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Abstract

Background: The two main genetic types in Iberian pig production show important phenotypic differences in
growth, fattening and tissue composition since early developmental stages. The objective of this work was the
evaluation of muscle transcriptome profile in piglets of both genetic types, in order to identify genes, pathways and
regulatory factors responsible for their phenotypic differences. Contemporary families coming from pure Iberian
pigs (IB) or from crossing with Duroc boars (DUXIB) were generated. Piglets (14 from each genetic type) were
slaughtered at weaning (28 days) and longissimus dorsi was sampled for composition and gene expression studies.
RNA was obtained and hybridized to Affymetrix Porcine Genechip expression arrays.

Results: Loin muscle chemical composition showed significant differences between genetic types in intramuscular
fat content (6.1% vs. 4.3% in IB and DUxIB animals, respectively, P=0.009) and in saturated (P=0.019) and
monounsaturated fatty acid proportions (P = 0.044). The statistical analysis of gene expression data allowed the
identification of 256 differentially expressed (DE) genes between genetic types (FDR < 0.10), 102 upregulated in IB
and 154 upregulated in DUXIB. Transcript differences were validated for a subset of DE genes by gPCR. We
observed alteration in biological functions related to extracellular matrix function and organization, cellular
adhesion, muscle growth, lipid metabolism and proteolysis. Candidate genes with known effects on muscle growth
were found among the DE genes upregulated in DUXIB. Genes related to lipid metabolism and proteolysis were
found among those upregulated in IB. Regulatory factors (RF) potentially involved in the expression differences
were identified by calculating the regulatory impact factors. Twenty-nine RF were found, some of them with known
relationship with tissue development (MSTN, SIX4, IRX3), adipogenesis (CEBPD, PPARGCIB), or extracellular matrix
processes (MAX, MXIT). Correlation among the expression of these RF and DE genes show relevant differences
between genetic types.

Conclusion: These results provide valuable information about genetic mechanisms determining the phenotypic
differences on growth and meat quality between the genetic types studied, mainly related to the development and
function of the extracellular matrix and also to some metabolic processes as proteolysis and lipid metabolism.
Transcription factors and regulatory mechanisms are proposed for these altered biological functions.

Keywords: Iberian pig, Transcriptome, Genetic type, Transcription factors, Growth, Meat quality, Metabolism

* Correspondence: ovilo@inia.es

'Dpto Mejora Genética Animal, INIA, Ctra Corufia km 7.5, Madrid 28040,
Spain

Full list of author information is available at the end of the article

- © 2014 Ovilo et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
() B.oMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:ovilo@inia.es
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Ovilo et al. BMC Genomics 2014, 15:413
http://www.biomedcentral.com/1471-2164/15/413

Background

Intramuscular fat (IMF) content and fatty acid (FA) com-
position are critical aspects of pig meat because of their in-
fluence on the sensorial and technological aspects of meat
quality such as juiciness, flavor, tenderness and overall de-
sirability of meat [1,2]. Consequently, research on muscle
lipid deposition is currently one of the most important
fields of study in meat science [3]. Recently, the research
interest on this topic includes the complex physiological
and genetic mechanisms of IMF deposition and gene ex-
pression patterns and interactions along development [4].

Within skeletal muscle, lipids are stored as droplets
both in myofiber cytoplasm and in adipocytes (inter-
spersed between fiber fasciculi) with IMF deposition be-
ing highly dependent on the number of intramuscular
adipocytes [5]. Although adipocyte differentiation starts
early in fetal stages, the increase in adipose cell number
and size is maintained along early postnatal growth and
later development [6]. IMF is considered a late-developing
depot because hyperplasia and not only hypertrophy occurs
postnatally, as demonstrated in both pigs and cattle [6,7];
and hypertrophy by lipid filling of adipocytes persists in late
stages [8]. Nevertheless, regulation of intramuscular adipo-
cyte differentiation and growth and triglyceride storage
is not completely understood and previous studies suggest
that preadipocyte differentiation and lipogenesis exhibit
breed-related scheduling [9]. Among different breeds, the
adipocyte depots can be regulated differently, and may
have a different propensity to metabolize lipids.

Comparison of transcriptome of skeletal muscles and
other tissues between phenotypically different pig breeds
has been proposed to improve the understanding of the
genetic mechanisms underlying differences in growth and
meat quality [10]. Several transcriptome studies have
compared lean (Landrace, Large-White) vs. fatty breeds
(mainly Chinese and other local obese breeds) [11-16].
Also the Duroc breed has been compared to the Pietrain
lean breed in prenatal stages [17,18] and to the Chinese
obese Taoyuan breed [19]. Some of these previous works
have been focused on the study of myogenesis and thus
different stages of fetal development were studied, since
myogenesis is assumed to be a predominantly prenatal
process [20]. Nevertheless, recent work has shown that
hyperplastic muscle growth also occurs from birth to
weaning in pigs [21].

The Iberian pig breed is a fatty breed with clear differ-
ences in growth rate, adipogenic potential and meat qual-
ity with respect to many other porcine breeds [22]. Meat
and dry-cured Iberian pig products, characterized by its
high prices, come from two main genetic types: purebred
Iberian and crossbred Iberian with Duroc boars. In the
crossbred animals, the growth performance and primal
cuts yield are improved, but conversely, meat quality de-
creases because their muscles contain lower proportions

Page 2 of 24

of IMF and monounsaturated fatty acids (MUFA), as oleic
acid [23]. Phenotypic differences between both types in
lean and adipose tissue growth are visible from early de-
velopmental stages [24]. Regarding the analysis of the
Iberian pig transcriptome, a comparison with those of
Large-White and other breeds for several tissues at 3 m of
age has been reported [25,26], but no comparison has
been performed on the muscle transcriptome between the
Iberian and Duroc breeds or their crosses.

Our objective was to evaluate the muscle genome ex-
pression profiles of Iberian and Duroc x Iberian genetic
types in order to identify the genes and molecular path-
ways involved in their phenotypic differences. In contrast
to previous studies with extreme breeds, the genetic types
here compared share the same production system, being
genetically closer and phenotypically more similar. We
selected the longissimus dorsi muscle because it is a prime
cut of high economic relevance for fresh and cured pork
production. Muscle transcriptome was studied at weaning
(28d), as this developmental stage is highly proliferative
and relevant for the differentiation of muscular and adi-
pose cells. Additionally, transcriptome information was
employed for the identification of transcriptional regu-
lators potentially involved in the different gene expres-
sion profiles observed in both genetic types.

Results and discussion

Phenotypic differences between genetic types

At weaning, 28 male piglets (14 of each genetic type)
were slaughtered and loin muscle was sampled for com-
position and gene expression studies. Mean live weight
at slaughter was 8.03 kg (SD =1.59 kg). There was no
significant difference in live weight between both genetic
types. The percentage of loin IMF was higher in purebred
Iberian than in crossbred animals (P =0.009, Table 1).
Differences in muscle fatty acid composition were also
observed, with a higher MUFA content in IB and a
higher saturated FA content in DUXIB (Table 1). These
results confirm the differential trend in fattening and
meat quality traits which is evident since this very early
growth stage.

Transcriptome study: identification and functional
characterization of differentially expressed genes
associated with pure Iberian or crossbred genetic types
Among the platforms currently available, the Affymetrix
Porcine array is the most sensitive and reproducible
microarray for swine genomic studies [27]. Employing
this platform, we detected 271 differentially expressed (DE)
probes according to genetic type, exceeding the thresh-
old PP-value corresponding to a FDR < 0.10 (Posterior
Probability =0.006) (Additional file 1). These correspond
to 256 known genes. Ten DE genes were represented by
more than one DE probe (CASQ2, EROI1L, IGF2, MTUS?2,



Ovilo et al. BMC Genomics 2014, 15:413
http://www.biomedcentral.com/1471-2164/15/413

Page 3 of 24

Table 1 Live weight and Longissimus dorsi muscle fat and fatty acid content in IB and DUXIB piglets at weaning (28d)

Trait Iberian (n = 14) Duroc x lberian (n=14) P value
Mean + SEM Mean + SEM
Live weight (kg) 822+037 7.85+0.54 0.567
Intramuscular fat (9/100 g fresh tissue) 6.07 £045 427 +043 0.009
C16:0, % palmitic acid 2315+ 066 2495+ 064 0.051
C18:0, % estearic acid 803+0.25 923+0.24 0.001
C18:1n-9, % oleic acid 38.64£1.28 37.05+1.25 0.362
C18:2n-6, % linoleic acid 1436+ 0.60 15.75+0.68 0.095
SFA, % saturated fatty acids 33.20+0.88 36.17+0.86 0.019
MUFA, % monounsaturated fatty acids 4781 +155 43424151 0.044
PUFA, % polyunsaturated fatty acids 1897 £0.92 2040+ 0.90 0.259

LOX, MAPIB, MEI, PTPRD, SORTI, SVIP). Out of the
256 DE genes, 154 were overexpressed in DUxIB and 102
were overexpressed in IB. Regarding the size of the effects,
the DE genes upregulated in DUxIB ranged between 1.23
and 5.98 fold-changes, and the ones upregulated in IB
ranged between 1.21 and 7.87.

Real-time quantitative PCR (qPCR) was employed to
assess the expression of 18 genes (eight upregulated in
DUxIB, eight upregulated in IB and two unchanged ones),
selected to represent different magnitudes of the differen-
tial expression detected in the microarray study. Twelve
out of the 16 DE genes and one coming from the non-DE
group were successfully validated as DE; and two out of

Table 2 Technical validation of microarray results by qPCR

the four non-validated genes (PLAIA and CASP4) were
close to statistical significance (Table 2). The correlations
among gene expression values obtained with microarray
and qPCR were significant in 15 out of the 18 selected
genes (Table 2). Overall, qPCR results were in the same
direction and similar magnitude compared to the micro-
array. The ELOVL6 gene showed the lowest agreement
between methods, which could be due to the detection of
different splice variants, as up to 13 different transcripts
have been described for this gene in humans. Interestingly,
the SCD gene, which was selected as a control non-DE
(1.5x higher expression in IB, but without statistical signifi-
cance), was observed to be significantly DE in the qPCR

Gene Ratio microarray (DUxIB)/IB PP value microarray ratio qPCR (DUxIB)/IB P value qPCR  Correlation (r) P value (H,:r =0)
IGF2 4.88 <0.00001 2.95 0.0001 0.796 <0.0001
KERA 341 0.00001 241 0.0009 0.889 <0.0001
FMOD 3.35 0.00006 2.78 0.0048 0.764 <0.0001
COL1AT 218 0.00082 2.15 0.0060 0.540 0.0030
FBN2 1.88 0.00009 1.76 0012 0.744 <0.0001
AEBP1 1.81 0.00111 2.00 0.019 0.832 <0.0001
LOX 1.72 0.00071 1.58 0.019 0.506 0.0084
FKBP14 1.72 0.00005 1.60 0.025 0.794 <0.0001
PSMD11 0.73 0.00541 0.65 0.046 0444 0.0229
ALOX5AP 0.70 0.00139 0.78 0.128 0.189 0.3331
CASP4 0.64 0.00216 0.54 0.084 0.869 <0.0001
ELOVL6 0.64 0.00114 1.11 0.561 0.086 06616
NFKBIZ 0.59 0.00369 0.82 0.358 0.502 0.0065
MET 0.50 0.00028 0.57 0.024 0.802 <0.0001
PLATA 042 0.00017 042 0.074 0.769 <0.0001
PON3 0.31 <0.00001 037 0.001 0.787 <0.0001
SCD 0.65 0.15186 0.50 0.030 0.866 <0.0001
ELOVLS 1.07 0.28406 113 0433 0.255 0.2089
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validation step (2x upregulation in IB, P=0.03). The
substantial value of Concordance Correlation Coefficient
calculated between microarray and qPCR fold-change
values for these 18 genes (CCC = 0.863) indicates a remark-
able agreement between both measures, validating the glo-
bal reproducibility of microarray results [28].

Functions and pathways altered by genetic type were ex-
plored by studying overrepresentation of gene ontology
(GO) terms on the three main family categories with DA-
VID tool (Database for Annotation, Visualization and Inte-
grated Discovery) [29] (Additional file 2). Most enriched
terms were related to main biological processes including:
extracellular structure organization, developmental process,
lipid metabolic process and muscle organ development. Re-
garding the cellular compartment GO category, the extra-
cellular matrix (ECM) part was highly enriched in the list of
DE genes.

The lists of genes upregulated in IB and DUxIB were also
separately explored (Tables 3 and 4). In order to reduce the
redundancy, a functional annotation clustering was per-
formed with DAVID tool. Genes upregulated in IB affected
GO terms grouped in three main annotation clusters,
which are related to lipid metabolic process, transcriptional
regulation and proteolysis (Table 3). Genes upregulated in
DUXIB affected biological process terms clustered in anno-
tation groups related to development, ECM organization,
response to stimulus and cell migration and proliferation
(Table 4). DAVID tool also allowed for the identification of
KEGG pathways significantly enriched in the list of genes
upregulated in each genetic type (Additional file 2). Ubi-
quitin mediated proteolysis was significantly enriched in
IB, while several KEGG pathways were overrepresented in
the DUxIB type. Among them the most significant ones
were ECM-receptor interaction and Focal adhesion.

The main biological functions identified by Ingenuity
Pathway Analysis (IPA) in the comparative dataset of the
IB and DUxIB groups included categories related to Cell-
To-Cell Signaling and Interaction (P =0.00004, n = 35),
Lipid Metabolism (P = 0.0001, n = 43) and Small Molecule
Biochemistry (P = 0.0001, n = 48). Furthermore, transcripts
related to lipid metabolism were mainly upregulated in IB
group, while transcripts related to Cell-To-Cell Signaling
and Interaction were mainly upregulated in DUxIB group.
The specific functions of cell movement/migration and at-
tachment/adhesion of cells were significantly predicted to
be decreased in IB samples (P =0.00004 and P =0.0003,
respectively). The canonical pathways significantly over-
represented in the DE genes are reflected in Figure 1 and
the most significant interaction networks (NW) are dis-
played in Figures 2, 3 and 4. Results concerning the separ-
ate analysis of the genes upregulated in each one of the
genetic types provide potential specific mechanisms to
underlie the biological functions and phenotypic traits
changing between them.
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The main altered functional patterns observed with
the different tools are discussed individually below:

Tissue development and ECM organization

Among the DE genes affected by genetic type we found
several widely known ones related to muscle development,
including IGF2 (with 5x upregulation in DUxIB), which is
the most significant DE gene with seven probes showing
differential expression. The growth factor coded by this
gene has a major function in muscle promoting fiber dif-
ferentiation. This locus is paternally imprinted, and a nu-
cleotide substitution in its intron 3 has been described,
which abrogates in vitro interaction with a nuclear repres-
sor factor. This substitution affects transcriptional regula-
tion in a way that pigs inheriting the mutation from their
sire have a threefold increase in /GF2 messenger RNA ex-
pression in postnatal muscle [30]. This mutation is absent
in Iberian pig populations and at very high frequency in
the Duroc sire lines employed for crossing with Iberian
pigs. In fact, our animals were genotyped for this poly-
morphism and all DUxIB piglets showed the inheritance
of the mutant allele from their Duroc sire, in agreement
with the differences observed in gene expression.

We also found other DE genes with roles on myogen-
esis or muscle development as amyloid beta precursor
protein (APP) and Fibrillin-2 (FBN2). The APP gene has
a central role in the most significant gene network de-
tected in this work (Figure 2), related to tissue develop-
ment. The APP appears to promote cell adhesion, acting
in an integrin-like manner [31]. Evidence of interaction
with laminin and collagen provides further evidence of
adhesion-promoting properties. Also studies suggest that
peptides derived from the amyloid precursor protein can
promote transcriptional activation and can have growth-
promoting properties both before and after birth [32]. In
fact, APP-deficient mice obtained by gene targeting are
lighter in body mass. The FBN2 gene may influence the
formation and maintenance of extracellular microfibrils
[33], and it has been proposed to play an important role
in muscle development being considered a candidate for
muscling traits [14,34]. Another interesting result is the
upregulation in the DUxIB muscles of AE binding protein
1 (AEBP1I) gene, which encodes a member of the carboxy-
peptidase A protein family. This protein may function as a
transcriptional repressor in adipogenesis and muscle cell
differentiation, playing a key role in modulation of in vivo
adiposity and regulation of energy balance [35]. This pro-
tein downregulates PTEN, PPARy1 and LXRa expression
and transcriptional activity [36], and influence intracellular
lipid accumulation. It promotes proliferation of preadipo-
cytes and inhibits their differentiation into mature, fat-
filled adipocytes [37].

Regarding the functions and pathways affected by genetic
type, the most significantly affected biological function,



Table 3 Functional annotation clustering of genes upregulated in muscle from Iberian piglets

Annotation Cluster 1 Enrichment Score: 2.33 Count P value* Genes

GO:0044255 ~ cellular lipid metabolic process 1M 0.00007 PLAA, PTGES3, SAMDS, AGPATS5, ALOX5AP, SCD, EPHX2, PLATA, GNPAT,
ELOVLSG, SIRT1

GO:0006644 ~ phospholipid metabolic process 4 0.034 PLAA, SAMDS8, AGPAT5, PLATA

G0:0019637 ~ organophosphate metabolic process 4 0.037 PLAA, SAMDS, AGPATS, PLATA

Annotation Cluster 2 Enrichment Score: 2.11 Count P value* Genes

GO:0006350 ~ transcription 16 0.001 NFKBIZ, ZFP30, RBM4, AFF4, AFF3, ZNF143, SIRT1, CBFB, MAX, CNTF,
ZNF326, IRF1, PHTF1, NFE2L1, DNTTIP2, MLLT3

GO:0006366 ~ transcription from RNA 5 0.001 MAX, AFF4, IRF1, NFE2L1, CBFB

polymerase Il promoter

G0:0032774 ~ RNA biosynthetic process 5 0.005 MAX, AFF4, IRF1, NFE2L1, CBFB

GO:0006351 ~ transcription, DNA-dependent 5 0.005 MAX, AFF4, IRF1, NFE2L1, CBFB

G0:0045449 ~ regulation of transcription 19 0.007 NFKBIZ, ZFP30, RBM4, AFF4, AFF3, ZNF143, SIRT1, CBFB, MAX, CNTF,
NEDD4, ZNF326, AGT, TIALT, IRF1, PHTF1, NFE2L1, DNTTIP2, MLLT3

Annotation Cluster 3 Enrichment Score: 1.69 Count P value* Genes

GO:0006508 ~ proteolysis 13 0.003 CTSL2, ASB11, MYLIP, C4BPA, UBE2QL1, MARCH6, UBE2D4, CASP4,
PSMD11, NEDD4, KLHL15, CASP7, RNF19B

GO:0019941 ~ modification-dependent protein 9 0.004 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

catabolic process

G0:0043632 ~ modification-dependent 9 0.004 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

macromolecule catabolic process

GO:0051603 ~ proteolysis involved in cellular 9 0.005 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

protein catabolic process

GO:0044257 ~ cellular protein catabolic process 9 0.005 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

GO:0030163 ~ protein catabolic process 9 0.007 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

GO:0009057 ~ macromolecule catabolic process 10 0.008 NGLY1, UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B,
UBE2QL1, MYLIP, MARCH6

GO:0044265 ~ cellular macromolecule catabolic process 9 0014 UBE2D4, NEDD4, PSMD11, KLHL15, ASB11, RNF19B, UBE2QL1, MYLIP, MARCH6

*P-value from modified Fisher exact score.
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Table 4 Functional annotation clustering of genes upregulated in muscle from DUxIB piglets

Annotation Cluster 1 Enrichment Score: 6.94 Count P value* Genes

GO:0032501 ~ multicellular organismal process 54 6.61E-13 S100A6, AEBP1, KERA, UTRN, POSTN, REST, ENPEP, GPX2, APP, ROBO1, SEMA3E, S1PR5, COL12A1, LOX,
SLC22A2, USH2A, EGFL6, CHODL, CTNNBIP1, MAN2AT1, ALDH7A1, DACT1, GRN, SORT1, VCAN, COL1AT,
CNTN3, PROST, CASQ2, MYL6, HUST, AKAP9, GPM6B, FKBP1A, APLNR, PTK2, ITGAV, SYN3, PPP3CB, SCARBT,
FBN2, DCLK1, MAP1B, ITGA2, IGF2, COL5AT, DKK3, ITGA6, SFRP2, CD59, TCF12, MYH10, CDH11, CLCN5

GO:0048856 ~ anatomical structure development 41 9.60E-10 MYL6, AEBP1, ST00A6, UTRN, GPM6B, POSTN, FKBP1A, ENPEP, REST, PTK2, APP, ROBO1, ITGAV, S1PR5,
SEMA3E, PPP3CB, COL12A1, FBN2, LOX, USH2A, DCLK1, MYOC, MAP1B, CHODL, ITGA2, IGF2, COL5AT1, DKK3,
MAN2AT, ITGA6, SFRP2, GRN, SORT1, VCAN, ANTXR1, CNTN3, COL1AT1, TCF12, CASQ2, MYH10, CDH11

GO:0007275 ~ multicellular organismal development 43 242E-09 MYL6, AEBP1, ST00A6, HUS1, UTRN, GPM6B, POSTN, FKBP1A, ENPEP, REST, PTK2, APP, ROBO1, ITGAV, S1PR5,
SEMA3E, PPP3CB, COL12A1, FBN2, LOX, USH2A, DCLK1, EGFL6, MAP1B, CHODL, ITGA2, IGF2, COL5A1, CTNNBIP1,
DKK3, MAN2AT1, DACT1, ITGA6, SFRP2, GRN, SORT1, VCAN, CNTN3, COL1AT, TCF12, CASQ2, MYH10, CDH11

G0:0032502 ~ developmental process 45 4.28E-09 MYL6, ST00A6, AEBP1, HUST, UTRN, GPM6B, POSTN, FKBP1A, ENPEP, REST, PTK2, APP, ROBO1, ITGAV, STPR5, SEMA3E,
PPP3CB, COL12A1, FBN2, LOX, USH2A, DCLK1, MYOC, EGFL6, MAP1B, CHODL, ITGA2, IGF2, COL5A1, CTNNBIP1,
DKK3, MAN2A1, DACTT, ITGA6, SFRP2, GRN, SORTT, VCAN, ANTXR1, CNTN3, COL1AT1, TCF12, CASQ2, MYH10, CDH11

GO:0048731 ~ system development 35 1.36E-07 MYL6, AEBP1, ST00A6, UTRN, GPM6B, POSTN, FKBP1A, ENPEP, REST, APP, PTK2, ROBO1, ITGAV, S1PR5, SEMAS3E,
PPP3CB, COL12A1, LOX, USH2A, DCLK1, MAP1B, CHODL, ITGA2, IGF2, COL5AT, MAN2AT, ITGA6, SORT1, VCAN,
CNTN3, COL1AT, TCF12, CASQ2, CDH11, MYH10

G0:0030154 ~ cell differentiation 22 2.12E-04 S100A6, EGFL6, UTRN, MAP1B, ITGA2, IGF2, GPM6B, REST, PTK2, APP, ITGA6, ROBO1, SFRP2, SEMA3E, STPR5,
PPP3CB, SORT1, VCAN, ANTXR1, COL1A1, DCLK1, MYH10

GO:0048869 ~ cellular developmental process 22 3.88E-04 S100A6, EGFL6, UTRN, MAP1B, ITGA2, IGF2, GPM6B, REST, PTK2, APP, ITGA6, ROBO1, SFRP2, SEMA3E, STPR5,
PPP3CB, SORTT, VCAN, ANTXR1, COLTAT, DCLK1, MYH10

GO:0048513 ~ organ development 24 4.09E-04 MYL6, AEBP1, UTRN, ITGA2, CHODL, FKBP1A, IGF2, POSTN, ENPEP, COL5A1, MAN2AT1, PTK2, APP, ITGA6,
ROBO1, ITGAV, PPP3CB, COLTAT, LOX, TCF12, CASQ2, USH2A, DCLK1, MYH10

Annotation Cluster 2 Enrichment Score: 4.70 Count P value* Genes

G0:0043062 ~ extracellular structure organization 11 7.37E-08 APP, PTK2, COL14A1, UTRN, MAP1B, COL12A1, FKBP1A, POSTN, COLTA1, LOX, COL5A1

G0:0030198 ~ extracellular matrix organization 9 5.04E-07 APP, PTK2, COL14A1, COL12A1, FKBP1A, POSTN, COLTAT, LOX, COL5A1

G0:0030199 ~ collagen fibril organization 5 749E-05 COL14A1, COL12A1, COLTA1, LOX, COL5AT

Annotation Cluster 3 Enrichment Score: 2.37 Count P value* Genes

GO:0009605 ~ response to external stimulus 15 1.56E-04 MAP1B, ITGA2, IGF2, ENSA, COL5A1, ITGA6, SFRP2, ROBO1, CD59, SCARB1, VCAN, LOX, COL1A1, PROS1, MYH10

GO:0042060 ~ wound healing 8 2.23E-04 CD59, ITGA2, SCARBT, IGF2, LOX, PROS1, COL5A1, MYH10

GO:0009611 ~ response to wounding 10 0.0011093 CD59, MAP1B, ITGA2, VCAN, SCARBT, IGF2, LOX, PROS1, COL5A1, MYH10

GO:0051128 ~ regulation of cellular component organization 9 0.011086 PTK2, ROBO1, MAP1B, ITGA2, SCARB1, IGF2, COL5AT, MYH10, DSTN

GO:0050896 ~ response to stimulus 28 0.0134512 KERA, HUST, TIPIN, FKBP1A, ENSA, GPX2, APP, ROBO1, PPP3CB, SCARBT, GNG2, LOX, FAM129A, USH2A,
MAP1B, ITGA2, IGF2, COL5A1, ABCG2, ITGA6, SFRP2, CD59, SORT1, VCAN, COL1A1, TCF12, PROS1, MYH10

GO:0042221 ~ response to chemical stimulus 14 0.0284588 MAP1B, ITGA2, FKBP1A, IGF2, ENSA, ABCG2, GPX2, ROBO1, PPP3CB, SORT1, SCARB1, GNG2, LOX, COL1A1

Annotation Cluster 4 Enrichment Score: 2.26 Count P value* Genes

G0:0006928 ~ cell motion 13 1.17E-05 ITGA2, ENPEP, COL5A1, DSTN, PTK2, APP, ITGA6, ROBO1, SCARB1, VCAN, DCLK1, THBS4, MYH10

GO:0016477 ~ cell migration 10 1.09E-04 PTK2, ITGA6, ROBO1, VCAN, SCARB1, ENPEP, COL5AT1, DCLK1, MYH10, THBS4

GO:0007409 ~ axonogenesis 8 1.21E-04 APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, DCLK1, MYH10

E€L1/S L/PILT-L L L/WOD'[RIIUSIPIWIOIG MMM//:d1Yy

€LSL V10T $2/wouan NG ‘| 12 OfIAQ

7 40 9 abeq



Table 4 Functional annotation clustering of genes upregulated in muscle from DUxIB piglets (Continued)

GO:0000904 ~ cell morphogenesis involved in differentiation

GO:0048870 ~ cell motility
GO:0051674 ~ localization of cell
GO:0030154 ~ cell differentiation

GO:0009653 ~ anatomical structure morphogenesis
GO:0048869 ~ cellular developmental process

GO:0030030 ~ cell projection organization
GO:0040011 ~ locomotion

GO:0048858 ~ cell projection morphogenesis
G0:0032990 ~ cell part morphogenesis
GO:0000902 ~ cell morphogenesis

GO:0048699 ~ generation of neurons

GO:0048666 ~ neuron development

GO:0022008 ~ neurogenesis

G0:0032989 ~ cellular component morphogenesis
GO:0045664 ~ regulation of neuron differentiation
GO:0007399 ~ nervous system development
GO:0048468 ~ cell development

G0:0030182 ~ neuron differentiation

G0:0060284 ~ regulation of cell development
GO:0050767 ~ regulation of neurogenesis

G0:0031344 ~ regulation of cell projection organization

GO:0051960 ~ regulation of nervous system development

GO:0045595 ~ regulation of cell differentiation
G0:0022604 ~ regulation of cell morphogenesis
GO:0050793 ~ regulation of developmental process

9

10
10
22

20

22

O »~ 0O U1 A U1 O ©

1.61E-04
1.61E-04
1.64E-04
2.12E-04

2.24E-04

3.88E-04

5.27E-04

5.63E-04

5.68E-04

9.16E-04

0.0013059
0.0021025
0.0025921
0.0031988
0.0032876
0.0042345
0.0054731
0.005626

0.0057725
0.0067586
00122736
0.0132242
0.0177634
0.0186936
0.037216

0.0379454

APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, ANTXR1, DCLK1, MYH10
PTK2, ITGA6, ROBOT1, VCAN, SCARB1, ENPEP, COL5A1, DCLK1, MYH10, THBS4
PTK2, ITGA6, ROBOT1, VCAN, SCARB1, ENPEP, COL5AT, DCLK1, MYH10, THBS4

S100A6, EGFL6, UTRN, MAP1B, ITGA2, IGF2, GPM6B, REST, PTK2, APP, ITGA6, ROBO1, SFRP2, SEMA3E, STPRS,
PPP3CB, SORTT, VCAN, ANTXR1, COLTAT, DCLK1, MYH10

S100A6, MAP1B, ITGA2, FKBP1A, IGF2, ENPEP, COL5A1, DKK3, PTK2, APP, ITGA6, ROBOT1, SFRP2, VCAN,
ANTXR1, FBN2, COL1A1, MYOC, DCLK1, MYH10

S100A6, EGFL6, UTRN, MAP1B, ITGA2, IGF2, GPM6B, REST, PTK2, APP, ITGA6, ROBO1, SFRP2, SEMA3E, STPRS,
PPP3CB, SORTT, VCAN, ANTXR1, COL1AT, DCLK1, MYH10

APP, S100A6, PTK2, ITGA6, ROBO1, MAP1B, VCAN, DCLK1, MYH10, THBS4

PTK2, ITGA6, ROBOT1, VCAN, SCARB1, ENPEP, COL5A1, DCLK1, MYH10, THBS4

APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, DCLK1, MYH10

APP, S100A6, PTK2, ROBO1, MAP1B, VCAN, DCLK1, MYH10

APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, ANTXR1, DCLK1, MYH10

APP, ST00A6, PTK2, ROBO1, STPR5, MAP1B, VCAN, REST, DCLK1, MYH10

APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, DCLK1, MYH10

APP, S100A6, PTK2, ROBO1, STPR5, MAP1B, VCAN, REST, DCLK1, MYH10

APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, ANTXR1, DCLK1, MYH10

PTK2, ROBO1, STPR5, MAP1B, REST

S100A6, MAP1B, GPM6B, REST, PTK2, APP, ROBO1, STPR5, SEMA3E, VCAN, CNTN3, DCLK1, MYH10
APP, ST00A6, PTK2, ROBO1, UTRN, MAP1B, PPP3CB, VCAN, ANTXR1, DCLK1, MYH10
APP, ST00A6, PTK2, ROBO1, MAP1B, VCAN, DCLK1, MYH10

PTK2, ROBO1, STPR5, MAP1B, IGF2, REST

PTK2, ROBO1, S1PR5, MAP1B, REST

PTK2, ROBO1, MAP1B, ITGA2

PTK2, ROBO1, S1PR5, MAP1B, REST

PTK2, ROBO1, ITGAV, STPR5, MAP1B, IGF2, REST, USH2A

PTK2, ROBO1, MAP1B, MYH10

PTK2, ROBO1, ITGAV, S1PR5, MAP1B, IGF2, REST, USH2A, MYH10

*P-value from modified Fisher exact score.
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Figure 1 Functional categorization analysis with IPA. Canonical pathways significantly enriched in the three sets of genes are shown
(P<0.05): A) Genes DE between both genetic types; B) Genes upregulated in IB; C) Genes upregulated in DUxIB. Signaling pathways are indicated
with dark bars and metabolic pathways with light bars.

according to all the employed tools, is ECM function and
organization, which is narrowly related to tissue develop-
ment (Additional file 2, Table 4, Figures 1 and 3). Genes in-
volved in cell adhesion and extracellular structures were
found upregulated in DUxIB, mainly several integrin and
collagen genes and other interacting molecules such as
POSTN, LOX, MATN2 or THBS4 (Figure 3). The extracel-
lular matrix consists of a dynamic mixture of structural
and functional macromolecules and serves an important
role in tissue and organ morphogenesis and in the main-
tenance of cell and tissue structure and function [38]. It
has been shown to be very relevant in cellular signalling
because specific interactions between cells and the ECM
have pivotal roles in the regulation of muscle cell prolifera-
tion and differentiation [39]. These interactions are medi-
ated by transmembrane molecules, mainly integrins and
also other cell-surface-associated components, and lead to
a direct or indirect control of cellular activities such as ad-
hesion, migration, differentiation, proliferation, and apop-
tosis [40]. Proliferation determines the pool of muscle cells
available for differentiation and thus it influences the

potential for muscle growth. Moreover, the extracellular
environment regulates the proliferation and differentiation
of mesenchymal stem cells and satellite cells [41], which
can follow adipogenic differentiation thus increasing the
intramuscular adipocytes, fibrogenic differentiation increas-
ing connective tissue content, and of course myogenic
differentiation which increases muscle mass. Thus, func-
tion of ECM has relevant influence not only on muscle de-
velopment but also in future meat quality by affecting
intramuscular fat deposition and connective tissue abun-
dance [42].

Integrins function as mechanoreceptors and provide a
force-transmitting physical link between the ECM and
the cytoskeleton and it is proposed that these proteins also
regulate angiogenesis [43]. There is considerable evidence
of the close relationship between developing adipocytes
and vasculature, and hence the influence of integrins on
angiogenesis may have an impact on adipogenesis as well.
In fact, adipogenesis and angiogenesis are reciprocally reg-
ulated [44]. Three different Integrin genes were upregu-
lated in DUXIB (ITGAV, ITGA2 and ITGA6), which show
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Figure 2 Gene network 1: Cellular Development, Cellular Growth and Proliferation, Embryonic Development (score 51). Molecules are
represented as nodes and the biological relationships between nodes are represented as edges. Genes upregulated in IB are indicated in red and
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central positions in NW2 related to Cellular Assembly
and Organization, especially the ITGA2 gene (Figure 3).
ITGA is considered a myogenesis inhibitor which has been
suggested to delay muscle differentiation, contributing to
a later but higher differentiation of muscle fibers in lean
breeds [14], in agreement with our findings. ITGAV is also
related to negative regulation of lipid transport and storage.

Integrins are narrowly related to collagens and both types
of molecules interact in the maintenance of the extra-
cellular matrix. In fact, the DE gene ITGA2 encodes the
alpha subunit of a transmembrane receptor for collagens
and related proteins. Six different collagen genes were up-
regulated in DUXIB piglets (COL1A1, COL5A1, COLI2A1,
COL14A1, COLI1I6A1, COL24A1I). Collagen deposition in
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Figure 3 Gene network 2: Connective Tissue Disorders, Dermatological Diseases and Conditions, Cellular Assembly and Organization
(score 47). Molecules are represented as nodes and the biological relationships between nodes are represented as edges. Genes upregulated in
IB are indicated in red and the ones upregulated in DUxIB are shown in green.

intramuscular locations starts in fetal stages, and this
deposition is predictive of collagen deposition in intra-
muscular locations in growing pigs [45,46]. Several
works indicate that IGF system, PPARy and myostatin
may regulate the deposition of collagen in pig intramus-
cular locations [47,48]. Muscle collagen content contributes
to toughness of meat, influences texture and is associated
with growth rate [49]. Moreover, collagen development is
negatively related to adipocyte development in the ECM:
extensive collagen deposition restricts local fat cell clusters
growth, and conversely, removal of collagen stimulates the
metabolism and survival of adipocytes [50]. Therefore, the
higher collagen gene expression in DUxIB muscle is in
agreement with the reported higher lean growth but lower
meat tenderness and intramuscular fat content of fattened
pigs [24].

Canonical pathways upregulated in DUxIB (Figure 1)
are narrowly related to the effects on ECM. Main signaling
pathways are involved in assembly of actin cytoskeleton,
cell adhesion to the extracellular matrix, cell-cell adhesion
and cell motility and growth (Rho GTPase signaling, PAK
signaling, Paxillin signaling, actin cytoskeleton signaling,
Gal2 signaling).

Some of our individual DE genes have been previously
reported to be DE between phenotypically different breeds
or experimental animals, as IGF2 [16]. Also, ECM com-
ponents (mainly collagen genes) and functions have

been detected as differential in comparison studies among
populations differing in intramuscular fat composition,
due to breed or dietary factors [15,17,51,52]. These previ-
ous results together with the present ones reinforce the
ECM biological importance in determining composition
and organization of muscle tissue, as well as its signifi-
cance in the regulation of IMF deposition.

Lipid metabolism and protein catabolism

The higher lipid deposition observed in muscle of IB
pigs (Table 1), was coincident with the upregulation of
genes related to lipid metabolism in this genetic type
(Additional file 2 and Table 3). Most genes were in-
volved in lipid and phospholipid biosynthetic processes
(for example ELOVL6, MEI, PTGES3, AGPATS, GNPAT)
but also some of them had a role in lipid and fatty acid
hydrolysis (PON3, PLAI1A). This is consistent with previ-
ous results showing that fatter animals have higher mRNA
levels for both lipogenic and lipolytic enzymes, with net
lipid deposition being regulated by their ratio rather than
enhancing only one of these pathways [10]. The SCD
(Stearoyl-CoA desaturase) gene was also identified to be
upregulated in IB muscle in the qPCR validation step
(Table 2). This gene is highly relevant regarding meat
quality because its product catalyzes the biosynthesis of
monounsaturated fatty acids from saturated fatty acids.
The higher expression of this gene in pure Iberian pig
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muscle is in agreement with the differences in fatty acid
contents observed (Table 1), which constitute the main
differential trait regarding tissue composition between
the analysed genetic types also in adulthood. IPA ana-
lysis also indicated that Lipid Metabolism was one of
the main biological functions in the comparative data-
set. Moreover, the most significant canonical signaling

pathway represented by the genes upregulated in IB
(Figure 1) was involved in the regulation of lipid metabol-
ism, inflammation, and cholesterol to bile acid catabolism
(LXR/RXR activation) and the three metabolic pathways
detected are related to the biosynthesis of lipids and fatty
acids: Triacylglycerol biosynthesis, Prostanoid biosynthesis
and Stearate biosynthesis.
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When studying genome-wide transcriptional profile on
heterogeneous samples as animal tissues it is necessary to
take into account the cellular heterogeneity. Any observed
differences may be strongly confounded by differences in
cell type compositions between samples [53]. In this sense,
results regarding lipid metabolism genes are consistent
with an influence of differential cellularity between genetic
types. Some of the previously mentioned expression differ-
ences are in agreement with an earlier adipocyte develop-
ment in IB muscles, for instance, the DE observed for
AEBPI gene suggests a higher content of preadipocytes in
DUXIB piglets vs. a higher content of mature adipocytes
in IB. Also, the higher expression of LOX, collagens and
other ECM proteins in crossbred muscles may be related
to a higher content of preadipocytes [54]. In order to study
the potential contribution of this differential cellularity
to the expression differences observed, we performed the
qPCR quantification of the expression of the preadipocyte
marker DLKI gene. This gene is highly expressed in prea-
dipocytes and absent after adipocyte differentiation [55],
and it is not present in the Affymetrix array. In spite of
its low expression level in muscle, we detected significant
DE in the gene according to genetic type. Muscles from
crossbred piglets showed 1.5- fold upregulation (P < 0.023).
This interesting result joint with the other DE genes de-
tected supports the hypothesis of higher content of preadi-
pocytes in crossbred animals’ vs. higher content of mature
adipocytes in Iberian piglets, and thus earlier adipogenesis
in the last ones. On the other hand, a higher lipogenic
capacity in muscle of pure IB animals being reflected at
the genetic level could be suggested.

Gene ontology enrichment and clustering analyses show
that protein catabolic processes are significantly enriched
in the dataset of genes upregulated in IB (Table 3 and
Additional file 2). Ubiquitin mediated proteolysis KEGG
pathway is predicted to be upregulated in IB. Also, accord-
ing to IPA, the second main canonical pathway affected by
the genes upregulated in IB is Protein ubiquitination path-
way (Figure 1). The protein ubiquitination pathway plays a
major role in the degradation of short-lived or regulatory
proteins involved in a variety of cellular processes [56]. DE
genes affecting protein ubiquitination include UBE2D4,
NEDD4, PSMD11, CUL9, KLHL15, ASB11, RNF19B, UBE
2QL1, MYLIPR, MARCHS6. Apart from this specific pathway
which is modification-dependent, gene ontology ana-
lysis allows the detection of other proteolytic enzymes
as C4BPA, CASP4, CASP7 or CTSL2. IPA also provides
a significant gene NW related to proteolysis (Figure 4),
composed exclusively of genes upregulated in IB.

Protein degradation may be the main cause of the poor
muscle development of purebred Iberian pigs. According to
previously reported results of a comparison with Landrace
pigs, Iberian pigs show about 20-30% greater rates of
muscle protein synthesis, but lower relative and absolute
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weight of biceps femoris, longissimus and semimembranosus
muscles than Landrace [57]. Under similar nutritional and
physiological conditions, protein turnover as well as the
protein synthesis to protein deposition ratio may differ be-
tween Iberian and leaner breeds, resulting in dissimilar pro-
tein deposition rates [58]. Our results of differential gene
expression support this hypothesis and further specify the
potential pathways and genes responsible of the metabolic
differences observed.

In summary, the performed comparison of the muscle
transcriptome of crossbred and purebred IB piglets allows
to highlight several important biological functions narrowly
related to their respective muscle characteristics. Muscle
tissue development and ECM organization are strongly up-
regulated in DUxIB, in concordance with greater muscle
and connective tissue development, characteristic of this
genetic type. Genes and functions upregulated in IB are
related to lipid and protein metabolism and are also in
agreement with phenotypic traits. Higher lipid metabol-
ism and protein catabolism are coherent with the higher
fattening and lower protein deposition in IB muscles. These
results provide potential mechanisms to explain the singu-
lar growth and fattening phenotype of Iberian pigs, consist-
ent in an earlier adypocite differentiation and hypertrophy
and lower protein deposition to synthesis ratio of their
muscles. Time-course studies of the differential expression
along growth would help to improve the understanding of
the metabolic and development differences between genetic
types here observed.

Identification of transcriptional regulators potentially
involved in the expression changes between genetic types
The magnitude of differential expression does not neces-
sarily indicate biological significance [59]. A very small
change in expression of a particular gene may have import-
ant physiological consequences if the protein encoded by
this gene plays a regulatory role. Downstream genes usually
amplify the signal produced by this regulator, thereby in-
creasing their chance to be detected as DE by standard
statistical methods. But the chance of a regulatory gene for
being selected is small when focussing on the magnitude
of differential expression. Regulatory Impact Factor (RIF)
metrics have been developed to infer transcriptional regu-
lation from gene expression data by identifying critical
regulatory factors (RF) to explain the expression differences
observed. RIF metrics are not dependent on the differential
expression of the RE, increasing the biological knowledge
that can be derived from gene expression experiments
[60,61]. RIF assigns extreme scores to those RF that are
consistently most differentially co-expressed with highly
abundant and highly DE genes (RIF1), or to those RF with
the most altered ability to predict the abundance of DE
genes (RIF2). We performed the prediction of RF with ex-
treme RIF z-scores for the whole dataset of DE genes, and
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also for the genes included in each of the main gene net-
works detected with IPA.

a) Prediction of regulatory factors for the whole dataset of

DE genes (256)

Regulatory factors potentially involved in the regulation
of the metabolic processes differing in both genetic types
were identified by their RIF1 and RIF2 z-scores. We per-
formed the RIF study for 310 RF (309 TF and MSTN
gene, see methods for description) included in the fil-
tered array. We identified 29 RF with extreme z-scores
for RIF1 and/or RIF2 parameters (Table 5). Sixteen RF
showed extreme values for RIF1 and sixteen for RIF2.
KLF11 showed the most extreme score according to

Page 13 of 24

RIF1 (-3.79 SD units), and ZHX2 had the most extreme
score according to RIF2 (3.45 SD units). The genes SIX4,
EYA2 and KLF11 were found to have extreme scores for
both RIF1 and RIF2.

RIF metrics allow the identification of relevant RF even
not being DE. The critical RF identified in this study were
not DE except MAX gene, which showed 1.4x upregulation
in the IB group. As expected, RIF metrics identified RF
which have been previously shown to have an important
role in regulating myogenesis and adipogenesis, but also
other ones with less known function. Myostatin (MSTN) is
a member of the transforming growth factor beta (TGFp)
superfamily that inhibits muscle differentiation and growth
during myogenesis [62]. Its expression is negatively related

Table 5 RIF prediction for regulatory factors in the whole dataset of DE genes

Probe set Gene symbol  Gene

RIF1 z-score®  RIF2 z-score®

S5¢.10025.351_at CEBPD CCAAT/enhancer binding protein (C/EBP). delta -3.152 -0.017
Ssc.1012.1.51 _at ZNF277 zinc finger protein 277 -1.251 2.751
Ssc.10128.1.A1_at SIX4 SIX homeobox 4 —2.986 3.127
Ssc.13567.1.A1_at ZHX2 zinc fingers and homeoboxes 2 -0.921 3454
Ssc.14573.1.51_at EYA2 Eyes absent homolog 2 —2.907 3.048
Ssc.16976.1.51_at SREBF2 Sterol regulatory element binding transcription factor 2 -0.970 2533
Ssc.19163.1.51_at MXI1 MAX interactor 1. dimerization protein —1.860 3.443
Ssc.19313.1.A1_at MAX MYC associated factor X -3.270 -1671
Ssc.19537.1.51_at IRF2 Interferon regulatory factor 2 —2.701 -0615
Ssc.2001.1.A1_at LHX6 LIM homeobox 6 -1.383 —2.847
S5¢.21096.1.51_at PAX2 Paired box 2 —-0.895 2378
Ssc.22470.1.51 _at PER3 Period circadian clock 3 —2.258 0.824
Ssc.23498.1.51_s_at MSTN Myostatin -1.930 2.582
Ssc.24606.1.A1_a_at  PPARGCIB Peroxisome proliferator-activated receptor gamma coactivator 1 beta —2.896 0.167
S5¢.26039.1.51_at RORA RAR-related orphan receptor A —3.597 1.736
Ssc.2719.1.A1_at MTA3 Metastasis associated 1 family, member 3 —1.805 —2.555
Ssc.27410.1.51_at MYCN v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog ~ —2.823 —-0.783
Ssc.27576.151_at MNT Meningioma (disrupted in balanced translocation) 1 —2.263 —0.086
S5C.27622.151_at KLFT11 Kruppel-like factor 11 —3.789 2.701
S5C.27964.2.51_at GATA3 GATA binding protein 3 0.063 —2.061
Ssc.29855.1.A1_at CDCA7 Cell division cycle associated 7 —2.346 0.220
Ssc.30288.1.A1_at GRHL3 Grainyhead-like 3 (Drosophila) 0489 —2.038
Ssc.30799.1.A1_at DACH1 Dachshund family transcription factor 1 0.772 -2.329
Ssc.3355.1.51_at HDACT Histone deacetylase 1 0.747 -1.971
Ssc4212.1.A1_at ELK3 ELK3, ETS-domain protein (SRF accessory protein 2) —2.349 -1.032
Ssc.6697.1.51_at SOX4 SRY (sex determining region Y)-box 4 -3.143 -0.718
Ssc.8529.1.A1_at ZFP36L1 ZFP36 ring finger protein-like 1 —3.282 1.299
Ssc.9136.1.51_at CCRN4L CCR4 carbon catabolite repression 4-like (S. cerevisiae) -1.056 —2.354
S5c.9298.1.A1_at IRX3 Iroquois homeobox 3 -2.538 -0.692

SBootstrap 99% and 95% confidence intervals for RIF1 z-scores: —3.288/2.754 and —2.155/1.898, respectively.
MBootstrap 99% and 95% confidence intervals for RIF2 z-scores: —2.594/3.007 and —1.966/2.030, respectively.
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with muscle mass. In fact, although Myostatin is not a
transcription factor, it transmits the signal of TGF-beta
cytokines activating multiple intracellular pathways result-
ing in phosphorylation and activation of downstream
Smad proteins and other signalling molecules (e.g. Akt,
MAPK, mTOR and Src). These molecules translocate to
the nucleus, bind to DNA and regulate transcription of
many genes by direct binding to the target gene promoter
or through the interaction with transcriptional cofactors
in a cell-type-specific manner [63,64]. Although we do not
detect its differential expression between genetic types,
MSTN gene is predicted to be a main regulator of the
transcriptome differences observed between them. This is
in agreement with findings obtained in cattle by Hudson
et al. [61,65], which showed that MSTN is the RF with the
highest evidence of contributing to differential expression
in muscle in the absence of any demonstrable differential
expression of the regulator itself. GATA3 transcription
factor is crucial in a variety of developmental processes
including adipogenesis [66], and a negative regulator of
TGEp- and Smad4 signaling [67]. Five RF showing extreme
RIF1 or RIF2 z-scores have been reported as key regulators
of myogenesis, muscle cell differentiation and growth: SIX4
and EYA2 which show a joint and interactive role on ac-
tivating key muscle determination genes [68,69], KLF11
[70], SOX4 [71], and HDACI [72]. Interestingly, three
TFs known to be functionally related and involved in
transcriptional regulation of cell proliferation are detected
as potential regulators. These are the MAX, MXII and
MYCN genes. The MXI1 and MYCN proteins compete for
interacting with MAX to form heterodimers, which com-
pete for binding to target sites for transcriptional regulation.
Whereas the MYCN-MAX complexes induce transcrip-
tional activation, the MXI1-MAX heterodimers repress
transcription [73]. Thus, the balance among the different
TFs determines the proliferation and tissue growth rate.
Also, the CDCA7 gene codes for another TF which regu-
lates cell proliferation being a target of MYC-dependent
transcriptional regulation [74]. The GRHL3 transcription
factor is involved in development and migration of endo-
thelial cells being considered an angiogenic factor [75], and
participates in the regulation of actin cytoskeleton organi-
zation. Interestingly, the Iroquois Homeobox 3 gene (IRX3)
is identified in our work as a potential regulator for the
gene expression differences observed between genetic types.
This gene has very recently been proposed as a novel deter-
minant of body mass and composition [76].

Also, RF specifically related to adipogenesis and lipid me-
tabolism were predicted to regulate the expression changes.
Peroxisome Proliferator-Activated Receptor Gamma Coac-
tivator 1 p (PPARGCIB) is involved in fat oxidation, non-
oxidative glucose metabolism, mitochondrial biogenesis,
and the regulation of energy expenditure [77]. It stimulates
lipogenic gene expression by activating SREBP transcription
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factor family. Consistently, SREBF2, a known gene with role
on cholesterol homeostasis and control of lipid levels, is
also predicted to regulate the set of DE genes. CCAAT/
enhancer binding protein delta (CEBPD) belongs to the
CEBP family of adipogenic TF and plays a crucial role in
mitotic clonal expansion in the early stages of adipocyte
differentiation [78]. Retinoic acid receptor related orphan
receptor alpha (RORa) is an orphan member of the nuclear
receptor superfamily of TF related to lipid homeostasis. It
influences genes associated with lipid and carbohydrate
metabolism, fatty acid oxidation, insulin signalling, LXR
nuclear receptor signalling, and Akt and AMPK signalling
in mouse skeletal muscle [79]. Also it influences the ex-
pression of SREBP and PPARGCIB TF. Hence, these RF
with extreme RIF z-scores are important metabolic regula-
tors which could be especially relevant for the differences
in adipocyte differentiation pattern, lipid metabolism, en-
ergy balance regulation and fat deposition between muscles
of both genetic types.

The identification of different RF corresponding to
the same pathways (MAX-MXI-MYCN-CDCA7, MSTN-
GATA3, EYA2-SIX4, PPARGCIB-CEBPD-GATA3-SREBF2)
is an indication of the reliability of the results and the
involvement of the whole pathways in the expression
differences found between the compared genetic types.

The RIF approach also gives novel findings regarding
functional relationships not previously reported in muscle.
Not much is known about ZHX2, LHX6, PAX2, PER3,
IRF2, ZNF27, ELK3 or ZFP36L1 regulatory factors in rela-
tion to muscle structure or function, although some of
them have known roles on developmental processes in
other tissues. Also, other ones show key roles in the
regulation of cell proliferation and differentiation and
are associated with tumour development as MTA3, MN1
or DACHI.

In order to reinforce the reliability of the RIF study,
the potential compatibility of the RIF-predicted RF and
DE genes was also explored at the DNA sequence level,
to analyze the presence of transcription factor binding
sites (TFBS) in the DE genes promoters. This study was
applied to the DNA-binding and sequence-specific tran-
scription factors, which are the ones analyzed by the
Genomatix software. On average, we detected TEBS for
the RIF-predicted DNA-binding TF in a 60% of the DE
genes promoters. This software also allowed the identifi-
cation of TF for which the number of TFBS in the DE
genes was significantly enriched. The transcription factors
MXI1, MAX, MYCN, ELK3, GRHL3, SIX4, PAX2, SREBF2
and KLF11 showed significantly higher number of matches
with the promoter sequences than the value expected by
chance (Benjamini-corrected P values =6x 107 for MXI1,
MAX and MYCN; 0.001 for ELK3, 0.0008 for GRHL3,
0.037 for SIX4, 3.5x10°® for PAX2, 0.0008 for SREBF2 and
5.7x107 for KLF11).
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b) Prediction of regulatory factors for the main networks of
DE genes detected with IPA

Several gene networks detected by IPA were selected be-
cause of its potential role on the phenotypic differences
between genetic types, and RIF metrics were also calcu-
lated for the DE genes included in each one of these
three main networks.

For the first NW (Development, growth, proliferation),
we detected 31 potential regulators (Additional file 3).
Out of them, sixteen were coincident with RF previously
identified in the whole dataset study and fifteen RF were
new ones. Among these, several RF with known roles in
the functions affected by this NW can be identified, as
MYF6 which is a main regulator of muscle cell differenti-
ation [80], KLF10 which inhibits growth, acting as nega-
tive regulator of cellular proliferation [81], or ETS2, which
regulates genes related with development and adipogene-
sis [82]. Moreover, some of the network-specific identified
regulators have a role in cell differentiation or prolifera-
tion (KLF5, MAFF or SRF).

The relationships found among RF and DE genes were
separately analyzed for each NW employing IPA and
GENEMANIA [83] tools. Both softwares allow finding rela-
tionships in a set of input genes, using a very large set of
functional association data, including protein and genetic
interactions, pathways, co-expression, co-localization and
protein domain similarity. For NW1, all the RF detected
with RIF algorithm were predicted to be biologically related
with the molecules included in the NW, except LHX6. Ac-
cording to GENEMANIA each RF was found to be related
to a mean of nine molecules in the NW. The genes CEBPD,
ZHX2 and RORA were the most connected ones.

For the genes included in the second NW (cellular as-
sembly), 27 RF were detected with extreme RIF scores
(Additional file 3). Most of them (21) coincide with pre-
viously identified ones. Among the 6 new ones, FOSB
gene may be highlighted as a regulator of cell prolifera-
tion, differentiation and transformation, known to regu-
late cell-matrix adhesion [84]. As for the first NW, most
relationships between RF and DE genes were confirmed
to have a biological support. This NW showed and average
number of eight relationships among RFs and DE genes,
and several predicted RF were connected to many DE
genes, suggesting a more important regulatory role (FOSB,
CEBPD, SOX4, RORA, ZHX2, ZFP36L1 and specially the
complex MXI-MAX-MYC).

For the third NW (proteolysis), which includes only
genes upregulated in IB, we detected 29 RF. Out of them,
12 genes were common with the global study and a few
more were detected previously in the other networks, but
13 RF were specific for this NW (Additional file 3). Among
these, we can highlight some interesting genes, as ETVS5,
potentially related to energy balance [85], and the HOXA7,
HOXA9, HOXB7 and KLF4 genes involved in cellular
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proliferation and differentiation, cell fate determination and
adipogenesis [86-88]. On the other hand, the identification
of MSTN and STATS5B as regulators of this NW is interest-
ing, as GH effects on muscle growth are known to act via
STAT5B, which regulates the abundance of mature myosta-
tin by proteolytic cleavage [89]. Also, several TF related to
lipid metabolism are identified (RXRB, PER2). For NW3
(proteolysis), all the detected RF were predicted to be
significantly related with DE genes in this NW. However,
most of them showed scarce known connections with the
DE genes, with a mean number of five connections. Only
the KLF4, ZHX2 and EYA2 genes were related to a higher
number of DE genes according to the available information.

The potential relationship of the RIF-predicted RF and
DE genes was also explored at the DNA sequence level
using the Genomatix software. In each NW, we detected
TEBS for the RIF-predicted DNA-binding transcription
factors in a mean of 58% of the DE genes’ promoters (54,
58 and 63% for networks 1, 2 and 3, respectively). The
results allowed the identification of TF for which the
number of TFBS in the DE genes was significantly higher
than the number expected by chance. For NW1, the tran-
scription factors MXI1, KLF5, KLF10, KLF11 and SREBF2
showed significantly higher number of matches than ex-
pected (Benjamini-corrected P values =0.003 for the first
four genes and 0.005 for SREBF2). Transcription factor
binding sites for KLF11 were significantly overrepresented
in the set of DE genes included in NW2 (Benjamini-
corrected P value =0.03). At last, for NW3 the tran-
scription factors MXI11, MAX, KLF4 and KLF11 were
highlighted (Benjamini-corrected P values =0.006, 0.006,
0.03 and 0.03, respectively). Thus, although this tool is only
applicable to sequence-specific DNA-binding TF, these
results reinforce the previous evidences, highlighting the
transcription factors MXII, MAX and KLFs as the most
solid findings according all the available information (RIF
z-scores, biological relationship and sequence information).

On the other hand, among the RF predicted in the global
study of DE genes and in each functional NW, we found
RF which consistently appear with elevated RIF z-scores in
all analyses (MSTN, MXI1, SIX4, EYA2, IRX3 and ZHX2),
which may be responsible of a large part of the gene ex-
pression differences detected in muscles from crossbred
and purebred Iberian piglets. A regulatory role of these RF
on the main phenotypic differences between the compared
genetic types can be thus suggested. Also, RF with potential
role in specific functions can be identified, as the RF
detected exclusively for the proteolysis network, most
of which have poorly known roles.

c) Differential correlation among RF and DE genes in the
two genetic types

The correlation structure of gene expression conveys im-
portant biological information far beyond the marginal
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measures of differential expression. In fact, co-expression
measures can be used to uncover significant features of
cellular control and may help in the determination of
gene function [59]. RIF’s scores measure differential co-
expression (differential connectivity) between two con-
ditions, which integrates three sources of information:
the amount of differential expression of DE genes; the
abundance of DE genes and the change in correlation
existing between the RF and the DE genes [60,61]. In order
to better understand the relationships of the RF predicted
with the DE genes, we studied the correlations among their
expression values in each one of the genetic types. These
correlations were calculated for the three functional
networks (Additional file 4). For the first NW, gene
expression correlations were calculated between 31 RF
and 29 DE genes (899 correlations in each genetic type).
Among these, 28 significantly differed between genetic
types (FDR <0.10). For the second NW, we calculated in
each genetic type the 594 correlations between 27 RF
and 22 DE genes, with 80 resulting statistically different
between genetic types (FDR < 0.10). Finally, for the third
NW, 29 RF and 20 DE genes were employed for the correl-
ation study (580 correlations for each group). In this case
33 correlations were significantly different (FDR < 0.10).
For NW 2, those 80 correlations significantly different be-
tween genetic types were represented employing Cytoscape
2.8.0 [90] (Additional file 5).

For the first NW, a higher number of correlations sig-
nificantly differing from zero were observed in IB piglets’
data (Additional file 4). This would suggest a higher ac-
tivity of transcriptional regulation in purebred animals
(either induction or repression), in relation to the bio-
logical functions affected by this NW. This would be in
agreement with the enriched biological function of tran-
scriptional regulation observed in the IB group in the
GO study with DAVID tool (Table 3 and additional file 2).
For NW2, a higher proportion of negative correlations
was observed in IB dataset (Additional file 5). Several RF
involved in the regulation of muscle growth, as MSTN,
RORA, SIX4, KLF11 or EYA2, are negatively correlated
with the DE genes (which are mostly upregulated in cross-
bred animals in this NW) in IB dataset, but the correla-
tions are not significantly different from zero in DUxIB
piglets. This suggests a transcriptional repression in IB an-
imals of genes involved in ECM development and func-
tion. In DUxIB piglets, some RF correlate with the DE
genes (LHX6, MAX, MTA3), with most correlations being
positive. In NW3, the differential correlation allows to
highlight several RF which show opposite behavior in both
genetic types. The genes ZHX2 and EYA2 are correlated
with several of the DE genes in IB but not in DUxIB, while
LHX6 and MAX show the opposite results. These RF may
have a role in the expression differences observed between
genetic types regarding proteolytic genes.
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Conclusions

In this study, purebred and crossbred Iberian piglets dif-
fering in muscle traits were compared at the transcrip-
tome level, and a remarkable number of DE probes were
detected. The study of DE genes allowed us the identifi-
cation of biological functions and pathways with relevant
role in the differences in development of muscle and
intramuscular adipose tissues between the studied gen-
etic types. Muscle development and ECM components
are clearly upregulated in crossbred piglets, and the re-
sults indicate its main role in the differentiation and de-
velopment of muscular, adipose and connective tissues,
and thus on many growth and meat quality parameters.
Over-expression of lipid metabolism genes in purebred
Iberian muscle agrees with an earlier adipocyte develop-
ment in purebred Iberian pigs. In addition, proteolysis
pathways were upregulated in purebred Iberian muscle,
with potential negative consequences on protein depos-
ition and lean growth.

Apart from measuring differential expression across gen-
etic types, we studied differential co-expression with regu-
latory factors, thus improving the understanding of the
gene expression data and increasing the biological know-
ledge generated from the experiment. Several RF were
identified which could be responsible of the transcriptional
regulation of muscles of both genetic types. Some of them
have known roles on myogenesis and cell proliferation (as
MSTN, MYFe6, SIX4, EYA2, MXI11, MAX, MYCN, KLF11,
IRX3) or adipogenesis (as PPARGCI1, SREBF2 or CEBPD).
Also transcriptional regulators for the specific affected
functions were identified, which deserve further attention,
as ETS2, FOSB, KLF4 or PAX2. At last, RF prediction and
correlation study suggest a transcriptional repression of
genes involved in muscle growth and ECM function in
muscles of purebred piglets.

Results provide candidate genes (DE genes and puta-
tive regulatory factors) to explain the phenotypic differ-
ences that characterize the genetic types compared. The
identification of polymorphisms responsible for these ex-
pression changes would be the following step for the
practical application of these findings to improve meat

quality.

Methods

Animal material

The current study was carried out at the facilities of the
CIA Deheson del Encinar (Toledo, Spain). Animal ma-
nipulations were performed in compliance with the reg-
ulations of the Spanish Policy for Animal Protection
RD1201/05, which meets the European Union Directive
86/609 about the protection of animals used in experi-
mentation. The experiment was specifically assessed and
approved (report CEEA 2010/003) by the Spanish Na-
tional Institute for Agricultural and Food Research and
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Technology (INIA) Committee of Ethics in Animal Re-
search. Two groups of Iberian sows were either mated with
Iberian boars or inseminated with Duroc semen. Thirteen
contemporary litters were generated (ten of purebred and
three of crossbred animals). At weaning (28 days) at least
one male piglet was randomly chosen from each litter. A
total number of 14 piglets of each genetic type were slaugh-
tered and eviscerated. Loin tissue samples were collected
from the carcasses at the level of the last rib and stored
at —80°C. Samples were employed for composition and
gene expression studies.

Tissue composition analyses

Intramuscular fat was obtained as proposed by Marmer
and Maxwell [91]. Longissimus dorsi muscle fat extracts
were methylated in the presence of sulphuric acid and
analysed by gas chromatography. Fatty acid methyl esters
(FAMEs) were identified by gas chromatography as de-
scribed elsewhere [92] using a Hewlett Packard HP-6890
(Avondale, PA, USA) gas chromatograph equipped with
an automatic injector, a flame ionization detector and a
capillary column (HP-Innowax, 30 m x 0.32 mm i.d. and
0.25 um polyethylene glycol-film thickness) (Agilent Tech-
nologies Gmbh, Germany). A split ratio of 1:50 and a
temperature program of 170 to 245°C were used. The
injector and detector were maintained at 250°C. The car-
rier gas (helium) flow rate was 2 ml/min. Results were
expressed as grams per 100 grams of detected FAMEs.

Microarray study

RNA isolation and microarray hybridization and analysis
Loin muscle RNA from 28 animals (14 of each genetic
type), was isolated using RiboPure RNA isolation kit
(Ambion) following the manufacturer’s recommendations.
RNA obtained was quantified using a NanoDrop equip-
ment (NanoDrop Technologies, Wilmington, USA) and
RNA quality was assessed with an Agilent bioanalyzer
device (Agilent Technologies, Palo Alto, USA). The RNA
Integrity Number (RIN) values obtained showed an average
of 8.5 £ 0.4, thus assuring their homogeneity and high qual-
ity. A non-competitive hybridization with the GeneChip®
Porcine Genome Array (Affymetrix, Santa Clara, CA, USA)
was performed in two successive series of 16 and 12 sam-
ples. This microarray contains 24,123 probe sets that inter-
rogate around 23,250 transcripts from 20,201 Sus scrofa
genes. The RNA samples were transferred to the Institut
de Recerca Hospital Universitari Vall d’'Hebron (Barcelona,
Spain) for reverse transcription, fluorescent labeling, hy-
bridization on chips and scanning. Briefly, for each sample
5 pg of total RNA was reverse-transcribed into cDNA
molecules, labeled with biotin and hybridized to the high
density oligonucleotide chip. Hybridizations were done ac-
cording to Affymetrix standard protocols and expression
data were generated with GeneChip Operating Software
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(GCOS). All protocols followed the MIAME recommen-
dations [93] developed by the Microarray Gene expression
Database Group (http://www.fged.org/). The data sets sup-
porting the results and discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus re-
pository [94] and are accessible through GEO Series acces-
sion number GSE53029 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE53029).

Quality control, normalization and filtering of expression data
Microarray data quality evaluation was carried out with
the “Affy” and “Sympleaffy” packages of Bioconductor soft-
ware (http://www.bioconductor.org/) [95]. All the 28 hy-
bridizations performed overcame the quality control and
were used for statistical analysis. Normalization was
conducted to reduce technical variation between chips.
GCRMA normalization was carried out with BRB-Array
Tools (v. 3.7.1) (http://linus.nci.nih.gov/BRB-ArrayTools.
html) [96]. A filtering step was performed to exclude from
the analyses the genes showing minimal variation across
the set of arrays. This filtering has been shown to im-
prove the power to detect differential expression [97].
Only genes displaying more than 20% of expression values
over = 1.5 times the median expression of all arrays were
used for further analysis. From the total 24,123 probe sets
of the array, 5,226 spots overcame these filtering condi-
tions and were used in the statistical analysis of differential
expression.

Statistical analysis of microarray data

Normalized microarray expression data (background cor-
rected and base-2 logarithmic-transformed) were analyzed
through Bayesian inference using the GEAMM v.1.6 soft-
ware [98]. The following model was used for searching the
effects on expression data of both genetic types:

y:Xa—i—zn:ZiD[—l—e

i=1

where y (pg x 1 elements) is the vector of gene expres-
sion data sorted by successfully hybridized array (g = 28)
and probe within array (p =5,226), and influenced by
the overall effect of each array (a) as well as discrete
(Di) within-probe effects (genetic type and hybridization
series), both with dimensions 1 x p. All the unknowns in the
model were sampled from their joint posterior distribution
by Gibbs sampling [99]. Additional details of the performed
Bayesian procedure are reported by Casellas et al. [98].
Inferences were made on the probe-specific difference
between Di levels from the appropriate posterior distri-
butions summarized by its mean, standard deviation and
posterior probability (PP) above (negative mean) or below
(positive mean) zero. When the magnitude of PP values is
very small, it provides substantial evidence on the
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differential expression of a given probe. In this study these
posterior probabilities were treated as P-values for calcu-
lating their maximum value under multiple testing within
the false discovery rate (FDR) approach of Benjamini and
Hochberg [100]. Because the probe expression values are
correlated, the effective number of independent probes
(Megr=4,068) was calculated according to Moskvina and
Schmidt [101] and used in the calculation of FDR value.

GeneChip porcine genome array reannotation

Probes were annotated using the latest Affymetrix anno-
tation file available (http://www.affymetrix.com/catalog/
131488/AFFY/Porcine-Genome-Array#1_1). Owing to the
possibility of missannotation, gene annotation of the DE
genes was confirmed from the available sequence used by
Affymetrix to design the probes in the array. Each se-
quence was analyzed by BLAST [102] to confirm the gene
annotation, based on homology with other genomes such
as human, mouse or bovine, among others.

Gene ontology and functional annotation

To study the functionality of the DE genes we used Gene
Ontology (GO) information. The biological interpretation
of the data was carried out using the DAVID 2008 data-
base tool [29] which provides batch enrichment analyses
to highlight the most relevant GO terms associated to a
gene list. This tool detects overrepresented functional
gene categories in the gene list compared with a back-
ground genome, which in our case was the set of genes
present on the filtered array. Significance levels are calcu-
lated following a modification of Fisher’s exact test (also
named EASE score). Functional terms with P-values lower
than 0.05 are usually considered enriched in the annota-
tion categories. A multiple testing-corrected P-value was
also calculated using Benjamini and Hochberg algorithm
[100], and GO terms with Benjamini-corrected P < 0.10
were considered significant (Additional file 2). Functional
annotation clustering was also performed by employing
biological process GO terms. Usually, an enrichment score
of 1.3, which is equivalent to non-log scale P-value of 0.05,
is employed as threshold for cluster significance [29]. Fur-
ther, we calculated the geometric mean of the Benjamini-
corrected P values of the GO terms included in each func-
tional cluster, and retained those clusters with values
lower than 0.10 (Tables 3 and 4).

As a complementary approach, Ingenuity Pathway
Analysis, Ingenuity Systems (http://www.ingenuity.com)
bioinformatics tools were employed to identify and char-
acterize biological functions, gene networks and canonical
pathways affected by the treatment. These tools integrate
the Ingenuity Knowledge Base of gene-to-gene or protein-
to-protein interaction information and the annotated data
from the gene expression experiment to generate biological
relevant gene regulatory networks. Networks are collections

Page 18 of 24

of interconnected molecules assembled by a NW algorithm.
Each connection represents known relationships between
the molecules, found in the Ingenuity Knowledge Base.
Networks are created from “seed” molecules. IPA searches
the Ingenuity Knowledge Base for molecules that are
known to biologically interact with the seed molecules and
makes connections based on the findings. The most highly
connected molecules in the DE list and the knowledge base
are consolidated into Networks. Network analysis returns
a score that ranks networks according to their degree of
connectivity and relevance to the network eligible mole-
cules in the dataset [103]. The network score is based on
the hypergeometric distribution and is calculated with the
right-tailed Fisher’s exact test. The score is the negative
log of this P-value. Molecules that demonstrate direct and
indirect relationships to other genes, or proteins were in-
tegrated into the analysis. The IPA Canonical Pathways
Analysis identified the pathways from the Ingenuity Path-
ways Analysis library of canonical pathways that were
most significant in our dataset. The significance of the as-
sociation between the dataset and the canonical pathway
was measured with Fischer’s exact test, to calculate a P-
value determining the probability that the association be-
tween the genes in the dataset and the canonical pathway
is explained by chance alone.

The global list of 256 DE genes affected by genetic
type and the two partial lists of 102 and 154 genes up-
regulated in IB and DUxIB, respectively, were explored
using both the DAVID tool and the core analysis func-
tion included in IPA Analysis.

Search of regulatory factors with RIF metrics

RIF1 and RIF2 metrics [60,61] were calculated for the
whole set of DE genes obtained conditional on genetic
type (256 genes), and also for the genes included in the
most interesting networks identified by IPA software. A
manually curated census of 1072 regulatory factors was
obtained from Perez-Montarelo et al. [104]. This list was
elaborated from previous publications [105,106] and tran-
scription factor databases (http://www.bioguo.org/Animal
TEDB/; http://www.hprd.org/). Out of those 1072 RE, 310
had probes present in the filtered Affymetrix array, and
were used for the RIF analysis (Additional file 6). This
list includes sequence-specific DNA-binding transcription
factors, but also other transcription factors and cofactors.
The MSTN gene was included in the list despite not being
a transcription factor, due to its relevant and widely
known involvement in muscle growth regulation in mam-
mals. The RIF1 and RIF2 values were computed for the i
RF as follows:

J=Hde

RIF1; = % > dy(r1y-r2;)°
e j:1

and
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Jhde
RIF2; :LZ[(eljx r1y)° - (e2x r2ii)2}

Hde =1

where 7,4, is de number of DE genes, 4; and Zi,- the esti-
mated average expression and differential expression of
the j/ DE gene, r1; and r2; the co-expression correl-
ation between the /" RF and the j DE gene in each one
of the genetic types and being el; and e2; the expression
of the j gene in each genetic type [59]. Both RIF mea-
sures for each analyzed RF were transformed to stan-
dardized z-scores by substracting the mean and dividing
by its standard deviation. We identified relevant RF as
those with extreme RIF z-scores according to the corre-
sponding confidence intervals (CI) calculated by bootstrap.
In each iteration of bootstrapping, a set of ng. = 256 genes
(nge =29, 22 and 20 genes for the networks 1, 2 and 3)
were randomly selected from the 5,226 probes of the
filtered array, and the RIF1 and RIF2 z-scores of the 310
RF were calculated. The procedure was repeated 10,000
times for each scenario to obtain the corresponding 95
and 99% CI intervals of both z-scores.

Different softwares were employed to analyze the com-
patibility of RIF-predicted RF with the DE genes. IPA (IPA,
http://www.ingenuity.com) and Genemania (http://genema
nia.org) [83] softwares were employed to check for available
information about biological relationships between RF and
DE genes, and for the construction of networks joining
both types of molecules. Genomatix software suite (http://
www.genomatix.de/) was employed for the verification of
the presence of TFBS in the promoter sequences of the DE
genes, which can bind the transcription factors predicted
with RIF metrics. The Gene2promoter tool was employed
to retrieve promoter sequences for the DE genes from
Eldorado database. The selected promoters were subjected
to the search of TFBS with the CommonTFs tool, which
searches multiple sequences for common TFBSs. For this
search, user-defined matrix subsets were created including
the matrix families corresponding to the set of RF identified
in each step (whole study with the 256 DE genes and each
one of the networks), obtained from MatBase. Matrix
families were available for a subset of the RIF-predicted
RF (Additional file 6). The CommonTFs tool returns the
number of sequence matches found between transcrip-
tion factors and gene promoters included in the analysis
and also a P value, which denotes the probability to obtain
an equal or greater number of sequences with a match in
a randomly drawn sample of the same size as the input se-
quence set. A multiple testing-corrected P-value was also
calculated using Benjamini and Hochberg algorithm [100].

Pearson correlations between the gene expression values
of RIF-predicted RF and DE genes in each one of the three
IPA networks were calculated. The correlations were
calculated for the whole set of available animals, and also
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separately for IB and DUxIB animals. Statistically significant
differences in the correlations between both genetic types
were identified for each network (Benjamini-corrected
P values < 0.10). Because the probe expression values
are correlated, the effective numbers of independent RF
and DE genes were calculated according to Moskvina and
Schmidt [101] and used in the calculation of Benjamini-
corrected P values. Correlations which differ between
genetic types were graphically represented employing
Cytoscape 2.8.0 [90].

Validation of DE by quantitative PCR (qPCR)

The RNA obtained from loin of the 28 animals under
study was employed to perform the technical validation
of the differential expression of some probes and also to
assess the expression of one candidate gene absent in the
microarray data (DLKI). First-strand cDNA synthesis was
carried out with Superscript II (Invitrogen, Life Technolo-
gies, Paisley, UK) and random hexamers in a total volume
of 20 pl containing 1 pg of total RNA and following the
supplier’s instructions.

The expression of 19 genes (eight upregulated in DUXIB,
eight upregulated in IB, two non-changed ones and one
absent in the Affymetrix microarray) was quantified by
qPCR. Primer pairs used for quantification were designed
using Primer Select software (DNASTAR, Wisconsin,
USA) from the available GENBANK and/or ENSEMBL
sequences, covering different exons in order to assure
the amplification of the cDNA. Sequence of primers and
amplicon lengths are indicated in Table 6. Standard PCRs
on cDNA were carried out to verify amplicon sizes. Tran-
script quantification was performed using SYBR Green mix
(Roche, Basel, Switzerland) in a LightCycler480 (Roche,
Basel, Switzerland). The qPCR reactions were prepared
in a total volume of 20 pl containing 2.5 pl of cDNA (1/20
dilution), 10 pl of SYBR Green mix (2X) and 0.15 uM of
both forward and reverse primers. As negative controls,
mixes without cDNA were used. Cycling conditions were
95°C for 10 min, followed by 45 cycles of 95°C (15 s) and
60°C (1 min) where the fluorescence was acquired. Finally,
a dissociation curve to test PCR specificity was generated
by one cycle at 95°C (15 s) followed by 60°C (20s) and
ramp up to 95°C with acquired fluorescence during the
ramp to 0.01°C/s. Data were analysed with LyghtCycler480
SW1.5 software (Roche, Basel, Switzerland). All points
and samples were run in triplets as technical replicates
and dissociation curves were carried out for each individ-
ual replicate. Single peaks in the dissociation curves con-
firmed the specific amplification of the genes. For each
gene, PCR efficiency was estimated by standard curve cal-
culation using four points of cDNA serial dilutions. Values
of PCR efficiency are indicated in Table 6. Mean Cp values
were employed for the statistical analyses of differential
expression. Data normalization was carried out using
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Table 6 Information on the primer pairs used for quantitative real-time PCR analysis
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Gene symbol  Gene name Genbank Acc. number  Primer sequences 5'-3’ Amplicon size (bp)  Efficiency (%)

IGF2 Insulin-like growth factor 2 NM213883 GCCGCTGCTCGTGCTGCTCGTCTT 151 86
GCTTGCCGGCCTGCTGAA

KERA Keratocan XM001927128 GTGGCCTTCCTGAGACTAAACC 198 89
AGGGCATATCACAGAGACATTCAC

FMOD Fibromodullin XM003130105 GCTGCTATATGTGCGGCTGTC 194 93
AGAAACTGCTAATGGAGAACT

COL1AT Collagen alpha-1 EF136662 AGCCCAGCGTGCCCCAGAAGAA 164 88
ACATCAGGCGCAGGAAGGTCAGC

FBN2 Fibrillin 2 XM003123897 GGACGCTGCATACCTACTGT 201 96
AATGCATGCTTGCTTGGTAGG

AEBP1 AE binding protein 1 XM003134886 CGGCGGCATGGGCATCGTCAAC 233 90
TGCCCTGCTCGTCCGTCACTACCC

LOX Lysyl oxidase NM001206403 CTGAGATGCGCTGCGGAGGAAAAC 223 88
TGGCATCAAGCAGGTCGTAGTGG

FKBP14 FK506 binding protein 14 XM005673279 TTCCGGAACTTCTTTCCTGCTCT 250 91
GGCTGACCATTGTTATGTTTGTGA

PSMD11 Proteasome 26S subunit, XM003131741 TCTTACGCCAGGCTTTGGAG 219 91

non-AfPase CTGTGGTTCGAGCAGAGGTT
ALOX5AP Arachidonate 5-lipoxygenase- ~ NM001164001 TGGACTGATGTACCTGTTTGTGAG 213 94
activating protein AGAGGGGAGACGGTGGTGGTGA

CASP4 Caspase 4 XM003129812 AATATGCTTGGCGCTGTCAC 190 97
TGGTGCTTCTCGAAGTTGGT

ELOVL6 Fatty acid elongase 6 XR305072 AGAACACGTAGCGACTCCGAAGAT 182 96
GACATGCCGACCGCCAAAGATAA

NFKBIZ NF-kappa-B inhibitor zeta-like ~ XM003132694 TATGATGGCCTGACTCCTCTACAC 196 91
TGCGGCCACTTTTACGAT

MET Malic Enzyme XM001924333 TTTCCTGGAGTTGCCCTTGGTGT 213 90
GGTGGCTGTCTTTTCTTGGTATGC

PLATA Phospholipase AT member A XM003483312 TGTGGGCAGCTAGTGGAAGAAAGT 215 91
TCCACGGCTGAAAAGTAGACACC

PON3 Paraoxonase 3 HQ542303 ACGGGAGATATTTGGGCAGG 142 92
TGTTGGCATACTCGGTGCTT

SCD Stearoyl-CoA desaturase IN613287 TCCCGACGTGGCTTTTTCTTCTC 205 90
CTTCACCCCAGCAATACCAG

ELOVLS Fatty acid elongase 5 ENSSSCG00000024149 CTTGCCGGGGGATTTTGGTTG 223 82
TTGCGCAGGATGAAGAAGAAGGTG

DLK1 Delta-like 1 homolog NM_001048187 CGGGCCCTGCGTGATGAATGG 208 83

AGGGCAGCGGCAGCGGAAGTC

the two most stable endogenous genes selected out of:
GAPDH, B2M, TBP and ACTB. Endogenous genes stability
measures were calculated from Genorm software [107].
The GAPDH and ACTB genes were finally employed.

Statistical analyses of tissue composition and qPCR gene

expression data

The influence of genetic type on FA composition was sep-
arately analyzed for each fatty acid with a linear model
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fitting as systematic effects the mean and genetic type,
and as random the full-sib family and residual effects.
For the analysis of qPCR expression data Cp values were
transformed to relative quantities using the comparative
Cp method. This method is a relative quantification method
in which relative gene expression quantities are calculated
from Ct/Cp values by employing the specific PCR efficiency
values previously calculated for each gene and making
the values relative to the sample with higher expression,
which is employed as calibrator (Qty = 107<P/ slopey 1108].
The qPCR expression data normalization was performed
using normalization factors calculated with Genorm soft-
ware (http://medgen.ugent.be/~jvdesomp/genorm/) from
the GAPDH and the ACTB expression values. Relative
quantities were divided by the normalization factors which
were the geometric means of the two reference genes
quantities. Normalized gene expression relative measures
obtained were analyzed conditional on genetic type with a
t-test. All the analyses were performed using the GLM
procedure of SAS 9.1 (SAS Institute Inc., Cary, NC, USA).
The concordance correlation coefficient (CCC) between
the fold-change values estimated in loin from microarrays
and qPCR expression measures for the 18 genes was
calculated to validate the global microarrays results [28].

Availability of supporting data

The data sets supporting the results and discussed in this
publication have been deposited in NCBI's Gene Expres-
sion Omnibus repository [94] and are accessible through
GEO accession number GSE53029 (http://www.ncbinlm.
nih.gov/geo/query/acc.cgi?acc=GSE53029).

Additional files

Additional file 1: Annotated list of probes showing differential
expression between genetic types. List and annotation of the 271
probes differentially expressed between l.dorsi muscle of purebred
Iberian piglets and crossbred with Duroc (FDR < 0.10), at 28 d of age.
Posterior probabilities (PP) for the genetic type effect and expression
ratios (calculated from mean log, intensities) are shown.

Additional file 2: Gene ontology terms. List of significantly
overrepresented GO terms (distributed over the three main categories)
and KEGG pathways in the three analysed gene lists: the 256 DE genes
between genetic types, the 154 genes upregulated in DUxIB and the 102
genes upregulated in IB. Parametric P-values are indicated along with
Benjamini multiple test corrections (FDR < 0.10).

Additional file 3: Prediction of RF for the three functional networks.
RIF metrics were employed for the identification of RF potentially
involved in the three functional gene networks detected with IPA
software. Annotation and RIF z-scores are provided for the RFs identified
in each network. Bootstrap 99% and 95% confidence intervals for RIF1
and RIF2 z-scores are indicated for each network, as inserted comments
in the corresponding columns.

Additional file 4: Gene expression correlations between RF and DE
genes. Correlations were calculated among the expression values of RF
and DE genes, for the three functional IPA networks, separately for the
animals of each genetic type. For each network, magnitude and
significance of the correlation in each genetic type and significance of
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the difference in the correlation between genetic types are shown
(nominal P-values). Shaded lines are correlations significantly different in
both genetic types (FDR < 0.10).

Additional file 5: Graphical representation of the correlations RF-DE
genes in network 2 (Connective Tissue Disorders, Dermatological
Diseases and Conditions, Cellular Assembly and Organization). Gene
expression correlations between RIF-predicted regulatory factors and DE
genes, which were significantly different in both genetic types, were
graphically represented with Cytoscape 2.8.0, for each genetic type. Light
circle nodes represent regulatory factors. Squared nodes are DE genes,
red ones are upregulated in IB while green ones are upregulated in
DUxIB. Solid lines are significant correlations and dotted lines are
non-significantly different from cero (in each genetic type). Blue lines are
positive correlations and pink ones are negative correlations.

Additional file 6: Regulatory factors employed for the RIF analysis.
Annotated list of 310 regulatory factors with probes available in the
filtered array and employed for the RIF analysis. The list includes
sequence-specific DNA-binding transcription factors, other transcription
factors and cofactors. Also MSTN is included,despite not being a TF,
because of its known involvement in muscle growth regulation. Gene
ontology and Genomatix annotation information is provided.
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