in their expression level in experiment group IV compared
with the control group B (only the mycobiont was cul-
tured in BBM for 72 h) (Table 5; Figure 7). Interestingly,
the common aspect of these lectins is that there are no
predicted signal peptides in their amino acid sequences
(Additional file 1: Table S7) (http://elm.eu.org) [79].
Lectins are sugar-binding proteins that play an import-
ant roles in cell recognition [80]. The first lectin dis-
covered in lichens was that found in Peltigera canina
and Peltigera polydactyla [17]. Thereafter, some studies
showed that lectins secreted by lichen-forming fungi
may be involved in recognizing their compatible algae
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[15,16,81]. Lectins, as surface proteins, can directly
contact compatible phycobionts, and the contact requires
receptor sites on the surface of the phycobiont to which
the lectins binds [82,83]. Recent studies on lectins in
P. membranacea indicated that the expression of galectin
lec-1 was influenced by the presence of the phycobiont
[84], and the evolution of galectin lec-2 was driven by
interaction with different strains of the phycobiont Nostoc
[85]. Galectins, together with cellular slime mold lectin
discoidin I, do not have signal peptides in eukaryotic cells
and both of them have intracellular and extracellular local-
izations [86,87]. Our study showed that lectins without
signal peptides could play a major role in symbiotic re-
cognition and provided a practical guide for screening for
lectins participating in the interaction between lichen-
forming fungi and their photosynthetic partners.

An ammonium transporter (F481_01640) and a nitrate
transporter (F481_07695) were up-regulated (log, fold
change >2) in experimental group IV (Figure 7). BBM
contains nitrate ions; therefore, the up-regulation of the
nitrate transporter (F481_07695) is expected. However, the
up-regulation of the ammonium transporter (F481_01640)
suggests that ammonium could be produced from nitrate
in E. pusillum and transferred to its photosynthetic
partner, because there is no ammonium ion in BBM.
The differences in the expressions of glutamate synthase
(F481_06302) and nitrite reductase (F481_07075) indi-
cate that nitrogen metabolism is altered in the lichen-
forming fungus when it meets its compatible alga. It has
been reported that algae from different lichens can
utilize organic and inorganic nitrogen [62-64]. Thus,
we can conclude that the pattern of nitrogen transfer in
E. pusillum is that the mycobiont absorbs various nitro-
gen sources from the environment and can convert
them to different forms in vivo to meet the algae’s de-
mand for nitrogen, based on the expansion of nitrogen
transporter families in E. pusillum genome and the re-
sult of co-culture experiments.
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Figure 7 Relative transcription levels of certain symbiosis-related genes in Endocarpon pusillum when cultured with Diplosphaera
chodatii. The names of the genes are listed on the top of the picture. Circles represent genes encoding lectins, triangles represent N transporter
genes, squares represent gene encoding enzymes of nitrogen metabolism, a heptagon represents the tetracycline resistance protein gene,
hexagons represent sugar transporter genes, and pentagons represent genes encoding enzymes of sugar metabolism. The culture conditions are
displayed at the right of the picture, in which the ratios of mycobiont (M) and phycobiont (A) and incubation time are given. The log; relative
expression with respect to the control group is illustrated in the heat map.
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Table 5 Sample treatments to identify differentially
expressed genes

Experiment Sample Weight ratio Incubation
group (mycobiont: time (h)
Phycobiont)

Control A Mycobiont - 24

Control B Mycobiont - 72

Control C Phycobiont - 72

I Mycobiont + 10:1 24
phycobiont

Il Mycobiont + 10:3 24
phycobiont

Il Mycobiont + 10:1 72
phycobiont

I\ Mycobiont + 10:3 72
phycobiont

The lichen-forming fungus cannot obtain any organic
nutrition from BBM. However, six of the symbiosis-
related sugar transporter genes (F481_00818, F481_
07878, F481_08427, F481_05999, F481_06586, and
F481_02699) show significant differences in expression
in experiment group IV (Figure 7). This suggests that some
carbohydrates are released into the BBM by D. chodatii,
and the transporters encoded by these genes may be re-
sponsible for transferring these carbohydrates into the
fungal cells. The upregulation of the expression of the
Golgi GDP-mannose transporter (F481_08390) under
experimental group IV conditions, bearing in mind that
a previous study proved that this transporter participates
in glycosylation [76], indicated that the sugar metabolic
pathway is active in E. pusillum after obtaining carbo-
hydrates. Furthermore, the enzymes (F481_03176, F481_
07291, F481_06583, and F481_00358) involved in galactose
and nucleotide sugar metabolism also showed high ex-
pressions levels, which demonstrated that the carbohy-
drates produced by the alga and absorbed by the fungus
are indeed used for fungal cell life activities.

Native and non-native sugars utilized by E. pusillum

The carbohydrates used for growth and metabolism of
lichen-forming fungus originate from the photosynthetic
products of its photosynthetic partner, however, the
forms of the photosynthetic products absorbed by dif-
ferent lichen-forming fungi vary depending on their dif-
ferent photobionts. It has been report that lichen-
forming fungi absorb many polyols or glucose from
algae or cyanobacteria, respectively [20,21], and the
photosynthetic product transferred from D. chodatii to
E. pusillum was sorbitol [20]. Additionally, previous
studies showed that some monosaccharides, such as
glucose, and disaccharides, such as trehalose and su-
crose, were transferred between non-lichenized symbi-
onts [68-75]. Because some homology structures are
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frequently found in different sugar transporters from
diverse fungi, the specificities of these transporters
may be low. Therefore, 11 different carbohydrates were
used to confirm the function of sugar transporters in
E. pusillum and the potential carbohydrates transferred
into this fungus.

The most significant up-regulation in expression of
the examined genes was in the sample with trehalose for
24 hours. However, the high expression levels were not
maintained over the next 48 hours (Figure 8). This sug-
gests that trehalose cannot be absorbed by the lichen-
forming fungus as an energy source, but is likely to be a
signal molecule for the activation of the gene expression
in E. pusillum. Trehalose is involved in many functions
besides osmoprotection [88], and acts as a signal mol-
ecule that is possibly exported from bacteria to plants to
regulate the carbon and nitrogen metabolism of plants
in plant-bacteria interactions [89]. Trehalose can be
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Figure 8 Relative transcription levels of sugar transfer-related
genes in Endocarpon pusillum after supplementation with
different carbohydrates. The names of the genes are listed on the
top of the picture. Heptagons represent the gene encoding the
tetracycline transporter, hexagons represent sugar transporter genes,
and pentagons represent genes encoding enzymes of sugar
metabolism. The culture time is displayed on the left and sugars
added into BBM are listed on the right. The log, relative expression

with respect to the control group is illustrated in the heat map.
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converted into trehalose-6-phosphate (T6P), which in-
hibits hexokinase activity and regulates glycolysis. Over
expression of the trehalose 6-phospate synthase (TPS)
gene induces the expression of several genes involved in
stress tolerance, and carbon and nitrogen metabolism
[90,91]. In the alga-invertebrate association, trehalose
produced by the alga was shown to be present in certain
symbiotic interfaces [92]. Although no research has
shown a link between trehalose and lichen symbiosis
interaction, our results suggest that trehalose may act as
a signal molecule and would play an important role in
the symbiotic interaction in E. pusillum.

Four carbohydrates (glucose, sucrose, sorbitol, and
mannitol) increased the transcription levels of sugar
transporters or enzymes involved in sugar metabolism
in E. pusillum at 24 and 72 hours (Figure 8). These re-
sults suggest that these carbohydrates maintain the
metabolism of the lichen-forming fungus over a long
period, which implies that E. pusillum may absorb
them as its carbon sources through some common
sugar transporters. Although the transcription levels of
some genes slightly fluctuated at 24 and 72 hours in
the presence other sugars (arabinose, erythritol, fruc-
tose, galactose, ribitol and ribose) in the BBM, no
genes exhibited a clear rising trend compared with the
control group, especially those involved in sugar me-
tabolism (Figure 8). This indicates that these sugars
cannot be utilized as carbon sources by E. pusillum.

The transcription levels of some sugar transporters,
such as F481 05999, F481 06586, and F481 2699, were
up-regulated when various sugars were added to the
BBM, indicating that they can transfer more than one
carbohydrate into E. pusillum. Some genes showed dif-
ferent changes in their transcription levels, either in
trend or extent, compared with those in the co-culture
experiment. For example, sugar transporter F481_02469
showed no differential expression in the co-culture experi-
ment, but was up-regulated slightly under some sugars
treatments. In addition, the transcription levels of sugar
transporters F481_05999, F481_06586, and F481_02699
were up-regulated more obviously in the co-culture ex-
periment (Figures 7 and 8). These phenomena imply
that there is some induction mechanism between the
symbionts; i.e., the expressions of certain genes in a
lichen-forming fungus are influenced by its photosyn-
thetic partner to absorb organic carbon effectively.

Ion chromatography was used to detect glucose, su-
crose, sorbitol and mannitol in the filtrates of experiment
group IV, and controls B and C, to determine whether
they could be released by D. chodatii and to determine
the conditions under which this alga secretes organic
carbon into the BBM. Sorbitol (12.6 mg/100 mL), glu-
cose (0.8 mg/100 mL) and sucrose (0.8 mg/100 mL)
have been detected in group IV (Figure 9). Thus, sorbitol
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Figure 9 lon chromatogram of co-cultured sample from
experimental group IV. The sample from experiment group IV
(mycobiont: phycobiont = 103; culture for 72 hrs) was diluted 25 times
before four carbohydrates (glucose, mannitol, sorbitol and sucrose) were
measured using ion chromatography.

showed the highest accumulation; however, there were
other, unidentified, carbohydrates, which suggested that
the lichen-forming fungus E. pusillum preferentially ab-
sorbs sorbitol. By contrast, no mannitol was found in this
sample. There were no detectable carbohydrates in the
control group B and C (the phycobiont and the lichen-
forming fungus cultured respectively in BBM), which
demonstrated that the pure cultured D. chodatii does not
release carbon. Previous experiments for the phycobionts
of Ramalina crassa and Ramalina subbreviuscula indi-
cated that the pure cultured phycobiont released ribitol to
the medium [19]. However, Hawksworth (1984) suggested
that the photobiont had lost its ability to release carbohy-
drate after isolation from the lichen thallus, and that the
lichen-forming fungus exerted some specific control on
the photobiont cells that lead them to secrete carbohy-
drates [21]. Our result implies that E. pusillum can control
the sugar export of D. chodatii, and that the biomass ratio
and contact time are crucial for the interaction between
the two symbionts.

Although mannitol is not released by D. chodatii, it can
still be utilized by E. pusillum; it is likely to be because
mannitol and sorbitol are isomers. This suggests that E.
pusillum has the potential to use non-natural carbon
sources. This phenomenon is likely to occur in other
lichen-forming fungi, which would contribute to discover-
ing the mechanism of the algal switch [93-95] and could
provide clues for the evolution of lichenization.

Conclusions

Approximately 40% of all Ascomycota are lichen-forming;
thus, lichenization is regarded as one of the most import-
ant fungal lifestyles [96]. Hence, genomic information
for lichen-forming fungi would expand the knowledge of
fungi. In the present study, we report, for the first time,
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the characteristic of the lichen-forming fungal genome,
which displays many features that are different to other
fungi.

This is the first study to report that the lichen-forming
fungal genome have undergone RIP. Genes for mating
system, secondary metabolism, and the drought-related
mechanisms were indentified in E. pusillum genome,
which are worth being investigated in the future. The
evolution analysis of multigene families indicated the ex-
pansion and contraction in E. pusillum genome reveal
the effect of lichenization on lichen-forming fungi.

Co-culture experiments suggest that the lectins without
signal peptides would be likely to play an essential role in
the recognition of lichen symbiosis, and one of the most
striking findings in these experiments is that an appropri-
ate weigh ratio of lichen-forming fungus and its photosyn-
thetic partner and sufficient contact time are vital for their
recognition and mutual influence. We also confirmed that
the most important natural carbon source for E. pusillum
is sorbitol transferred from D. chodatii; however, this
lichen-forming fungus can also use other non-natural car-
bohydrates under the pure culture condition.

A mycobiont-phycobiont interplay model is shown as
Figure 10. The model reflects aspects of the recognition
and interaction of the lichen thallus in E. pusillum and
is likely to be applicable to other lichens, especially
those whose photobionts are algae. This study provides
a valuable genomic resource for future research in
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screening functional genes including drought-tolerance
genes from lichens and would be useful for investigating
the formation and divergence on the functional biology
between lichenized and nonlichenized fungi.

Methods

Fungal strains

The lichen-forming fungal strain of E. pusillum 207020
(HMAS-L-300199) was isolated by a single-spore dis-
charge from the perithecium of lichen E. pusillum col-
lected from Shapotou Desert Research Station (SDRS)
of the Chinese Academy of Sciences (CAS) in the Tengger
Desert of northern China [26]. The isolates were grown
on 1.5% water agar for 1-2 weeks, and then cultured at
room temperature after transfer to potato dextrose liquid
medium.

Genome sequencing and assembly

The genome of the lichen-forming fungus E. pusillum
was sequenced using high-throughput next-generation
sequencing technology and the sequencing platforms
were Roche 454 and Illumina Solexa systems. Genomic
libraries containing 8-kb inserts were constructed and
1,394,086 paired-end reads (281.9 Mb) were generated
using the 454 Roche GS FLX system. The Illumina adap-
tors were ligated onto the genomic DNA fragments, and
DNA fragments with estimated sizes of 0.5 kb to 3 kb
were selected using gel-electrophoresis. Libraries were
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Figure 10 Summary of the interactions between symbionts in lichen Endocarpon pusillum. The lectins lacking signal peptides, which are
shown as ellipse marked with L, act as recognition factors in the direct contact between E. pusillum and D. chodatii. After it is captured by the
compatible fungal partner, the photosynthetic products sorbitol (S), glucose (G) and sucrose (G-F) are released from the phycobiont D. chodatii.
These sugars are then absorbed through sugar transporters of E. pusillum and converted into glucose or fructose to support fungal metabolism.
In addition, there are a small amount of other uncertainty carbon sources (X) released by the phycobiont, and the mycobiont can also utilize
mannitol (M) from environment. At the same time, organic and inorganic nitrogen, together with various ions in the environment, are transferred
into £. pusillum. In fungal cells, these substances may be converted into the forms preferred by the phycobiont and are then delivered to D. chodatii.
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PCR-amplified using Phusion polymerase. Sequencing li-
braries were denatured with sodium hydroxide and diluted
in hybridization buffer for loading onto a single lane of an
[lumina GA flow cell. A Solexa sequencer generated the
mate-paired reads (7,155,072 reads, 716 Mb) and paired-
end reads (18,176,986 reads, 1818 Mb). Solexa sequencing
paired-end reads and mate-paired reads were assembled
by SOAPdenovo [97], which adopts the de Bruijn graph
data structure to construct contigs.

Gene prediction and annotation

We used Augustus [98], GenelD [99], and GeneMark-ES
[100] programs to predict the gene models for E. pusil-
lum. A final set of gene models was selected by Eviden-
ceModeler [101]. An ab initio prediction was carried on
using the annotated information of A. fumigatus as a ref-
erence. All predicted gene models were subjected to GO
[102], KOG [103], FunCat [104] and Kyoto Encyclopedia
of Genes and Genomes (KEGG) database analysis [105].
Protein domains were predicted using InterProScan [106]
against various domain libraries (HMMPfam, superfamily,
HMMTigr, and HMMSmart). Repetitive elements were
identified by blasting against the RepeatMasker library
(http://www.repeatmasker.org/). Non-coding RNAs were
predicted according to the Rfam database [107], and
tRNAs were predicted using tRNAscan-SE [108]. Pseudo-
genes and rRNAs were designated using PseudoGene
[109] and RNAmmer [110] respectively.

Orthologous gene and phylogeny analysis of E. pusillum
The sequences of corresponding orthologous genes from
15 fungi were aligned using ClustalW [111]. A max-
imum parsimony (MP) phylogenomic tree was created
using the concatenated amino acid sequences in phylo-
genetic analysis using parsimony (PAUP) [112], and a
bootstrap analysis with 1000 replications was performed
to evaluate the reliability of the phylogenetic tree. The
divergence time between species was estimated using
the r8s method [113]. The time of divergence between
Ascomycota and Basidiomycota is set as 500 Myr, and
the time between Pezizomycotina and Saccharomycotina
was 350 Myr [114].

Multigene families and evolution analysis

The families that were absent from the most recent com-
mon ancestor were chosen to analyze the evolution of
protein families [115]. Multigene families were identified
using the MCL method [116]. Whole genome blast ana-
lyses against Transporter Classification Database (http://
www.tcdb.org/tcdb/) and GPCRDB (http://www.gpcr.org/
7tm/) database were performed to identify genes exhibit-
ing difference between E. pusillum and other fungi. All
proteins in the genome were blast searched against the
database with an e-value cutoff of < e and at least 40%
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identity over 60% coverage. A new software, BadiRate
[117], was used in the evolutionary analysis of multi-
gene families to estimate rates of gene gain and loss.
Families with p-values less than 0.01 were considered to
have experienced significant expansion or contraction.

Mating type

To detect the sexual cycle of E. pusillum, genes involved
in the mating process, incompatibility, ascomata and co-
nidiophore development, and HET were identified using
BlastP against related genes from A. niger, A. nidulans
[118], N. crassa [119] and P. anserine [120,121].

Analysis of genes involved in secondary metabolism
Genes encoding PKS, NRPS, and NRPS-PKS hybrid genes
in the genome of E. pusillum were analyzed with the
program SMURF (http://www.jcvi.org/smurf/index.php).
Modulation analysis and domain extraction of different
NRPS or PKS proteins were conducted by Blast searching
against the SBSPKS database [122].

Secreted proteins

The potential secreted proteins of E. pusillum and other
fungi, including F. graminearum, M. oryzae, and M. ani-
sopliae, were predicted by SignalP 3.0 analysis using a
hidden Markov model [http://www.cbs.dtu.dk/services/
SignalP/].

Quantitative RT-PCR

RNA was extracted from cultured lichen-forming fungus
E. pusillum. cDNA synthesis and relative quantitative RT-
PCR were carried out as described previously [28]. For
each treatment, qRT-PCR was performed in an Applied
Biosystems 7500 Real-Time PCR system (Applied Biosys-
tems, USA). The data were analyzed using the 274"
method.

Gene-stability measure of reference genes using geNORM
Vandesomepele et al. (2002) developed an algorithm
named geNORM that determines the expression stability
of reference genes [123]. The calculated gene-stability
measure (M) relies on the principle that the expression
ratio of two ideal internal reference genes is identical in
all samples, regardless of the experimental condition or
cell type. Ten genes whose expressions showed no differ-
ence in comparative transcriptome data between control
and drought-stress conditions (unpublished data) were
chosen to determine the best reference genes (Additional
file 1: Table S11). Ultimately, we chose the tetracycline re-
sistance protein (F481_ 05245) gene as the reference gene.

Treatment of samples for co-culture experiments
Four treatments were carried out, comprising two weight
ratios (10:1 and 10:3) for the lichen-forming fungus and
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phycobiont and two culture times (24 h and 72 h)
(Table 5), to investigate whether the ratio and contact
time between the lichen-forming fungus and phyco-
biont has an effect on gene expression in E. pusillum
when both symbionts are incubated together.

The experiment was performed in Bold’s basal medium
(BBM) (does not contain carbohydrate), and under 12 h
illuminations per 24 h, which allow the algal cells to pro-
duce carbohydrates by photosynthesis.

Treatment of samples for sugar transfer experiments

To confirm the capability of E. pusillum to utilize carbohy-
drates, polyols (mannitol, sorbitol, ribitol, and erythritol),
monosaccharides (glucose, fructose, arabinose, ribose,
and galactose) and disaccharides (trehalose and su-
crose), respectively, were added to BBM containing only
the lichen-forming fungus, and the transcript levels of
genes involved in sugar transport and metabolism were
determined after culturing for 24 and 72 hrs.

Determination of photosynthetic products by ion
chromatography

Ion chromatography was used to determine glucose, su-
crose, sorbitol and mannitol in co-cultured samples. The
analytes were separated on a CarboPac™ PA1l (4 mm x
250 mm) anion exchange column using 200 mmol/L
NaOH as mobile phase at flow rate of 1.0 mL/min and de-
tected with a pulsed amperometric detector.

Availability of supporting data
The data sets supporting the results of this article are in-

cluded within the article (and its additional files).

Additional file

Additional file 1: Genomic analysis of Endocarpon pusillum. The file
contains additional information on genomic properties and gRT-PCR
assays, comprising 10 tables provided in separate excel sheets. Table S1
summarizes the main features of the primary sequence data. Table S2
provides information on genes encoding proteins involved in sexual and
asexual reproduction in E. pusillum. Table S3 is a comparison of the number
of secreted proteins between E. pusillum and other phytopathogenic fungi.
Table S4 lists the domain structures of predicted E. pusillum PKS and NRPS
genes. Table S5 lists the genes involving in drought resistant mechanisms
in E. pusillum. Table S6 provides information on genes involved in hetero-
karyon incompatibility in £. pusillum. Table S7 lists the lectins measured by
QRT-PCR analysis. Table S8 lists genes that encode nitrogen transporters or
proteins involved in nitrogen metabolism in E. pusillum, whose transcriptions
were determined by gRT-PCR analysis. Table S9 lists the homologous
genes involved in symbiotic fungal sucrose and monosaccharide trans-
porters in E. pusillum. Table S10 lists genes that encode sugar trans-
porters or proteins involved in sugar metabolism in E. pusillum, whose
transcriptions were determined by gRT-PCR analysis. Table S11 lists the
candidate reference genes for gRT-PCR analysis in E. pusillum.
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