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A new association test based on disease allele
selection for case–control genome-wide
association studies
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Abstract

Background: Current robust association tests for case–control genome-wide association study (GWAS) data are
mainly based on the assumption of some specific genetic models. Due to the richness of the genetic models, this
assumption may not be appropriate. Therefore, robust but powerful association approaches are desirable.

Results: In this paper, we propose a new approach to testing for the association between the genotype and
phenotype for case–control GWAS. This method assumes a generalized genetic model and is based on the selected
disease allele to obtain a p-value from the more powerful one-sided test. Through a comprehensive simulation
study we assess the performance of the new test by comparing it with existing methods. Some real data applications
are also used to illustrate the use of the proposed test.

Conclusions: Based on the simulation results and real data application, the proposed test is powerful and robust.

Keywords: Generalized genetic model, Robust test, Single-nucleotide polymorphism
Background
In a case–control genome-wide association study (GWAS),
to detect the associated single-nucleotide polymorphisms
(SNPs), we need to conduct a test for each individual SNP
data, which are summarized as a 2-by-3 table. Although
Pearson’s chi-square test can be used, it is usually less
powerful than the Cochran-Armitage trend test (CATT) if
the genetic model is known [1-3]. However, if the genetic
models are unknown or various, the optimal scores in the
CATTs are difficult or unable to find. If we use a CATT
with fixed scores for all SNPs, we may lose power for some
situations [4-13]. To circumvent this disadvantage, in
the literature, many robust association tests have been
proposed [7,12,14-22]. Those tests do not rely solely
on one specific genetic model; rather they consider
several possible genetic models simultaneously. In
addition, many of them are based on the assumption that
the underlying genetic model is one of the following three:
additive, recessive, and dominant. For example, the maxmin
efficiency robust test (MERT) by Gastwirth [23,24], and the
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maximum of the three optimal CATTs under recessive,
additive, and dominant models (MAX3) have been studied
[6]. Zheng and Ng proposed a two-phase procedure called
genetic model selection (GMS) method [12] which selects a
genetic model from the three models in its first stage. On
the contrary, Joo et al. proposed a test which eliminates
genetic models [25]. Due to the environmental interaction,
there are unlimited genetic models besides the three ideal
models (recessive, additive, and dominant). Chen and Ng
proposed a robust association test based on the generalized
genetic model (GGM) [19], which includes the recessive,
additive, and dominant models as special cases. Their
approach obtains a p-value from a one-sided test for each
of the two possible disease alleles. With the uncertainty of
the disease allele, the overall p-value is then approximated
from the two dependent tests.
In this paper, we propose a new robust association test

which utilizes the GGM and obtains a one-sided p-value
based on the selected disease allele. The performance of
the new test is compared with existing methods in terms
of controlling type I error rate and detecting power.
Some real data applications are also used to demonstrate
the use of the new test.
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Methods
GGM and existing methods
The data of a diallelic SNP with alleles A and a in a case
control GWAS are summarized in Table 1, where r1, r2,
and r3 are the frequencies of genotypes AA, Aa, and aa,
respectively, for the r cases; and s1, s2, and s3 are the
frequencies of genotypes AA, Aa, and aa, respectively,
for the s controls.
Among the three genotypes AA, Aa, and aa, the relative

risks of genotypes Aa and aa to AA are defined as:

λ1 ¼ Prðcase AaÞ=Pr caseð jAAj Þ
λ2 ¼ Pr case aaÞ=Pr caseð jAAj Þð

(
ð1Þ

Under the null hypothesis that there is no association
between the genotype and phenotype, we have λ1 = λ2 =
1. Regarding the alternative hypothesis, we assume the
underlying genetic model is a GGM, which is also
called order-restricted relative risks model [19]. For the
case where a is the disease allele, GGM assumes λ1 ≥ 1
and λ2 ≥ λ1 with at least one of the inequalities is strictly
greater than. It is easy to see that the aforementioned
ideal models, recessive (λ1 = 1, λ2 > λ1), additive (λ1 =
(1 + λ2)/2), and dominant (λ1 = λ2 > 1), are all special
cases of the generalized model. If A, rather a, is the dis-
ease allele, GGM assumes 1 ≥ λ1 and λ1 ≥ λ2 with at least
one of the inequalities is strict.
Suppose the frequencies for AA, Aa, and aa are p1, p2,

p3 for cases and q1, q2, and q3 for controls, respectively.
Under the null hypothesis that there is no association
between the disease and the genotype, it is easy to show
p1 = q1, p2 = q2, and p3 = q3. In this paper, we assume
the cases and controls follow trinomial distributions TN
(r, p1, p2, p3) and TN (s, q1, q2, q3), respectively.
The test statistics for some well-known existing

methods are summarized as follows:
The CATT test statistic is [8]:

Zx ¼
n1=2

X2
i¼0

xi sri−rsið Þ

rs n
X2
i¼0

x2i ni−
X2
i¼0

xini

 !2" #( )1=2
;where x0; x1; x2;

� �

¼ 0; x; 1ð Þ:

They are the scores assigned to the three columns.
Table 1 SNP data in a case control GWAS

Genotype AA Aa aa Total

Case r1 r2 r3 r

Control s1 s2 s3 s

Total n1 n2 n3 n
The statistic for MAX3 is [6]:

MAX3 ¼ MAX Z0 ;j jZ1=2

�� ��;� ��Z1jg:

The statistic for GMS is [12,13]:

GMS ¼ Z0I Z1=2 > 0
� �

I ZHWDTT > cð Þ
þZ1=2I Z1=2 > 0

� �
IðjZHWDTT j < cÞ

þ Z1I Z1=2 > 0
� �

I ZHWDTT < −cð Þ
−Z1I Z1=2≤0

� �
I ZHWDTT > cð Þ;

þ Z1=2I Z1=2≤0
� �

IðjZHWDTT j≤cÞ
−Z0I Z1=2≤0

� �
I ZHWDTT < −cð Þ

where I is the indicator function, and the Hardy-
Weinberg disequilibrium trend test (HWDTT) statistic
is given by [15]:

ZHWDTT ¼ rs=nð Þ1=2 Δ̂P−Δ̂Qð Þ
1−n2=n−n1= 2nð Þg n2=nþn1= 2nð Þg;ff Δ̂P ¼ r2=r−

r2=r þ r1= 2rð Þð Þ2; : Δ̂Q ¼ s2=s− s2=sþ s1= 2sð Þð Þ2; and c is
a constant and usually chosen as 1.645. Here ni = si + ri
(i = 1,2,3), and n = n1 + n2 + n3.
The statistic for MERT is [24]:

MERT ¼ Z0 þ Z1ð Þ= 2 1þ ρ̂01
� �� �1=2

;where ρ̂01
¼ n0n2ð Þ1=2= n0 þ n1ð Þ n1 þ n2ð Þf g1=2:

The proposed test

Let T ¼
T 1

T 2

T 3

2
4

3
5 ¼

r2s1−r1s2
r3s−rs3
r3s1−r1s3

2
4

3
5 , it can be shown that

under the null hypothesis of no association, the mean of
the vector E[T] = 0, and variance-covariance matrix is.

ΣT ¼
rsp1p2 nþ 2−nð Þp3ð Þ 0 rsp1p2p3 n−2ð Þ

0 nrsp3 1−p3ð Þ nrsp1p2p3
rsp1p2p3 n−2ð Þ nrsp1p2p3 rsp1p3 nþ 2−nð Þp2ð Þ

:

2
4

3
5

We define the following “standardized” statistics:

Z ¼
Z1

Z2

Z3

2
4

3
5

¼
r2s1−r1s2ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsn1n2 nþ 2−nð Þn3=nð Þ=n2p
r3s−rs3ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nrsn3 n−n3ð Þ=np
r3s1−r1s3ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rsn1n3 nþ 2−nð Þn2=nð Þ=n2p
2
64

3
75

ð2Þ
It is easy to prove the following result.



Table 2 Empirical type I error rates and powers for each method from 1000 replicates at significance level 0.05 when
the sample sizes are 1000 for cases and controls and HWE holds for controls with minor allele is the disease allele and
MAF equals 0.3

λ1 λ2 (1,1) (1, 1.4) RM* (1.1, 1.4) (1.2, 1.4) AM* (1.3, 1.4) (1.4, 1.4) DM* (1.5,1.4) ODM* (0.9, 1.4) UDM*

ChiSQ 0.053 0.927 0.759 0.528 0.395 0.428 0.524 0.992

MAX3 0.051 0.941 0.794 0.568 0.438 0.445 0.484 0.994

GMS 0.05 0.933 0.772 0.577 0.431 0.432 0.459 0.993

CATT 0.05 0.934 0.807 0.644 0.427 0.25 0.136 0.986

MERT 0.051 0.879 0.744 0.642 0.479 0.377 0.261 0.938

GGM 0.053 0.944 0.793 0.598 0.447 0.432 0.412 0.995

New 0.049 0.927 0.761 0.574 0.455 0.46 0.512 0.982

*RM: Recessive Model; AM: Additive Model; DM: Dominant Model; ODM: Over-dominant Model; UDM: Under-dominant Model.
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Theorem 1. Asymptotically, under the null hypothesis
the statistics in (2) follow a multivariate normal distribution,
Z~MVN (0, ΣZ), where the variance-covariance matrix is.

ΣZ ¼

1 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2p3
1−p2ð Þ 1−p3ð Þ

r

0 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p1
1−p2ð Þ 1−p3ð Þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2p3
1−p2ð Þ 1−p3ð Þ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1

1−p2ð Þ 1−p3ð Þ
r

1

2
6666664

3
7777775
:

From theorem 1, Z1, Z2 and Z3 are linear dependent;
it is not difficult to show that asymptotically Z3 = aZ1 +

bZ2, where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2p3
1−p2ð Þ 1−p3ð Þ

q
, and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1

1−p2ð Þ 1−p3ð Þ
q

. It can

also be shown that under the GGM, if a (or A) is the
disease allele, the expectations of Zi (i = 1,2,3) in (2) are
all greater (or less) than 0. In addition, under the GGM,
if z1 is close to 0, the genetic model is close to the reces-
sive model. On the other hand, the genetic model is un-
likely to be the recessive model if z1 is far from 0.
We will select the disease allele based on the sign of

Z3, and combine the two one-sided p-values obtained
based on the selected disease allele. Following the idea
Table 3 Empirical type I error rates and powers for each meth
the sample sizes are 1000 for cases and controls and HWE ho
MAF equals 0.3

λ1 λ2 (1,1) (1, 1.4) RM* (1.1, 1.4) (1.2, 1.4) AM*

ChiSQ 0.046 0.538 0.496 0.615

MAX3 0.048 0.552 0.547 0.662

GMS 0.05 0.547 0.536 0.648

CATT 0.048 0.375 0.555 0.716

MERT 0.042 0.45 0.587 0.685

GGM 0.052 0.523 0.55 0.682

New 0.050 0.526 0.551 0.678

*RM: Recessive Model; AM: Additive Model; DM: Dominant Model; ODM: Over-domin
of combining p-values from independent studies using
robust test [26], we define the test statistic as follows:

C ¼ F−1 Φ Z1ð Þð Þ þ F−1 Φ Z2ð Þð Þ if Z3≥0
F−1 Φ −Z1ð Þð Þ þ F−1 Φ −Z2ð Þð Þ if Z3 < 0

;

�
ð3Þ

where Φ(∙) is the cumulative density function (CDF) of
the standard normal distribution (N(0,1)) and F− 1(∙) is
the inverse of the CDF of the chi-square distribution
with one degree of freedom.
Usually it is difficult to directly calculate the p-value

(or critical value) for statistic C in (3). However, the p-value
can be easily estimated using resampling method. Specific-
ally, we first simulate two independent samples, z1, and z2,

both from N(0,1). Then we calculate z3 ¼ âz1 þ b^ z2, where

â¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂2p̂3
1−p̂2ð Þ 1−p̂3ð Þ

r
, b^ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂1

1−p̂2ð Þ 1−p̂3ð Þ
r

are the estimates of a

and b, and p̂i ¼ ni
n are the estimates for pi (i = 1, 2, 3) from

the data. Next we calculate.

g ¼ F−1 Φ z1ð Þð Þ þ F−1 Φ z2ð Þð Þ if z3≥0
F−1 Φ −z1ð Þð Þ þ F−1 Φ −z2ð Þð Þ if z3 < 0

�
. We repeat

the above steps K times and get K values for g. The
p-value can then be estimated as (number of g '
s that are greater than or equal to c)/K, where c is
the observed statistic calculated from data using (3).
od from 1000 replicates at significance level 0.05 when
lds for controls with major allele is the disease allele and

(1.3, 1.4) (1.4, 1.4) DM* (1.5,1.4) ODM* (0.9, 1.4) UDM*

0.805 0.933 0.988 0.752

0.831 0.948 0.987 0.676

0.827 0.933 0.986 0.681

0.854 0.926 0.963 0.195

0.811 0.853 0.911 0.324

0.839 0.944 0.987 0.614

0.839 0.942 0.971 0.602

ant Model; UDM: Under-dominant Model.



Table 4 Empirical type I error rates and powers for each method from 1000 replicates at significance level 0.05 when
the sample sizes are 1000 for cases and controls and HWE holds for controls MAF equals 0.5

λ1 λ2 (1,1) (1, 1.4) RM* (1.1, 1.4) (1.2, 1.4) AM* (1.3, 1.4) (1.4, 1.4) DM* (1.5,1.4) ODM* (0.9, 1.4) UDM*

ChiSQ 0.048 0.854 0.736 0.646 0.697 0.81 0.909 0.973

MAX3 0.045 0.868 0.778 0.704 0.732 0.818 0.909 0.962

GMS 0.044 0.857 0.768 0.692 0.724 0.81 0.908 0.966

CATT 0.044 0.795 0.787 0.761 0.724 0.705 0.701 0.815

MERT 0.044 0.789 0.782 0.763 0.729 0.718 0.722 0.806

GGM 0.045 0.865 0.795 0.735 0.746 0.816 0.901 0.962

New 0.041 0.84 0.773 0.714 0.747 0.829 0.919 0.952

*RM: Recessive Model; AM: Additive Model; DM: Dominant Model; ODM: Over-dominant Model; UDM: Under-dominant Model.
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Results and discussion
Simulation study
In this section, we will assess the performance of the
proposed test by comparing it with existing methods in
terms of controlling type I error rate and detecting
power through a comprehensive simulation study. In
the simulation study we assume that cases and con-
trols in Table 1 follow trinomial distributions with
probabilities p = (p1,p2,p3) and q = (q1,q2,q3), respectively.
It can be shown that, for given qi’s, and relative risks
λ1, λ2, the values of the corresponding pi’s can be obtained

as follows [17-21]: p1 ¼ q1
q1þλ1q2þλ2q3

, p2 ¼ λ1q2
q1þλ1q2þλ2q3

, and

p3 ¼ λ2q3
q1þλ1q2þλ2q3

.

We first assume Hardy–Weinberg equilibrium (HWE)
holds for controls, and the minor allele frequencies
(MAF) are 0.3 and 0.5. The disease allele is either the
minor or the major allele. The numbers of cases (r) and
controls (s) are both set to be 1000. Different pairs of λ1
and λ2 are used in the simulation to compare the
performance of our proposed method with those of
GMS, MERT, MAX3, Pearson’s chi-square test, and
CATT with x = 0.5, which is the commonly used test
under the assumption of additive genetic model. More
specifically, we fix λ2 to be 1.4 and let λ1 vary from 1.0
to 1.4 with increment 0.1. Therefore, the three special
Table 5 Empirical type I error rates and powers for each meth
the sample sizes are 1000 for cases and controls and the gen
minor allele is the disease allele

λ1 λ2 (1,1) (1, 1.4) RM* (1.1, 1.4) (1.2, 1.4) AM*

ChiSQ 0.046 0.93 0.743 0.539

MAX3 0.04 0.944 0.771 0.601

GMS 0.04 0.929 0.756 0.609

CATT 0.043 0.936 0.807 0.659

MERT 0.044 0.88 0.763 0.656

GGM 0.043 0.952 0.786 0.635

New 0.049 0.926 0.755 0.616

*RM: Recessive Model; AM: Additive Model; DM: Dominant Model; ODM: Over-domin
genetic models are included in the simulation study. To
assess the robustness of the proposed test, we also simu-
late data from genetic models other than the GGM: over-
dominant model (λ1 = 1.5, λ2 = 1.4 ) and under-dominant
model (λ1 = 0.9, λ2 = 1.4). The significance level is set to be
0.05, and the type I error rate and power are estimated by
the proportions of rejections from 1000 replicates. To
estimate the p-value for the proposed test, we resample
10,000 times (i.e., K = 10,000). The p-values from MAX3,
GMS, and MERT are obtained by using the R package
“Rassoc” [13].
When the null hypothesis is true (λ1 = λ2 = 1), all

methods have rejection proportions close to the preset
significance level 0.05 (For power values, see Additional
file 1: Power plots of Figures S1-S5 for Tables 2-6); this in-
dicates that they can control type I error rate. Table 2 re-
ports the empirical powers of each method when HWE
holds for controls with MAF equals to 0.3, and the minor
allele is the risk allele. The chi-square test is usually less
powerful than the proposed test except for the condition
where the genetic model is over-dominant, under which
the proposed test is more powerful than other methods.
The CATT and MERT perform relatively poorly when the
genetic models are far from the additive model. MAX3
and GMS perform similarly and have comparable power
values with the proposed test; while the new test performs
better when the genetic model is dominant or over-
od from 1000 replicates at significance level 0.05 when
otype frequencies for controls are (0.1,0.36,0.54) with

(1.3, 1.4) (1.4, 1.4) DM* (1.5,1.4) ODM* (0.9, 1.4) UDM*

0.426 0.481 0.565 0.995

0.473 0.486 0.507 0.995

0.471 0.49 0.517 0.992

0.459 0.314 0.194 0.974

0.517 0.409 0.302 0.933

0.484 0.46 0.437 0.995

0.485 0.514 0.556 0.988

ant Model; UDM: Under-dominant Model.



Table 6 Empirical type I error rates and powers for each method from 1000 replicates at significance level 0.05 when
the sample sizes are 1000 for cases and controls and the genotype frequencies for controls are (0.1,0.36,0.54) with
major allele is the disease allele

λ1 λ2 (1,1) (1, 1.4) RM* (1.1, 1.4) (1.2, 1.4) AM* (1.3, 1.4) (1.4, 1.4) DM* (1.5,1.4) ODM* (0.9, 1.4) UDM*

ChiSQ 0.042 0.55 0.553 0.673 0.812 0.927 0.981 0.749

MAX3 0.044 0.568 0.6 0.718 0.843 0.939 0.987 0.712

GMS 0.041 0.585 0.61 0.718 0.82 0.922 0.98 0.727

CATT 0.041 0.431 0.607 0.765 0.854 0.918 0.962 0.248

MERT 0.042 0.512 0.635 0.755 0.808 0.866 0.896 0.385

GGM 0.036 0.55 0.611 0.743 0.848 0.942 0.986 0.66

New 0.043 0.552 0.597 0.734 0.849 0.941 0.981 0.654

*RM: Recessive Model; AM: Additive Model; DM: Dominant Model; ODM: Over-dominant Model; UDM: Under-dominant Model.
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dominant. Table 3 lists the power values when HWE holds
for controls with MAF equals to 0.3, and the major allele
is the risk allele. Once again, the CATT and MERT lose
power dramatically compared to other methods when the
genetic model is recessive or under-dominant. The pro-
posed test is more powerful than the MAX3 and GMS
when the genetic models are close to recessive model. The
chi-square test is less powerful than the proposed test when
the genetic models are between recessive and dominant.
Table 4 gives the empirical powers when HWE holds

for controls with MAF equals to 0.5. As seen in Tables 2
and 3, the CATT and MERT are less powerful when the
genetic model is dominant or over-dominant. On the
contrary, chi-square test is reasonably powerful under
those situations. The proposed test has the largest
powers when the genetic model is close to the dominant
Table 7 Genotypic count data for rs181489 from different
populations (data obtained from [27])

Population Case Control Total
nGG GA AA GG GA AA

A: Australia 400 402 99 320 307 58 1586

B: France 244 245 57 5 61 11 623

C: Germany 86 119 19 16 18 7 265

D: Germany 222 176 85 133 107 25 748

E: Germany 144 149 39 169 140 29 670

F: Greece 44 67 17 44 37 10 219

G: Greece 119 126 47 130 123 18 563

H: Ireland 140 147 58 229 157 38 769

I: Italy 78 86 21 87 71 9 352

J: Italy 73 88 28 44 43 8 284

K: Italy 33 47 10 41 21 9 161

L: Norway 290 233 80 240 228 56 1127

M: Poland 158 144 47 171 135 30 685

N: Sweden 50 30 10 91 68 17 266

O: USA 156 170 50 191 137 32 736
one (i.e., λ1 = 1.3, 1.4, 1.5). For other situations, the new
test has comparable powers with those from MAX3
and GMS.
Tables 5 and 6 report the empirical powers when

HWE does not hold with the genotypic frequencies for
controls are (0.1, 0.36, 0.54), and the disease risks are
minor allele and major allele, respectively. Once again
we can see that CATT and MERT are not robust; they
may lose power dramatically under some conditions
(e.g., over-dominant in Table 5 and under-dominant
in Table 6). The proposed test has comparable power
values with those from the MAX3 and GMS; under some
situations, it is more powerful (e.g., over-dominant model
in Table 5).
The method based on GGM by Chen and Ng (GGM

in Tables 2–6) has similar performance as the proposed
test. However, if the disease allele is the minor allele, the
new test is more powerful than the GGM method
when the genetic model is dominant or over-dominant
(see Tables 2, 4 and 5). In addition, unlike the proposed
test, the GGM method doesn’t report the disease allele.

Real data application
To illustrate the use of the proposed test, we apply it to
some real data. The SNP rs181489 has been shown to be
associated with Parkinson disease [27]. Table 7 lists the
genotypic counts of cases and controls of this SNP from
fifteen sites [27]. We apply the proposed test and others
to the data of each site to obtain p-values. Table 8
reports the results along with the three statistics, z1, z2
and z3. Out of the 15 populations, 14 have positive
values for z3, indicating the disease allele is A rather
than G for this SNP. Recall the statistic z1 compares
genotype GG to GA between controls and cases. A
small z1 indicates the relative risk λ1 is close to 1,
and therefore the genetic model is close to the recessive
one. On the other hand, if z1 is large, the underlying
genetic model is unlikely to be a recessive model. For
population D, the estimated z1 is −0.090, the genetic
model is close to a recessive one, under which the



Table 8 P-values and Z statistics from different methods based on each population of the SNP rs181489 data

Population ChiSQ MAX3 GMS CATT MERT New Z1 Z2 Z3

A: Australia 0.23 0.19 0.20 0.14 0.11 0.16 0.44 1.66 1.72

B: France 0.66 0.64 0.47 0.41 0.38 0.51 0.34 0.84 0.90

C: Germany 0.20 0.18 0.51 0.46 0.31 0.23 0.54 −1.70 −1.41

D: Germany 0.011 0.0060 0.0055 0.024 0.014 0.0088 −0.090 3.02 2.82

E: Germany 0.16 0.11 0.089 0.055 0.058 0.099 1.36 1.36 1.69

F: Greece 0.11 0.080 0.12 0.076 0.11 0.082 2.02 0.51 1.19

G: Greece 0.0018 0.0011 0.0011 0.0032 0.0013 0.0012 0.63 3.51 3.52

H: Ireland 1.2e-4 5.8e-5 5.6e-5 2.2e-5 2.3e-5 7.0e-5 2.70 3.28 3.94

I: Italy 0.055 0.043 0.036 0.020 0.016 0.033 1.35 2.00 2.29

J: Italy 0.23 0.19 0.15 0.098 0.088 0.15 0.79 1.53 1.71

K: Italy 0.013 0.018 0.015 0.070 0.15 0.012 2.94 −0.31 0.63

L: Norway 0.18 0.34 0.25 0.94 0.73 0.43 −1.31 1.33 0.86

M: Poland 0.12 0.10 0.081 0.049 0.041 0.077 0.88 1.88 2.05

N: Sweden 0.69 0.79 0.80 0.78 0.89 0.96 −0.78 0.37 0.16

O: USA 0.0048 0.0031 0.0029 0.0013 0.0020 0.0026 2.66 1.90 2.61
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CATT test is less powerful than other robust
methods. In fact, for this population CATT obtains
the largest p-value (0.024). Similar observation can be
found for population G. In contrast, z1 and z2 from
populations H and O are both large, indicating the
underlying genetic models are close to the additive
model, under which the CATT is more powerful than
others. Therefore, there is no surprise that CATT obtains
the smallest p-values from those two populations.

Conclusions
Although CATT has been widely used in case–control
GWAS with the assumption that the underlying genetic
model is additive, its performance may be very poor if
the true genetic model is not additive. Therefore, robust
but powerful association tests are more appropriate
when detecting the associated SNPs. Many existing
association tests make the assumption that the ge-
netic model is one of the three special genetic models
(recessive, additive, and dominant), which may be a
too strong assumption in practice. In this paper, we
propose a robust association test without making
strong assumption about the genetic model. Our
simulation results show that even the assumption of
GGM is violated (e.g., over- and under- dominant
models), the proposed test still has reasonable power;
indicating it is a robust test. In terms of computational
cost, the proposed test is reasonably fast. For instance, it
took my desktop about 70 seconds to get the results in
Table 8 for the real data application. Our simulation study
also confirmed that the proposed test can control type I
error rate with smaller cutoff p-value, e.g., 10-4 and 10-5

(see Additional file 2: Table S1-S2).
The test statistic in (3) is defined based on the idea of
combining p-values from independent studies using
chi-square distribution with 1 degree of freedom [26].
Although there are many other approaches available
in the literature [26,28-31], it remains a research topic to
choose the best one if there is any. However, it should be
noticed that for case control GWAS, a robust method,
such as the proposed test, is desirable due to the various
underlying genetic models. In addition, when we combine
the p-values from the 15 independent studies using the
chi-square distribution with 1 degree of freedom [26], the
overall p-value is 2.6 × 10−11.
Through simulation studies and real data applications,

we have shown that the proposed test is robust and
powerful. In addition, the three statistics, z1, z2, and z3,
may also provide useful information about the disease
allele and the genetic model.

Additional files

Additional file 1: Power plots of Figures S1-S5 for Tables 2-6.

Additional file 2: Table S1. Empirical type I error rate (×10-4) for each
method from 106 replicates at significance level 10-4 with the sample
sizes 1000 for cases and controls and given genotype frequencies for
controls. Table S2. Empirical type I error rate (×10-5) for each method
from 106 replicates at significance level 10-5 with the sample sizes 1000
for cases and controls and given genotype frequencies for controls.
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