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The accuracy of prediction of genomic selection
in elite hybrid rye populations surpasses the
accuracy of marker-assisted selection and is
equally augmented by multiple field evaluation
locations and test years
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Abstract

Background: Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data
provide powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case
optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input.

Results: Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan
content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with
1048 molecular markers, we compared the accuracy of prediction of MAS and GS in a cross-validation approach.
MAS delivered generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge
regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the
estimation and test sets clearly affected the accuracy of prediction of GS. Within each of the two bi-parental
populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations,
accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction
based on an estimation set from one population to a test set from the other population was low despite that the two
bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or
years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust
GS calibration models a sufficient number of test locations is of similar importance as extended testing for more
than one year.

Conclusions: In hybrid rye, genomic selection is superior to marker-assisted selection. However, it achieves high
accuracies of prediction only for selection candidates closely related to the plant material evaluated in field trials,
resulting in a rather pessimistic prognosis for distantly related material. Both, the numbers of evaluation locations
and testing years in trials contribute equally to prediction accuracy.
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Background
Rye (Secale cereale L.) is an important European crop
used for food, feed, and bioenergy that is grown primar-
ily in Eastern, Central and Northern Europe. The main
rye belt stretches from the northern parts of Germany
through Poland, Ukraine, Belarus, Lithuania and Latvia
into central and northern Russia. In contrast to the other
major crops of the Triticeae tribe, barley (Hordeum sp.)
and wheat (Triticum sp.), rye is an outbreeding species
in which selfing is usually prevented by a gametophytic
self-incompatibility system [1,2]. As an alternative to
open-pollinated varieties, hybrid breeding has been
established based on a cytoplasmatic-genic male sterility
(CMS) system [3]. Hybrid rye breeding started in 1970
at the University of Hohenheim in Germany and the
first hybrid varieties were released in Germany in 1984
[4]. Economically important traits in hybrid rye are,
among others, grain yield and plant height in context of
productivity as well as starch content and total pentosan
content with regard to end user quality [5].
Current plant breeding programs are making extensive

use of molecular markers to predict the performance
potential of the involved plant material. In particular,
marker-assisted selection (MAS) is widely applied, but is
not necessarily an optimal approach for complex agro-
nomic traits as it is usually based on predictions derived
from only a few markers in linkage disequilibrium (LD) to
large effect quantitative trait loci (QTL) and, thus, ignores
the contributions from small to intermediate effect QTL
[6,7]. To advance the accuracy of prediction, genomic
selection (GS) has been suggested as an extension of MAS
[8]. In GS, a large number of molecular markers dis-
tributed evenly over the genome is used to train the
prediction model. Sufficient marker density provided, GS
potentially makes use of all the genetic variance present
in an analyzed population by summing the effects of all
individual markers [7] and thus can be expected to also
include information from small effect gene loci that
cannot be captured by traditional QTL determination via
MAS [9]. Accordingly, GS is of growing importance for
efficient and cost-effective breeding programs [8].
In this context, cross-validation approaches have be-

come an important tool for the empirical evaluation of
the accuracy of prediction. Here, a population of plants
for which phenotyping and high density genotyping data
are available is split into two subsets, an estimation set
and a test set. Marker effects are then determined based
on the data from the estimation set, followed by the pre-
diction of the genotypic values of the plants in the test
set based on the estimated marker effects. The correl-
ation of predicted and observed values in the test set
provides a measure for the accuracy of prediction. This
has been applied to e.g. test-cross populations of maize
[10–13], wheat [14,15] and barley [16,17].
Several analytical approaches based on different as-
sumptions with regard to the marker effects have been
proposed for GS [8,18]. Bayesian methods such as
Bayes A estimate the variances of the effects of markers
separately, while ridge regression best linear unbiased
prediction (RR-BLUP) assumes that all marker effects
are normally distributed and have identical variance
[8]. RR-BLUP has been proved to afford high prediction
accuracies across crops and traits [16] and is suitable
for GS of complex traits [19,20].
In two bi-parental segregating populations used in

test-crosses to produce hybrid rye, grain yield, plant
height, starch content, and total pentosan content were
reported to represent quantitative traits controlled by
multiple small to medium effect QTL [5]. Using data
sets from this material, we show in our current study
that GS has a consistently superior accuracy of predic-
tion in comparison to MAS. Relatedness of the plant
material included in the estimation and test sets clearly
affects the accuracy of prediction, and limiting the
number of locations in field testing has almost the
same impact than limiting the number of years. This
supports the view that establishing calibration models
for GS requires phenotyping across locations and years.

Methods
Plant material and field experiments
The plant materials and field experiments used to obtain
the data sets analyzed in this study are described in
detail in Miedaner et al. [5]. In brief, three elite winter
rye inbred lines (Lo90-N, Lo115-N and Lo117-N) were
used as parents to generate segregating population A
(Pop-A, Lo115-N × Lo90-N) and population B (Pop-B,
Lo115-N × Lo117-N), respectively. F1 plants from crosses
of parental lines were self-pollinated under isolation bags
during two generations to obtain F3 plants by single seed
descent. From each population, Pop-A and Pop-B, 220
randomly selected F3 progenies were used for pollination
of a cytoplasmically male sterile (CMS) single cross tester
(X × Y) between isolation walls resulting in three-way
hybrids of the type (X ● Y) × F3:4. The CMS tester was
genetically unrelated to the parents of both populations.
Field experiments with these hybrids were carried out

in two years (2010 and 2011) at five locations, Wohlde
(WOH, Germany, N52.8°, E10.0°, 80 m above sea level),
Beckedorf (BEK, Germany, N52.5°, E10.3°, 80 m above
sea level), Petkus (PET, Germany, N51.6°, E13.2°, 130 m
above sea level), Stuttgart/Hohenheim (HOH, N48.4°,
E9.1°, 400 m above sea level), and Walewice (WAL,
Poland, N52.6°, E19.4°, 184 m above sea level). The
respective location × year combinations are denoted
as environments WOH10, WOH11, BEK10, BEK11,
PET10, PET11, HOH10, HOH11, WAL10 and WAL11
throughout this study.
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Hybrid collections derived from segregating F3:4 lines
from both populations were evaluated together with
hybrids obtained from their parental lines (repeated 9
times) as well as 2 common checks in field traits using
an incomplete 24 × 10 alpha design with two replica-
tions. Data for grain yield (dt ha−1), plant height (cm),
starch content (%) and total pentosan content (%) of
hybrids were obtained as described by Miedaner et al.
[5]. Starch content (%) and total pentosan content (%)
were determined by near-infrared reflectance spectros-
copy (NIRS) recorded with a Bruker MPA FT- NIRS
instrument (Bruker Optics Ettligen) in reflectance mode
over the range from 850 to 2500 nm. The samples were
scanned twice in duplicate repacking using two different
Petri dishes of 8.7 cm diameter as sampling cups on a
rotating device with on average 32 scans in 10 seconds.
Prediction models were calculated with OPUS Software
version 6.5 (Bruker Optics Ettligen). Calculations were
carried out with a modified partial least squares (PLS)
procedure using a 1st derivation and a scatter correction
(SNV) of the spectra. Samples were randomly assigned
to calibration and validation sets, and calibration was
performed based on chemical quantification methods
[21]. Finally, the suitability of the models was controlled
within the validation set. For grain yield and plant
height, data across nine environments (BEK10, BEK11,
PET10, PET11, HOH10, WAL10, WAL11, WOH10,
and WOH11) were included in our analysis. Data from
HOH11 were not used due to low repeatability (0.01 in
Pop-A and 0.00 in Pop-B for grain yield and 0.69 in
Pop-A and 0.19 in Pop-B for plant height, respectively).
For starch content and total pentosan content, data
across six environments (PET10, PET11, WAL10, WAL11,
WOH10, and WOH11) were included.

Phenotypic data analysis
Best linear unbiased estimates (BLUEs) for testcross
progenies across environments were determined by the
restricted maximum likelihood method using ASReml
version 3.0 [22] based on a two-step linear regression
model:

Step 1

yEnv ¼ lnμþGαG þ RαR þ BαB þ e ð1Þ
where yEnv refers to the BLUEs of each plot, 1n is a
vector with the length n equal to the number of geno-
types times the number of replications, μ denotes the
overall mean, G is a design matrix for fixed effects of
the genotypes, αG refers to a N-vector of the genotype
effects with N equal to the number of genotypes, R is a
design matrix for random effects of the replication, αR
represents a vector of the replication effects, B is a
design matrix for random effects of the block, αB refers
to a vector of the block effects and e is a residual term.
With step 1, BLUEs of testcross progenies within each
environment were estimated, which were then applied
in step 2 to estimate BLUEs of testcross progenies
across nine or six environments, respectively.

Step 2

y ¼ lkμþGαG þ EαEnv þ FαF þ e ð2Þ

where y refers to the BLUEs across all the environments,
1k is a vector with the length k equal to the number of
genotypes times the number of environments, E is a
design matrix assigning random environment effects to
the phenotypes, αEnv is a vector of environments effects,
F denotes a design matrix of random interaction effects
of genotype × environment, αF is a vector of interaction
effects and e is a residual term.
The same linear regression model, in which in both,

step 1 and step 2, G can be viewed as a design matrix
for random effects of the genotypes, was applied to esti-
mate the variance components, including genotypic
variance (σ2

G ), genotype × environment interaction vari-
ance (σ2G�E ) and variance of effective error (σ2Eff : Error )

across both segregating populations (Table 1). Heritabil-

ity (h2) was estimated as h2 = σ2G

σ2Gþ
σ2
G�E

Nr:Env:þ
σ2
Eff : Error

Nr:Rep�Nr:Env:

, where

σ2G is the genotypic variance across nine (for grain yield
and plant height) or six (for starch content and total
pentosan content) environments, respectively. Nr.Env.
and Nr.Rep. refer to the number of environments and
replications, separately, and σ2Eff : Error denotes the vari-

ance of effective error across nine or six environments,
respectively [23]. The broad-sense heritability of each
environment, denoted as repeatability (r), was calcu-

lated as r = σ2G

σ2Gþ
σ2
Eff :Error
Nr:Rep

, where σ2G and σ2Eff : Error are the

genotypic variance and the variance of effective error
within each environment, respectively [23].
Genotypic data analysis
Each of the two times 220 F3:4 lines in population A and
population B had been genotyped with simple sequence
repeat (SSR), single nucleotide polymorphism (SNP) and
diversity array technology (DArT) markers [5]. We re-
applied quality checks to these marker data, excluding
markers with (i) a rate of missing values above 5 % and
(ii) allele frequencies smaller than 0.05 or larger than
0.95, and complemented missing genotypes according to
a binomial distribution. If not indicated otherwise, only
data from DArT markers (394 for population A, 584 for



Table 1 Estimates of variance components and heritability (h2) for grain yield, plant height, starch content and total
pentosan content among 220 test-cross progenies each, obtained using F3:4 from two bi-parental segregating
populations, population A and population B

Traits Mean Range σ2
G σ2

G�E σ2
Eff :Error h2

Population A

Grain yield 79.3 73.4 - 85.4 3.33** 8.40** 3.48 0.75

Plant height 118.2 110.9 - 126.6 7.30** 4.03** 2.94 0.92

Starch content 61.6 60.0 - 62.9 0.24** 0.26** 0.14 0.87

Total pentosan content 10.0 9.5 - 10.6 0.03** 0.08** 0.04 0.75

Population B

Grain yield 75.6 69.5 - 83.4 3.76** 9.18** 3.72 0.75

Plant height 115.6 104.5 - 127.4 12.62** 4.02** 2.22 0.96

Starch content 61.5 59.8 - 63.4 0.44** 0.24** 0.14 0.93

Total pentosan content 10.3 9.6 - 11.0 0.03** 0.09** 0.04 0.73

σ2G refers to the genotypic variance, σ2G�E represents the interaction variance between genotype and environment;and σ2Eff :Error denotes the variance of
effective error.
**Significantly different from zero with P < 0.01.
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population B, and 1048 for combined populations A and
B) were included in analysis. Linkage disequilibrium
(LD) was estimated using the squared allele frequency
correlations (r2) [24]. The LD structures in population
A, population B, and combined populations A and B are
provided in Additional file 1: Figure S1.

Marker-assisted selection
Marker-assisted selection based on QTL (MAS-QTL)
was performed within population B in context with QTL
mapping via PLABQTL [25] employing composite inter-
val mapping (CIM) by the regression approach [26] in
combination with the use of cofactors [27,28]. We con-
trasted MAS based on the detected QTL, with MAS
based on a random sample of molecular markers. This
“neutral marker-assisted selection” (MAS-NEUT) uses
markers that were randomly selected according to the
number of QTL identified with the respective limit of
detection (LOD) score in MAS-QTL for the correspond-
ing trait (first one from each of the seven linkage groups
in rye, then randomly chosen additional ones in the case
of more than seven QTL). For MAS-QTL, cross-
validation was implemented within PLABQTL [25] and

accuracies of prediction were calculated as rg =
ffiffiffiffiffiffi
R2
CV

h2

q
,

where R2CV denotes the percentage of phenotypic variance
the test set explained by identified QTL and h2 represents
heritability [5]. For MAS-NEUT, cross-validation was
implemented within population B according to scheme
CVG Within-Within as described below.

Genomic selection
Breeding values were estimated by model, y = μ1N + Xa
+ e, where y is an N × 1 vector of BLUEs estimated
across environments; μ represents overall mean, 1N
refers to a vector with the length N, a is the marker
effect, X refers to a design matrix for the marker effect,
and e denotes a residual. By using ridge regression best
linear unbiased prediction (RR-BLUP) [29], the estimated
marker effects (a^) were estimated based on a mixed model

equation, 1TN1N 1TNX
XT1N XTX þ Iλ

� �
μ̂
â

� �
¼ 1TNy

XTy

� �
, where 1TN

is the transpose of 1N, X
T represents the transpose of X, I

is an identity matrix, λ represents a penalty parameter, and
μ̂ denotes the estimated overall mean. The penalty param-
eter can be calculated as λ =m ( 1

h2
−1 ), where m is the

number of markers and h2 refers to the heritability of the
estimation set [30]. Then the genetic values were pre-
dicted as PV = Xâ , where â is the estimated marker
effect.
Cross-validation
In all cross-validation approaches, data sets were divided
into an estimation set (ES) that was used to estimate
marker effects, and a test set (TS), in which the predict-
ive ability (Pearson correlation rMP) between observed
BLUEs and the genotypic values predicted based on the
determined marker effects was calculated to provide a
measure of the accuracy of prediction [11]. Correlations
were either determined as accuracy of prediction rp = rMP

or as standardized accuracy of predictionrg = rMP/h
calibrated by the square root of heritability [10,31,32].
Sampling of estimation and test sets was repeated 5,000
times in each cross-validation scheme.
For cross-validation across genotype (CVG), data sets

were split into five equally sized subsets (S1 to S5). Four
subsets (S1-S4) comprised the ES for estimating marker
effects, while the remaining subset (S5) served as TS.
Members of the ES and TS were taken either from
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individual populations (CVG Within-Within) from both
populations (CVG Across-Across), or the ES was taken
from both populations, population A and B, while the TS
was taken from one population (CVG Across-Within). In
the case that ES and TS were from individual populations
(CVG Within-Within) they could either originate from the
same population (CVG Within-Within-Same) or from
different populations (CVG Within-Within-Different).
Cross-validation across genotype based on different

numbers of environments (CVG Env) was conducted
separately within population A and population B (CVG

Within-Within-Same). Data for the ES and TS were
taken from one to nine randomly permutated location-
year combinations. Cross-validation across genotype
within location [CVG(L)], across genotype and location
(CVG×L), across genotype within year [CVG(Y)] and
across genotype and year (CVG×Y) was also implemented
separately within population A and population B (CVG

Within-Within-Same). For cross-validation across geno-
type and within location [CVG(L)] or across genotype
and location (CVG×L), data for the ES were derived from
two randomly selected locations over the two years 2010
and 2011 (e.g. BEK10, BEK11, PET10, and PET11), while
the data for the TS were taken either from the same
location-year combinations [CVG(L)] (e.g. BEK10, BEK11,
PET10, and PET11), or from the remaining four location-
year combinations (CVG×L) (e.g. WAL10, WAL11, PET10,
and PET11, but always excluding HOH10). In contrast,
for cross-validation across genotype and within year
[CVG(Y)] or across genotype and year (CVG×Y), data for
the ES were collected from one year, either 2010 or 2011,
at four locations (e.g. BEK10, PET10, WAL10, and
WOH10), with data for the TS taken either from the same
year [CVG(Y)] (e.g. BEK10, PET10, WAL10, and WOH10,
but always excluding HOH10) or from the other year
(CVG×Y) (e.g. BEK11, PET11, WAL11, and WOH11).

Results
Field trials and genotyping analysis
Field trials with hybrid rye from test-crosses involving
220 F3:4 members and their two parental elite inbred
lines of bi-parental segregating population A and popu-
lation B, respectively, were performed at five locations in
Germany and Poland in the years 2010 and 2011 as
reported in detail by Miedaner et al. [5]. High quality
evaluation data with heritabilities in the range from 0.73
to 0.96 (Table 1) were obtained from nine location-year
combinations for grain yield and plant height and from
six location-year combinations for starch content and
total pentosan content. Populations A and B were de-
rived from crosses Lo115-N × Lo90-N and Lo115-N ×
Lo117-N, respectively, sharing one common parent,
Lo115-N. Thus, their members can be considered as
half-sibs. Both populations were characterized by the
presence of broad genotypic variance σ2G as well as inter-
action variance between genotype and environment
σ2G�E for grain yield, plant height, and starch content,
and, to a lesser extent, total pentosan content (Table 1).
For all traits analyzed, significant (P < 0.01) genotypic
variance and variation due to genotype × environment
interaction effects was obtained in both populations.
Consistent with this, genotypic values for the four traits
covered broad ranges (Additional file 2: Figure S2).
Medians for all traits differed between the two popula-
tions, in particular with regard to grain yield, but geno-
typic variations indicated by the 50%-quartile were
quite similar. Except for grain yield, genotypic values
of the parents of both populations were rather close
to the median. Genotyping based on 1048 molecular
markers revealed 394 markers segregating among mem-
bers of population A and 584 markers segregating among
members of population B.

Standarized accuracy of prediction of marker-assisted
selection in comparison to genomic selection
Cross-validated accuracies of prediction based on marker-
assisted selection (MAS) for grain yield, plant height,
starch content, and total pentosan content in hybrid rye
from test-crosses involving the two segregating popula-
tions have been reported previously [5]. Performing cross-
validated genomic selection (GS) using RR-BLUP [29]
based on the very same dataset, we found consistently
higher standardized accuracies of prediction in both popu-
lations for all four traits that were analyzed (Figure 1). In
particular, GS increased the standardized accuracy of pre-
diction from 0.12 with MAS to 0.59 for grain yield in
population A and from 0.28 with MAS to 0.70 for total
pentosan content in population B. Comparable, albeit less
drastic, increases of accuracy were obtained with GS for
all other traits in both populations. In order to further
explore the potential limitations of MAS, the standardized
accuracies of prediction by MAS based on mapped QTL
(MAS-QTL) for population B were compared to the
results of neutral marker-assisted selection (MAS-NEUT)
performed based on randomly selected markers distrib-
uted equally across linkage groups over a range of limit of
detection (LOD) values, which also generated substantial
standardized accuracies of prediction (Additional file 3:
Figure S3). Thus, taking into account the consistently
lower standardized accuracies of predictions of MAS in
combination with the potential over-estimation, all further
analysis was based on GS using RR-BLUP.
Accuracy of prediction of genomic selection within and
across populations
Taking advantage of the unique design of the two bi-
parental segregating populations sharing one parental
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inbred line in common, we applied CVG with different
estimation set-test set combinations in order to study
the dependency of the accuracy of prediction of GS on
the relatedness of the included material (Figure 2).
Separate cross-validation across genotype among sibs
only within each population (CVG Within-Within-
Same; Figure 2, category I) showed consistently lower
accuracies of prediction for population A than popula-
tion B for all four traits. For example, the median
accuracy of prediction rp was approximately 0.51 for
population A and 0.70 for population B for grain yield
and approximately 0.75 for population A and 0.82
for population B for plant height, respectively. Cross-
validation across genotype among combined sibs and
half-sibs with estimation and test sets taken from both
populations (CVG Across-Across; Figure 2, category II)
generated a slight increase of the accuracies of pre-
diction in the cases of grain yield and total pentosan
content, but accuracies of prediction for the other two
traits were approximately intermediate between the
accuracies of prediction for sibs within populations
A and B, respectively, in CVG Within-Within-Same.
When the estimation set was extended across the two
populations to include sibs and half-sibs, but the test set
was restricted to sibs from one population only (CVG
Across-Within; Figure 2, category III), the accuracies of
prediction were essentially the same as when estimation
set and test set were from sibs from the same population
in CVG Within-Within-Same. Finally, when the estimation
set was taken from within one population and the test set
from the other population (CVG Within-Within-Other;
Figure 2, category IV) for prediction among half-sibs only,
accuracies of prediction were substantially lower than in
the CVG Within-Within-Same scenario among sibs for all
traits analyzed.

Accuracy of prediction of genomic selection across
genotypes based on different numbers of location-year
combinations
In order to judge the contribution of the extension of field
trials to the accuracy of prediction of genomic selection,
cross-validation across genotype was performed separately
within population A and population B for grain yield and
plant height based on increasing numbers of environ-
ments, that is, location-year combinations (CVG Env;
Figure 3). Accuracies of prediction were consistently
lower for population A in comparison to population B.
They increased continuously with the number of included
environments, with the gain per added environment being
lower for grain yield and higher for plant height.
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Accuracy of prediction of genomic selection within or
across locations and years
The availability of data sets from five locations over two
years for grain yield and plant height allowed us to esti-
mate the effects of limiting the number of locations or
number of years on accuracies of prediction, which is
pivotal for the optimal allocation of resources in field
trials. Analysis was done separately within either popula-
tion A or population B based on estimation sets from
four location-year combinations. Test sets were taken
from the same four location-year combinations [CVG(L)

and CVG (Y); Figure 4], or from the remaining four available
location-year combinations excluding HOH10 (CVG×L

and CVG×Y; Figure 4). The accuracy of prediction of GS
across genotype within location [CVG(L)] or across
genotype and location (CVG×L) was determined by
selecting data from two locations in the years 2010 and
2011 for estimation, the accuracy of prediction of GS
across genotype within year (CVG(Y)) or across genotype
and year (CVG×Y) was derived from estimation based on
data from four locations in 2010 or 2011. Accuracies of
prediction in CVG(L) were approximately the same as in
CVG(Y), and accuracies of prediction in CVG×L were
nearly the same as in CVG×Y in both populations for
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each of the analyzed traits. When estimation and test
sets were collected from the different location-year
combinations (CVG×L and CVG×Y), accuracies of predic-
tion were consistently lower in comparison to the situ-
ation with both estimation and test sets form the same
location-year combinations [CVG(L) and CVG(Y)].

Discussion
The superior standardized accuracy of prediction of GS
in comparison to MAS for the complex traits grain yield,
plant height, starch content, and total pentosan content
in rye (Figure 1) is in line with observations for diverse
traits in other crops [33,34]. The limitations of MAS in
comparison to GS have been discussed in detail previously
[7–9,35]. In the context of our study, the analysis of
MAS-NEUT based on randomly selected markers
revealed a substantial contribution to the standardized
accuracy of prediction that is not dependent on inform-
ative markers linked to QTL (Additional file 3: Figure S3).
With MAS-NEUT representing a kind of special case of
genomic selection, this might be due to the relatedness of
genotypes in the respective population [18, 36–38].
Focusing on genomic selection via RR-BLUP, we ex-

plored accuracies of prediction within and across bi-
parental populations as well as across field trial locations
and years. The accuracies of prediction for population-
specific test-sets were rather similar, no matter whether
estimation was done within (CVG Within-Within-Same)
or across populations (CVG Across-Within) (Figure 2).
A reason for this could have been the close relationship
of population A and population B, being half-sibs shar-
ing one parental line (Lo115-N). However, accuracies
of prediction were consistently higher for test-sets
from population B. This cannot be explained by
variation in the quality of field trials, as heritabilities
seen with hybrids derived from population A and
population B were similar for all four traits considered
(Table 1). A possible explanation for the higher accur-
acy would be the presence of higher genetic diversity
in population B in comparison to population A. This
view is supported by the higher genetic variance σ2G in
population B for three of the four traits in study as well
as the higher number of segregating molecular markers
(584 versus 394). Consistently, population A was gen-
erated by crossing two superior test-cross lines, Lo115-
N and Lo90-N, while population B was obtained by
crossing one superior line, Lo115-N with a lower per-
forming line, Lo117-N [5]. A similar positive effect of
higher genetic variation on the accuracy of prediction
in genomic selection has been reported by Zhao et al.
[39] and Riedelsheimer et al. [40]. However, also the
higher number of polymorphic markers in population
B per se might contribute to higher accuracy of predic-
tion [41]. Actually, the rather low number of markers
used in analysis might present a general limitation of
the accuracy of genomic selection in our current study.
This limitation could be overcome by taking advantage
of recently developed SNP arrays for rye [42]. When
genomic selection was done solely across populations
(CVG Across-Across), either a slight decrease or a
slight increase of the accuracy of prediction was ob-
served depending on the trait. This could be due to the
difference among the two populations. For grain yield
and total pentosan content, accuracies of prediction
were higher in CVG (Across-Across) than in CVG

(Within-Within-Same) and CVG (Across-Within). This
could be caused by a larger genetic diversity among
populations in comparison to the genetic diversity
within each population. In contrast, for plant height,
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Figure 4 Cross-validated accuracies of prediction for genomic selection with regard to location and year. Cross-validation was performed
using RR-BLUP across genotype within location [CVG (L)] or across genotype and location (CVG×L), and across genotype within year [CVG (Y)] or
across genotype and year (CVG×Y). ES in the scheme on top refers to the estimation set, TS represents the test set. In each case, the dataset was
divided into five subsets (S1-S5), of which S1 to S4 were assigned to the ES and S5 to the TS. The mean accuracy of prediction rp values for genomic
selection based on data from population A (Pop-A) and population B (Pop-B) for traits grain yield and plant height are shown below. The mean rp
across genotype based on the eight location-year combinations for which data from two years could be included (BEK10, BEK11, PET10, PET11, WAL10,
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year (e.g. BEK10, PET10, WAL10, WOH10). Test sets were derived either from the same location-year combinations as the estimation sets [CVG (L); light
grey; CVG (Y); dark grey] or from the location-year combinations not used for estimation (CVG×L; intermediate grey; CVG×Y; black).
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the genetic variation among two populations was not
quite large, and for starch content the genetic vari-
ation among two populations was rather small, leading
to accuracies of prediction in CVG (Across-Across)
between the accuracies of prediction of CVG (Within-
Within-Same) and CVG (Across-Within). When gen-
omic selection was attempted from one population to
the other (CVG Within-Within-Different), accuracies
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of prediction were consistently lower than in all other
approaches, readily revealing the limits of predicting
among half-sib populations in hybrid rye. This is
consistent with the in general rather pessimistic prog-
nosis for GS-based prediction for material distantly
related to the plants evaluated in field trials in diverse
crops [40,43,44].
With the continuous reduction of genotyping costs

over time, phenotypic evaluation in field trials has now
become the more cost-intensive action in the calibration
of MAS or GS in plant breeding programs [45,46]. As
there is consistent pressure to reduce costs, reduction
of field trial expenses is a tempting option. In addition,
the established phenotypic selection schemes usually
allow only one year of field testing for the vast majority
of selection candidates. However, cross-validation tes-
ting of the impact of field trial size on the accuracy of
prediction of genomic selection (CVG Env) as indicated
by rp in our study revealed a clear dependence on the
number of location-year combinations for hybrid rye
(Figure 3). The grade of this dependence varied for the
analyzed traits in hybrid rye. In the case of plant height,
increases of accuracy were only marginal beyond the
inclusion of data from five environments, while in the
case of grain yield, the accuracy was still substantially
increasing when all available data from nine environ-
ments were included, underlining the need for testing
over a sufficient number of location-year combinations
for optimal calibration. An explanation for the dif-
ference between the two traits might lie in the lower
heritability seen for grain yield in comparison to plant
height (Table 1).
In order to separately check the specific impacts of the

number of field trial locations and the number of test
years on the prediction accuracy, we performed cross-
validated genomic selection across genotype within loca-
tion [CVG(L)], or across genotype and location (CVG×L)
using data from two out of four locations for estimation,
and across genotype within year [CVG (Y)], or across
genotype and year (CVG×Y) using data from one out of
two years (Figure 4). The accuracies of prediction were
consistently higher in CVG(L) and CVG(Y) with test sets
from the same subset of locations or the same year,
respectively, than in CVG×L and CVG×Y, with the test set
taken from the locations or the year not included in the
estimation set. Thus, the accuracy of prediction was
limited by genotype and location and genotype and year
interactions. A similar limitation from location to loca-
tion prediction accuracy has been reported for MAS in
hybrid maize [11]. According to Ly et al. [44], the
“overestimation” of the accuracy of prediction resul-
ting from taking estimation and test sets from the same
environments can be determined based on the magni-
tude of genotype and environment interaction effect
(G × E interaction) σ2G�E
σ2Gþσ2G�E

. It varies substantially for

different traits. Based on the σ2G and σ2G�E values from
Table 1, the ratio of G × E interaction for grain yield was
0.72 and 0.71 in population A and population B, respect-
ively, compared to a ratio of G × E interaction for plant
height of 0.36 and 0.24 in population A and population B
in our study. The larger ratio of G × E interaction of grain
yield in comparison to plant height explains thus the larger
decrease of the accuracy of prediction of GS for grain yield
than plant height from one set of evaluation locations to
other locations or one testing year to another [CVG×L

compared to CVG(L) and CVG×Y compared to CVG (Y);
Figure 4]. In this context, it has to be considered that test-
ing in only one year limits the accuracy of prediction, indi-
cation that in hybrid rye testing for more than one year
is of importance to the optimal calibration of genomic
selection. This is consistent with observations on limita-
tions set by available data from evaluation locations and
testing years for maize made by Kleinknecht et al. [47].

Conclusions
In hybrid rye, genomic selection is superior to marker-
assisted selection which generates lower accuracies of
prediction which are potentially overestimated. However,
high accuracies of prediction are achieved by genomic
selection only for candidates closely related to the plant
material evaluated in field trials, resulting in a rather
pessimistic prognosis for distantly related material. As
both, the number of evaluation locations and the num-
ber of testing years contribute equally to accuracy field
trials for the calibration of genomic selection should be
performed in more than one year at several locations.

Additional files

Additional file 1: Figure S1. Linkage disequilibrium (LD) structure for
diversity array technology (DArT) markers. Data was based on 394 and
584 segregating markers within population A and population B,
respectively, and 1048 markers across both populations.

Additional file 2: Figure S2. Genotypic values for grain yield, plant height,
starch and total pentosan content. Hybrid rye derived from test-crosses of two
segregating bi-parental populations was analysed. Data were collected for
test-cross progenies from two times 220 F3:4 lines and their respective parents
across nine (for grain yield and plant height) or six (for starch content and total
pentosan content) environments, respectively. P1 and P2 refer to the parental
lines of population A (Pop-A, Lo115-N x Lo90-N; white), P1 and P3 the parental
lines of population B (Pop-B, Lo115-N x Lo117-N; grey).

Additional file 3: Figure S3. Cross-validated standardized accuracies of
prediction (rg) for QTL-based versus random marker-assisted selection.
QTL-based marker-assisted selection (MAS-QTL) was performed in
comparison to marker-assisted selection performed based on randomly
sampled neutral markers (MAS-NEUT). Cross-validation was performed
within population B (CVG Within-Within-Same) for traits grain yield, plant
height, starch content, and total pentosan content. QTL mapping based
on estimation set data was performed using different limit of detection
(LOD) thresholds (numbers below columns), resulting in ranges of median
numbers of detected QTL (numbers in the boxes above columns). Analysis
was based on 900 DArT markers as described in [5].
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