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Abstract

Background: Breeding for enhanced immune response (IR) has been suggested as a tool to improve inherent
animal health. Dairy cows with superior antibody-mediated (AMIR) and cell-mediated immune responses (CMIR)
have been demonstrated to have a lower occurrence of many diseases including mastitis. Adaptive immune
response traits are heritable, and it is, therefore, possible to breed for improved IR, decreasing the occurrence of
disease. The objective of this study was to perform genome-wide association studies to determine differences in
genetic profiles among Holstein cows classified as High or Low for AMIR and CMIR. From a total of 680 cows with
immune response phenotypes, 163 cows for AMIR (81 High and 82 Low) and 140 for CMIR (75 High and 65 Low)
were selectively genotyped using the lllumina Bovine SNP50 BeadChip. Results were validated using an unrelated
population of 164 Holstein bulls IR phenotyped for AMIR and 146 for CMIR.

Results: A generalized quasi likelihood score method was used to determine single nucleotide polymorphisms
(SNP) and chromosomal regions associated with immune response. After applying a 5% chromosomal false
discovery rate, 186 SNPs were significantly associated with AMIR. The majority (93%) of significant markers were on
chromosome 23, with a similar peak found in the bull population. For CMIR, 21 SNP markers remained significant.
Candidate genes within 250,000 base pairs of significant SNPs were identified to determine biological pathways
associated with AMIR and CMIR. Various pathways were identified, including the antigen processing and presentation
pathway, important in host defense. Candidate genes included those within the bovine Major Histocompatability
Complex such as BoLA-DQ, BoLLA-DR and the non-classical BoLA-NC1 for AMIR and BoLA-DQ for CMIR, the complement
system including C2 and C4 for AMIR and C1q for CMIR, and cytokines including IL-17A, IL17F for AMIR and IL-17RA for
CMIR and tumor necrosis factor for both AMIR and CMIR. Additional genes associated with CMIR included galectins 1, 2

and 3, BCL2 and B-defensin.

histocompatability complex, Cytokine
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Conclusions: The significant genetic variation associated with AMIR and CMIR in this study may imply feasibility to
include immune response in genomic breeding indices as an approach to improve inherent animal health.
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Background

The inclusion of immune response traits in breeding indi-
ces has been suggested to improve inherent disease resist-
ance in dairy cattle [1,2]. Using a patented test system
developed at the University of Guelph, cows with superior
cell-mediated (CMIR) and antibody-mediated immune
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responses (AMIR) can be identified [3]. In one study,
Holstein cows classified as having High AMIR were shown
to have lower occurrence of mastitis in 2 out of 3 herds
tested, improved response to commercial vaccine and in-
creased milk and colostrum quality [4]. High immune re-
sponse (HIR) cows have also been shown to have decreased
incidence of diseases such as mastitis, metritis, ketosis,
retained placenta and are less likely to be seropositive for
Johne’s disease [5-7]. These previous studies found many
benefits of identifying HIR cows in a herd. However, they
were performed on one or a few herds in a single region.
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Subsequently, immune response profiles were measured
on 680 Holsteins from 58 herds across Canada in collab-
oration with the Canadian Bovine Mastitis Research
Network [8]. Significant variation in immune response
phenotypes between cows, herds and regions was found,
indicating it is possible to classify cows as High, Average
or Low Immune Responders on a national scale. Genetic
parameters of the immune response traits for these cows
were estimated, and AMIR and CMIR were found to be
heritable, 0.29 and 0.19, respectively [9]. These heritability
estimates are similar to those for production traits [10]
demonstrating the feasibility of breeding for enhanced im-
mune response. Cows were classified as High, Average or
Low using estimated breeding values (EBV) for AMIR and
CMIR. Associations with mastitis were investigated, and
High AMIR cows were found to have significantly lower
incidence rates of clinical mastitis compared to Average
and Low AMIR cows [11]. Also, the Low AMIR cows
tended to have the most severe mastitis. These previous
studies demonstrate breeding cattle for enhanced immune
response, on a national scale, may decrease the incidence
and severity of disease in the dairy industry. Further, bene-
ficial associations with some reproductive and longevity
traits have been reported, suggesting that breeding for en-
hanced immune response may also improve longevity and
reproductive traits [9].

Genome-wide association studies (GWAS) utilize infor-
mation on genetic markers or single nucleotide poly-
morphisms (SNP) evenly spaced across the genome to
determine associations with a trait of interest [12]. In cat-
tle, various GWAS have been performed to evaluate gen-
etic differences for a variety of traits like production,
reproduction and conformation [13] and for susceptibility
or resistance to certain disease such as Johne’s disease
[14,15], bovine tuberculosis [16], mastitis or somatic cell
score [17-19]. These studies have been useful for identify-
ing SNP markers and genes associated with a particular
disease [20,21]. However, no GWAS have been performed
to evaluate general immune responsiveness in cattle.
Therefore, the objective of this study was to use a
genome-wide association approach to identify SNP
markers, candidate genes and biological pathways associ-
ated with AMIR and CMIR. Results of this work are
expected to provide insight into the immunological regu-
lation of general antibody and cell-mediated immunity in
cattle, as well as demonstrate the potential to include im-
mune response traits in genomic selection indices to de-
crease the occurrence of disease and improve animal

health in the dairy industry.

Methods

Animals

Immune responses traits (CMIR and AMIR) of 680 lac-
tating Holsteins, outside the peripartum period, from 58
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herds across Canada were evaluated [8] in collaboration
with the Canadian Bovine Mastitis Research Network.
For validation, a total of 543 Holstein bulls were im-
mune response phenotyped in collaboration with the
Semex Alliance. All experimental procedures were ap-
proved by the Animal Care Committee of the University
of Guelph under guidelines of the Canadian Council of
Animal Care.

Immune response traits

As described and reported previously, cows and bulls
were immunized with both a type 1 and a type 2 test
antigen to induce CMIR and AMIR, respectively [8]. A
delayed-type hypersensitivity test to the type 1 test anti-
gen was used as an indicator of CMIR. AMIR was evalu-
ated by measuring serum antibody of the IgG1 isotype
to the type 2 test antigen by enzyme-linked immuno-
sorbent assay (ELISA) on Day 0, 14 and 21 of the
immunization protocol. Genetic parameters and breed-
ing values of the adaptive immune response traits AMIR
and CMIR in these herds have been estimated and re-
ported previously [9]. The CMIR had an estimated herit-
ability of 0.19 while estimates for AMIR were 0.27 and
0.38 on Day 14 and 21, respectively. For use in the
genome-wide association study, cows were ranked on
the average AMIR at Day 14 and Day 21 and bulls were
ranked on AMIR at Day 14. Cattle with an EBV>+ 1
or<- 1 standard deviation from the mean were consid-
ered High Immune Responders or Low Immune Re-
sponders, respectively.

Genotyping and quality control

Selective genotyping was used to increase the probability
of finding significant markers for these traits despite the
relatively small number of individuals that were geno-
typed in this first study. A total of 163 cows for AMIR
(81 High and 82 Low) and 140 cows for CMIR (75 High
and 65 Low) were selectively genotyped using the Bovine
SNP50 BeadChip (Illumina, San Diego, CA). Hair folli-
cles were collected as a source of DNA. DNA was ex-
tracted by Maxxam Analytics (Guelph, Ontario, Canada)
and genotyping performed by DNA Landmarks (Saint-
Jean-sur-Richelieu, Quebec, Canada). Bull genotypes
were provided by the Semex Alliance. For AMIR there
were 83 High and 81 Low responders and for CMIR 74
High and 72 Low responders. On average, there were
4.78 missing genotypes for cows and 2.38 for bulls,
which were imputed using FIlmpute [22]. A total of
45,187 SNP markers were considered for the association
analysis based on USDA quality control measures [23].
Additional quality control measures applied to the data
included the exclusion of SNP markers with a minor al-
lele frequency (MAF) of less than 0.05 and individuals
with a call rate equal or less than 0.85.
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Statistical analysis

A generalized quasi-likelihood score method [24] was
used to determine SNP markers significantly associated
with AMIR and CMIR for cows and bulls separately.
This method accounts for the background polygene ef-
fect by using pedigree-based relationships among ani-
mals and is not biased by selective genotyping, since it is
based on a logistic regression approach. Pedigrees were
obtained from the Canadian Dairy Network and included
29,402 and 19,189 for the cows’ and bulls’ pedigree, re-
spectively. In order to account for multiple comparisons, a
chromosomal False Discovery Rate (FDR) of 0.05 was
applied [25].

Candidate gene discovery and pathway analysis
Significant SNPs were mapped to corresponding or
nearby genes using NGS-SNP [26]. Genes 250,000 base
pairs (bp) up or downstream of the significant SNP were
obtained for pathway analysis. The identified genes were
submitted to database for annotation and visualization
and the integrated discovery (DAVID) bioinformatics re-
source 6.7 to perform enrichment analysis in order to
determine biological pathways associated with AMIR
and CMIR [27,28].

Results

The dataset contained 40,935 SNPs for AMIR and
40,973 SNPs for CMIR after applying quality control
measures. For AMIR 18 (8 High and 10 Low) individuals
were removed for low call rates (<0.85). For CMIR, 7 in-
dividuals were removed from the analysis for the same
reason (3 High and 4 Low). Figure 1 shows the Manhat-
tan plot of the —loglO(p) for all markers for AMIR. A
total of 2,741 SNPs were significantly (comparison-wise
P <0.05) associated with AMIR. After accounting for
multiple comparisons, 186 SNPs remained significant at
a chromosome-wise 5% FDR. The majority (93%) of the
SNP markers associated with AMIR were on chromosome
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23 (173/186) and this chromosome lost the fewest SNPs
after accounting for multiple comparisons. The smallest
p values were observed for chromosome 23 and therefore
this chromosome lost only 32% of the significant SNPs
after applying the FDR, versus the other chromosomes
that lost > 90%. Figure 2 shows the Manhattan plot results
for AMIR for chromosome 23 only.

Figure 3 shows the Manhattan plot of the —logl0(p)
for all markers for CMIR. A total of 2,976 markers were
significantly (comparison-wise P < 0.05) associated with
CMIR, and 21 remained significant after accounting for
multiple comparisons. Chromosome 23 contained the
largest proportion of significant markers (4/21), and all 4
markers were also significant for AMIR. Figure 4 shows
the Manhattan plot results for CMIR for chromosome
23 only.

For AMIR, 428 genes were found within 250,000 bp of
the 186 SNP markers significant at FDR < 0.05. Table 1
shows the top 10 significant SNPs associated with AMIR
and the genes within 250,000 base pairs of the markers.
Candidate genes included those within the bovine Major
Histocompatability Complex such as BoLA-DQ, BoLA-
DR and the non-classical BoOLA-NCI1, the complement
system including C2 and C4, and cytokines including IL-
17A, IL17F and tumor necrosis factor. All genes were
submitted to DAVID and 67 genes were enriched to 12
biological pathways (P < 0.05) through Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Table 2). The antigen
processing and presentation pathway had 11 genes signifi-
cantly associated with this pathway, mainly due to the
BoLA genes found on chromosome 23.

For CMIR, 98 genes were within 250,000 bp of the 17
significant markers. Table 3 shows the top 10 significant
markers and genes associated with CMIR. Genes related
to immune response included BoLA-DQ, Clq associated
with the complement system and the cytokine receptor
IL-17RA as well as tumor necrosis factor. Additional
genes associated with CMIR included galectins 1, 2 and
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Figure 1 Manhattan plot for antibody-mediated immune response (AMIR) in Holstein cows. The x-axis is the position of each SNP on the
bovine chromosomes and the y-axis is the —log;, P. The red and blue lines indicate chromosome-wise 5% and 1% false discovery rate, respectively.
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Figure 2 Manhattan plot for antibody-mediated immune response (AMIR) SNPs on chromosome 23 of Holstein cows. The x-axis is the
position of each SNP on the bovine chromosome and the y-axis is the —log;o P. The lines indicate chromosome-wise false discovery rate (FDR).

3, BCL2 and B-defensin. The CMIR genes were not sig-
nificantly (P < 0.05) enriched in pathways using DAVID,
but 3 genes were enriched in the natural killer cell medi-
ated cytotoxicity pathway (P = 0.061).

Results for AMIR and CMIR were validated in a popu-
lation of bulls that have been immune response pheno-
typed with the same protocol as that used for cows. No
bulls were removed from the analysis due to low individ-
ual call rates. For AMIR, the peak on chromosome 23
was confirmed (Figure 5). The number of significant
SNP markers in bulls for both AMIR (Figure 5) and
CMIR (Figure 6) confirms the large degree of genetic
variation in these immune response traits. The antigen
processing and presentation pathway was significantly
(P <0.0001) associated with AMIR in the bulls, verifying
results found in cows.

Discussion

This study was the first genome-wide association study
for general adaptive immune responsiveness in dairy cat-
tle. Previous GWAS have evaluated differences in resist-
ance or susceptibility to certain diseases; however, the
approach proposed here may identify SNP profiles asso-
ciated with general disease resistance, since cows with
superior immune responses are known to have a lower
occurrence of disease [7,11]. The current study found
significant variation in SNP profiles between cows classi-
fied as High or Low for AMIR and CMIR, indicating
that it may, one day, be possible to identify animals with
superior immune responses and therefore disease resist-
ance based on genetic profiles. The significant variation
in SNP profiles of cows for both AMIR and CMIR were
confirmed in an independent population of Holstein
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Figure 3 Manhattan plot for the cell-mediated immune response (CMIR) in Holstein cows. The x-axis is the position of each SNP on the
bovine chromosomes and the y-axis is the —log;, P. The red and blue lines indicate chromosome-wise 5% and 1% false discovery rate, respectively.
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Figure 4 Manhattan plot for the cell-mediated immune response (CMIR) SNPs on chromosome 23 of Holstein cattle. The x-axis is the
position of each SNP on the bovine chromosome and the y-axis is the —log;, P. The lines indicate chromosome-wise false discovery rate (FDR).

bulls, providing strength to the results found here. The
majority of significant SNPs were found on chromo-
some 23 for AMIR, with the antigen processing and
presentation pathway being significantly associated with
AMIR. Again, the significant peak of markers found on
chromosome 23 in cows and the antigen processing
and presentation pathway were confirmed in the bulls,
which were not closely related to the population of
tested cows.

In cattle, the major histocompatibility complex (MHC),
known as bovine leukocyte antigen (BoLA), is located on
chromosome 23 and is well known as a location of major
genes associated with immune response and disease resist-
ance [29,30]. The MHC is involved in processing and

presenting host and pathogen peptides to the cells of the
immune system. The MHC class I is involved in process-
ing and presenting endogenous peptides to CD8+ T cells
[31], whereas MHC class II tends to present exogenous or
extracellular peptides to CD4+ T cells [32,33], which then
mediate appropriate host responses. Given that the major-
ity of SNPs associated with AMIR in this study were lo-
cated on chromosome 23 and the function of this gene
region is to mediate effective adaptive immune responses,
it is expected that the antigen and processing pathway was
significantly associated with AMIR. The antigen process-
ing and presentation pathway was also significant in the
independent bull population, validating the results found
in cows. For CMIR, although the enriched genes list in

Table 1 Top ten single nucleotide polymorphism (SNP) markers significantly (chromosome-wise false discovery rate < 0.05)
associated with antibody-mediated immune response in Holstein cows and genes within 250,000 base pairs flanking the

markers

BTA SNP Location (bp) -log.o P Entrez gene ID

23 ARS-BFGL-NGS-111879 25,109,188 15.95 BolA-DQAT1, ELOVLS, FBXO9, GCM1, GSTA3, GSTA4, GSTAS, ICK

23 Hapmap50029-BTA-55899 24,181,053 13.10 IL17A, IL17F, MIR133B, MIR206

23 BTA-27247-no-rs 26,736,263 1249 BTN3A2, NOTCH4, TSBP

23 ARS-BFGL-NGS-105563 28,819,118 991 GABBR1, MOG, PPP1R11, TRIM10, TRIM15, TRIM26, TRIM31, TRIM40, UBD, ZNRD'

23 ARS-BFGL-BAC-3611 33,645,739 9.70 -

23 Hapmap57845-rs29014813 32,998,188 9.69 ACOT13, ALDH5A1, FAM6E5B, GMNN, GPLD1, MRS2, TDP2

23 Hapmap44002-BTA-110636 25,178,791 9.01 BOLA-DQAT, BOLA-DQB, ELOVLS, FBXO9, GCM1, GSTA3, GSTA4, ICK

23 BTA-55821-no-rs 27,944,066 8.98 ATAT1, BOLA, CCHCRT, CDSN, DDR1, DHX16, FLOT1, GTF2H4, IER3, KIAA1949,
MDC1, MICB, MRPS18B, NRM, POU5F1, PPPTR10, PSORS1C2, SFTA2, TCF19, TUBB

23 ARS-BFGL-NGS-37272 32,025,158 8.78 HISTTH2BA, LRRC16A, SCGN, SLC17A1, SLC17A3, SLC17A4

23 Hapmap41584-BTA-56031 24,939,249 8.20 ELOVLS, FBXO9, GCM1, GSTAT, GSTA3, GSTA3, GSTA4, GSTAS, ICK, TMEM14A, TRAM2
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Table 2 Biological pathways significantly (P < 0.05) associated with antibody mediated immune response of Holstein

cattle

KEGG' pathway Count % P value Benjamini?
Systemic lupus erythematosus 19 4.7 2.1E-10 2.2E-08
Type | diabetes mellitus 9 22 3.3E-06 1.7E-04
Antigen processing and presentation 11 2.7 4.1E-06 14E-04
Olfactory transduction 32 79 4.5E-06 1.2E-04
Graft-versus-host disease 8 20 5.7E-06 1.2E-04
Allograft rejection 8 20 1.4E-05 24E-04
Asthma 6 15 24E-04 35 E-03
Autoimmune thyroid disease 7 1.7 55 E-04 7.2 E-03
Viral myocarditis 7 1.7 35 E-03 40 E-02
Intestinal immune network for IgA production 5 1.2 2.7 E-02 2.5 E-02
Spliceosome 8 20 29 E-02 24 E-02

'Kyoto Encyclopedia of Genes and Genomes.
2Benjamini = False Discovery Rate a=0.1.

this pathway was not significant, a candidate gene was
identified in BolA.

Bovine MHC I is under control of 6 loci, with combi-
nations of two or three haplotypes expressed allowing
for high degree polymorphism and diversity in this re-
gion [34]. On the other hand, the class II region consists
of genes encoding two proteins, DR and DQ, with DRA
being monomorphic and DRB and DQ regions being
highly polymorphic. The DQ locus is duplicated, and
therefore many haplotype combinations allow the class
II region to maintain a high degree of polymorphism
[35]. As suggested recently, it is possible that deliberate
selection for production in dairy cattle has decreased the
diversity in the MHC region explaining the associated
increase in diseases like mastitis with known links to

Table 3 Top ten single nucleotide polymorphism (SNP) mar!

BoLA [36]. Selection strategies to maintain diversity and
increase heterozygosity in MHC genes may be important
in order to breed robust cattle capable of responding ap-
propriately to a variety of challenges including both
intra- and extracellular pathogens. The high degree of
variation on chromosome 23 associated with AMIR in
the current study, in particular within BolA, suggests
that selection for immune responsiveness might be an
approach to maintain diversity in MHC genes.

The relationship between BoLA class II and resistance
or susceptibility to mastitis has been known for over
20 years [37-40]. T cell proliferative responses have also
been demonstrated to be dependent on the bovine MHC
II [41]. The high antibody responding cows used in this
study have previously been demonstrated to have a

kers significantly (chromosome-wise false discovery rate < 0.05)

associated with the cell-mediated immune response in Holstein cows and genes within 250,000 base pairs flanking the

markers

BTA SNP Location (bp) -logqo P Entrez gene ID

19 ARS-BFGL-NGS-101995 53,606,174 528 RBFOX3, CBX8, CBX2

27 ARS-BFGL-NGS-38750 4,845,275 525 ZNF705A, AGPATS, SPAG118B, TAP, DEFB103B

19 UA-IFASA-7781 53,963,109 492 CANTI1, LGALS3BP, TIMP2, CTQTNF1, RBFOX3, USP36

23 Hapmap46836-BTA-55820 27,923,154 491 TCF19, SFTA2, MICB, NRM, FLOTT, PSORS1C2, CDSN, POUSF1, MDC1, CCHCRT,
BOLA, DDRI1, GTF2H4, TUBB, DHX16, ATAT1, MRPS18B, KIAA1949, IER3

12 BTA-86812-no-rs 23,174,195 4.89 LHFP, STOML3, PROSER1, NHLRC3

23 ARS-BFGL-NGS-16619 27,887,914 4.85 POU5F1, PSORS1C2, IFITM3, TCF19, MICB, BOLA, IER3, FLOT1, TUBB,
CCHCR1, NRM, DDR1, CDSN, GTF2H4, MDC1, KIAA1949, SFTA2

23 BTA-27247-no-rs 26,736,263 4.84 NOTCH4, BTN3A2, TSBP

5 ARS-BFGL-NGS-627 109,734,406 4.69 BID, LGALS2, CDC42EP1, GGA1, MICAL3, BCL2L13, PEX26, TUBAS, ATP6V1E1

5 ARS-BFGL-NGS-10118 109,774,563 469 TUBAS, MICAL3, BID, BCL2L13, CDC42EP1, LGALS2, GGAT, PDXP,
LGALS1T, NOL12, MIR2438, ATPEV1E1, PEX26

18 BTA-24218-no-rs 32,925,593 461 CDH11
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Figure 5 Manhattan plot for the antibody-mediated immune response in Holstein bulls. The x-axis is the position of each SNP on the
bovine chromosomes and the y-axis is the —log; P. The red and blue lines indicate chromosome-wise 5% and 1% false discovery rate, respectively.

lower incidence rate of clinical mastitis compared to the
low antibody responding counterparts that were selected
for selective genotyping [11]. Therefore, an association
with this highly polymorphic and complex gene region
could be expected. Associations between the immune re-
sponse traits AMIR and CMIR and BoLA have been
demonstrated previously [38,42]. Rupp et al. [42] found
different allele combinations associated with AMIR and
CMIR, and suggested they were independent or negatively
correlated genetically, which has been shown previously
[9]. Additionally, certain BolA allele combinations were
associated with increased risk of mastitis.

In this study, interleukin 17 (IL-17) was a candidate
gene associated with AMIR and its receptor, IL17RA, as-
sociated with CMIR. IL-17 is a proinflammatory cytokine
produced mainly by CD4+ T cells of the Th17 lineage, but
also dendritic cells [43,44]. IL-17 regulates innate host de-
fenses by stimulating cells such as fibroblasts and epithe-
lial cells to produce IL-6, IL-8 and granulocyte colony
stimulating factor (G-CSF) which in turn recruit neutro-
phils contributing to the development of acute inflamma-
tion [44]. IL-17A and IL-17 F have been implicated in

modulation of mammary gland immune responses to
mastitis causing bacteria [45]. An in vitro challenge model
using a bovine mammary epithelial cell culture with com-
ponents of Staphylococcus aureus, a common mastitis-
pathogen, found an increase in gene expression of proteins
with antibacterial properties in the presence of IL-17A
and IL-17 F, and expression was increased in the presence
of TNFa [45], another candidate gene associated with
AMIR and CMIR in the present study. Milk somatic cells
isolated from cows identified as positive for Staphlyococ-
cus aureus mastitis have been found to have an increased
expression of 1L.-17 compared to blood mononuclear cells
[46]. IL-17 has also been implicated in immune responses
to Neospora caninum [47], as well as Mycobacterium tu-
berculosis vaccination [48]. Given that the antibody and
cell-mediated immune response traits evaluated in the
current study represents an overall ability for the cow to
make a robust antibody and cellular responses, it is logical
that cytokines like IL-17 and TNFa, which are involved in
host defence, were associated with these traits.

Candidate genes associated with CMIR included galec-
tins which have been shown to be induced in response

-logio(p)
S

1 2 3 4 5 6 7 8 9

I'D lll lIZ 1'3 1‘4 1‘5 1’6 1‘7 1‘8 1'9 Z‘U Z‘l
Chremosome
Figure 6 Manhattan plot for the cell-mediated immune response in Holstein bulls. The x-axis is the position of each SNP on the bovine
chromosomes and the y-axis is the —log;o P. The red and blue lines indicate chromosome-wise 5% and 1% false discovery rate, respectively.

23 25 27 29




Thompson-Crispi et al. BMIC Genomics 2014, 15:559
http://www.biomedcentral.com/1471-2164/15/559

to gastrointestinal nematode infection in cattle [49] and
sheep [50], but are better known for their role in repro-
duction [51,52]. CMIR was also associated with the p-
defensins which have a variety of roles in protection
from pathogens and regulation of immune responses
and reproduction [53]. More specifically, CMIR was
associated with tracheal associated protein (TAP), a p-
defensin which has been found to be important in kill-
ing bacteria that can cause pneumonia in cattle [54].
Candidate genes associated with the classical pathway
of the complement system were also found to be asso-
ciated with both AMIR and CMIR. The complement
system is an important component of the innate host
defense, critical in initiating adaptive responses such as
those measured in the current study. The variety of
immune response related genes identified here provide
an opportunity for future studies on the genetic regu-
lation of these molecules in general adaptive immune
responses.

In the dairy industry, selection for complex traits, such
as production, has been successful. In cattle, the vast
majority of complex traits are under polygenic control,
having many genes with small effects contributing to the
variation of each trait, with some exceptions such as the
diacylglcerol O-acyltransferase (DGAT1) [55] and ATP
binding cassette subfamily G member 2 (ABCG2) [56]
associated with milk production, myostatin associated
with double muscle in beef cattle [57] and MHC DQ
haplotypes associated with mastitis [39]. For traits such
as general immune response where it is impossible for a
single gene to regulate the trait, using estimated breed-
ing values or genomic estimated breeding values may
overcome the issue of complex regulation by selecting
for all genes controlling the trait, without necessarily
knowing the genes themselves [58].

Genomic selection makes use of genomic estimated
breeding values (GEBV) that are estimated based on the
sum of marker effects evenly spaced across the genome
[59]. Once a substantial reference population with accur-
ate phenotypes and genotypes has been established, it is
possible to estimate GEBV for animals without pheno-
types. The advent of genomic selection has significantly
increased the rate of genetic gain in dairy cattle mainly
by reducing the generation interval [60], and could make
it feasible to include new phenotypes such as methane
production or health in breeding indices [61]. However,
the inclusion of new traits in genomic breeding indices
will require a substantial reference population with ac-
curate phenotypes and genotypes. This was the first
GWAS for general antibody-mediated and cell-mediated
immune responses in dairy cattle. Despite the limited
number of genotyped animals in this study, several sig-
nificant markers, candidate genes and pathways were
identified. A study based on a larger number of animals
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with both genotypes and phenotypes would be useful in
order to confirm these initial results. However, significant
variation found here suggests it may be possible to calcu-
late GEBV for immune response in the future. Moreover,
in the future, a larger dataset and the use of sequencing
and/or imputation to increase the density of markers may
also help identify informative markers within novel genes
for AMIR and CMIR.

Conclusion

This study found a number of significant SNP markers
associated with High and Low general antibody and cell-
mediated immune responses of Holstein cattle, suggest-
ing it may be possible to calculate genomic breeding
values for these traits and include them in breeding indi-
ces to decrease the incidence and severity of disease in
the dairy industry. Results were validated in a population
of Holstein bulls not closely related to the cows. The im-
mune system provides the main defense against patho-
genic micro-organisms and as such has the ability to
vary the response in accordance with the nature of the
invading pathogen or immunizing agent. This system is
therefore under complex genetic regulation and individ-
uals differ in their immune response profiles with
protective responses not necessarily identical between
individuals. The immune system is also dynamic in its
capacity to deal with the variation found within and
across various pathogens. This was the first genome-wide
association study for general antibody and cell-mediated
immune responses in cattle. Despite the relatively small
number of genotyped individuals, it provides encouraging
evidence in support of future studies based on a larger ref-
erence population that could lead to the estimation of for
genomic breeding values for immune response.
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