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Abstract

Background: With the development of space science, it is important to analyze the relationship between the space
environment and genome variations that might cause phenotypic changes in microbes. Klebsiella pneumoniae is
commonly found on the human body and is resistant to multiple drugs. To study space-environment-induced
genome variations and drug resistance changes, K pneumoniae was carried into outer space by the Shenzhou
VIII spacecraft.

Results: The K. pneumoniae strain LCT-KP289 was selected after spaceflight based on its phenotypic differences
compared to the ground-control strain. Analysis of genomic structural variations revealed one inversion, 25 deletions,
fifty-nine insertions, two translocations and six translocations with inversions. In addition, 155 and 400 unique genes
were observed in LCT-KP214 and LCT-KP289, respectively, including the gene encoding dihydroxyacetone kinase, which
generates the ATP and NADH required for microbial growth. Furthermore, a large number of mutant genes were
related to transport and metabolism. Phylogenetic analysis revealed that most genes in these two strains had a
dN/dS value greater than 1, indicating that the strain diversity increased after spaceflight. Analysis of drug-resistance
phenotypes revealed that the K. pneumoniae strain LCT-KP289 was resistant to sulfamethoxazole, whereas the control
strain, LCT-KP214, was not; both strains were resistant to benzylpenicillin, ampicillin, lincomycin, vancomycin,
chloramphenicol and streptomycin. The sulfamethoxazole resistance may be associated with sequences in
Scaffold7 in LCT-KP289, which were not observed in LCT-K214; this scaffold contained the gene sull. In the
strain LCT-KP289, we also observed a drug-resistance integron containing emrE (confers multidrug resistance)
and ant (confers resistance to spectinomycin, streptomycin, tobramycin, kanamycin, sisomicin, dibekacin, and
gentamicin). The gene ampC (confers resistance to penicillin, cephalosporin-ii and cephalosporin-i) was
present near the integron. In addition, 30 and 26 drug-resistance genes were observed in LCT-KP289 and LCT-KP214,
respectively.

Conclusions: Comparison of a K. pneumoniae strain obtained after spaceflight with the ground-control strain revealed
genome variations and phenotypic changes and elucidated the genomic basis of the acquired drug resistance. These
data pave the way for future studies on the effects of spaceflight.
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Background

With the rapid development of space technology, space
capsules are frequently launched to explore the universe;
therefore, it is important to understand space biology.
Space environmental physics has elucidated the existence
of properties including electromagnetic radiation, micro-
gravity, high vacuum and strong magnetic field in the space
environment; however, it is important to understand the
impact of these factors on organisms. Paul et al. focused on
plants, which are significant components of biological sys-
tems, and discussed the adaption and growth tropism of
plants in the microgravity environment in a space shuttle
[1]. Gridhani ef al. examined proton-induced perturbations
in gene expression, cell cycle and cell division as well as the
differences between the effects of protons and high-energy
proton radiation [2,3]. Gao et al. observed that bacterial
metabolism was significantly altered in the space environ-
ment [4]; furthermore, exposure to the space environment
might cause genetic damage [5]. Tixador et al. studied the
growth and antibiotic resistance of Escherichia coli during
the mission of the space shuttle Discovery [6]. However,
mutations caused by the space environment have not been
examined at the genomic level. Klebsiella pneumoniae is an
important Gram-negative, opportunistic pathogen that
causes severe diseases such as septicemia, pneumonia,
urinary tract infections, and soft-tissue infections [7].
Many clinical strains of K. pneumoniae are highly resistant
to antibiotics, which poses a major threat to global public
health. Over the past decade, the physiology, biochemis-
try, and regulation of K. pneumoniae pathways have
been extensively studied [8-11]. However, the effect of
spaceflight on K. pneumoniae has not been examined
at the genomic level. K. pneumoniae is well-suited for
such studies because of its characteristics.

In 2011, the Shenzhou VIII spacecraft carried K. pneu-
moniae strains into outer space for approximately 17 days
(398 hours). The control strain was cultured at the same
temperature in an incubator on earth. After spaceflight,
the antibiotic resistance and pathogenicity of the strains
were examined. Based on these analyses, the LCT-KP289
strain obtained after spaceflight was selected and com-
pared to the control strain LCT-KP214. The genomes of
LCT-KP289 and LCT-KP214 were sequenced to compare
their genomic variations. These analyses revealed genes
potentially related to drug resistance, and analysis of the
putative drug-resistance genes revealed variations in the
homologous genes in the two strains. Studies on these
candidate resistance genes will be important to improve
understanding of the drug resistance of K. pneumoniae.

Results

Genomic features of the strains LCT-KP214 and LCT-KP289
The genome sequences of LCT-KP214 and LCT-KP289
were deposited in NCBI under the GenBank accession
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numbers AJHE00000000 and ATROO00000000, respect-
ively. The genomes are described in Table 1. Genome
alignments revealed that most regions were present in
both strains, including 339 alignment blocks that cov-
ered 95.90% of the LCT-KP214 genome and 91.45% of
the LCT-KP289 genome. The strain LCT-KP289 exhib-
ited a larger genome size, and the extra sequences mainly
comprised repetitive sequences (including tandem repeat
fragments and interspersed repeated sequences).

Based on the assembly results, the genes in strains
LCT-KP214 and LCT-KP289 were predicted and anno-
tated using COGs (Cluster of Orthologous Groups).
Using this analysis, 3,791 and 3,935 genes were assigned
to specific gene functions in strains LCT-KP214 and
LCT-KP289, respectively (Figure 1). Genome alignment
revealed that most genes in LCT-KP289 were present in
LCT-KP214 and that the additional genes in LCT-KP289
were most likely repeated sequences. The unique genes
in these strains are discussed below. The predicted genes
were annotated using the ARDB (Antibiotic Resistance
Genes Database), and 26 and 30 genes were assigned
antibiotic-resistance functions in LCT-KP214 and LCT-
KP289, respectively. The assembly results were then an-
notated using plasmid databases, and some scaffolds in
LCT-KP214 and LCT-KP289 were homologous to plas-
mid genomes. The plasmid annotation analysis revealed
that some plasmids did not belong to K. pneumoniae
(Table 2). However, the presence and origin of these
plasmids require further analysis.

Detection of genomic structural variations and functional

enrichment of variant genes

The genomic variations in LCT-KP214 and LCT-KP289
were analyzed and the genomic differences, including se-
quence variants, were identified (Figure 1). We defined
variant genes as those that contained SNPs or InDels,
were partly located in syntenic or repeat regions, or were
unpaired (genes present at similar loci in both strains
were considered paired). Subsequently, the variant genes
in strains LCT-KP214 and LCT-KP289 were annotated
using the COG/GO/KEGG databases and classified by
their functions (Figure 2A).

Table 1 Sequence assembly data for LCT-KP214 and
LCT-KP289

Strain name LCT-KP214 LCT-KP289
Genome size 5,791,462 bp 6,068,157 bp
GC content 56.64% 84.42%
Gene number 5,907 6,155
Average gene length 828 bp 816 bp
Genome coding percentage 84.42% 82.87%

TRF 17,084 bp 62,013 bp
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Figure 1 Genomic structural variation and distribution of paired genes. The structural variations in the genomes and paired genes are
shown. The circles represent (inner to outer) the LCT-KP214 GC-skew distribution, LCT-KP214 COG distribution, and the structural variations between
LCT-KP214 and LCT-KP289, respectively. LCT-KP214 GC-skew distribution: a 1,000-bp sliding window was used on the genome of LCT-KP214, and the
GC-skew was recorded in each window. GC-skew = (G-C)/(G + C); purple and green indicate positive and negative values, respectively. The junction
between purple and green represents the potential transcription initiation site. LCT-KP214 COG distribution: the inner, second and third circles
represent the COG functional distribution in LCT-KP214. Different functions are indicated by different colors, and the captions are listed on the right.
Structural variations between LCT-KP214 and LCT-KP289: the circles indicate the genomic structural variation, syntenic regions and gene pairs in
LCT-KP214 and LCT-KP289 (the genes located on the forward strand are indicated in sky blue, and the genes located on the reverse strand
are indicated in orange). The outer circles represent LCT-KP214, and the inner circles represent LCT-KP289. The lines connecting the circles
indicate paired genes in LCT-KP214 and LCT-KP289, and the different colors indicate structural variations, transfer elements and

duplicated sequences.

Table 2 Statistics of plasmid alignment results in the two strains

Strain Name Scaffold Length (bp) Coverage (%) Plasmid ID Length (bp) Coverage (%) Annotation
LCT-KP214  Scaffold2 192,758 74.85 NC_019390.1 207,819 70.06 Klebsiella pneumoniae plasmid pKPN_CZ
LCT-KP214 Scaffold4 90,588 84.83 NC_009133.1 94,289 80.17 Escherichia coli plasmid NR1
LCT-KP214 Scaffold3 165,023 75.04 NC_019158.1 137,813 87.54 Klebsiella pneumoniae plasmid pNDM10469
LCT-KP289  Scaffold2 193,508 74.70 NC_019390.1 207,819 70.14 Klebsiella pneumoniae plasmid pKPN_CZ
LCT-KP289 Scaffold3 164,884 75.65 NC_019153.1 162,746 74.62 Klebsiella pneumoniae plasmid pNDM-KN
LCT-KP289 Scaffold4 98,792 8267 NC_009133.1 94,289 80.26 Escherichia coli plasmid NR1
LCT-KP289  Scaffold7 2,242 100.00 NC_015599.1 54,205 414 Escherichia coli IncN plasmid N3
LCT-KP289 Scaffold8 1,359 96.17 NC_004604.2 53,865 243 Bacillus megaterium QM B1551 plasmid

pBM400

LCT-KP289 Scaffold9 1,154 99.13 NC_016009.1 19,557 585 Enterococcus faecium plasmid pM7M2

LCT-KP289  Scaffold10 950 9853 NC_013317.1 21,806 429 Enterococcus faecium plasmid p5753cA
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Figure 2 Functional enrichment of variant genes after KEGG/COG/GO annotation. Picture A: Analysis of functional enrichment. The red and
green bars represent LCT-KP214 and LCT-KP289, respectively. The genes containing SNPs or InDels, those located in repeat regions or those
unique to each strain were analyzed separately. Each classification square contained three paired bars, indicating the number of enriched functional
items, the number of annotated variant genes, and the number of all annotated genes in the strain from left to right. Pictures B, C and D indicate the
detailed enrichment results of variant genes after COG, KEGG and GO annotation. In pictures B, C, and D, the annotation axis is classified by functional
items. The hollow columns represent the number of all annotated genes in the strain. The solid columns represent the number of annotated variant
genes. The arrows in pictures B and € and the asterisk in picture D indicate significantly enriched functional items.

Analysis of genome variation revealed 1 inversion, “Inorganic ion transport and metabolism” was significantly
25 deletions, 59 insertions, 1 translocation and 6 translo-  enriched in the unique genes in LCT-KP214 (Figure 2B).
cations with inversions (Figure 1). Genes outside syntenic ~ Furthermore, we detected 11 interspersed repeated se-
regions (mainly separated by large insertions or deletions)  quences with duplication units longer than 400 bp, and
were identified, including 389 and 629 genes, respectively,  the copy numbers of the repeated sequences were differ-
in LCT-KP214 and LCT-KP289. In addition, the two ent. The genes located in the repeat regions were not sig-
strains contained some homologous genes. After filtering  nificantly enriched in COG or KEGG functional categories;
the homologous genes, we observed 155 and 400 unique  however, 9 gene functional categories were enriched based
genes in LCT-KP214 and LCT-KP289, respectively. Based on GO annotations, including “fatty acid metabolic
on COG annotations, the functional categories “Lipid  process”, “peptidoglycan biosynthetic process”, and “pep-
transport and metabolism”, “Inorganic ion transport and  tidoglycan-based cell wall” (Figure 2D).
metabolism” and “Secondary metabolites biosynthesis, In addition to the large-scale genome variations, 770
transport and catabolism” were significantly enriched in ~ SNPs were identified (3,133 raw SNPs; 2,363 SNPs con-
the unique genes in LCT-KP289; the functional category taining N bases, nearly N bases or with low sequencing
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depth were filtered). To analyze the genes affected by
SNPs, we selected SNPs located in CDS or intergenic re-
gions no further than 300 bp from the nearest gene. We
observed that 334 and 330 genes were affected by SNPs
in LCT-KP289 and LCT-KP214, respectively. Further-
more, 99 InDels were also identified (133 raw InDels; 34
InDels containing Ns or with low sequencing depth were
filtered). InDel-affected genes were identified using the
method described for SNPs; 299 and 304 genes were af-
fected by InDels in LCT-KP289 and LCT-KP214, re-
spectively (not all InDels were located in CDS regions
in both strains). Based on the GO annotations, 48 and
49 functional categories were enriched in the genes
containing SNPs and InDels, respectively, in the strain
LCT-KP289. Most of the affected genes encoded mo-
lecular functions related to transmembrane transporters
(Additional file 1: Table S1). Based on KEGG annota-
tions, the unique gene KP214_00701 in LCT-KP214
was assigned the function “Glycerolipid metabolism
(ko00561)” [Figure 2C]; this gene contained 12 SNPs
and 5 InDels. KP214_00701 encodes dihydroxyacetone
kinase (dha), which is required to generate ATP and
NADH for microbial growth [12]. However, this gene
was not functional in LCT-KP289 because of a nonsense
mutation (GAA->TAA). This mutation in LCT-KP289
might have been caused by the severe environmental
changes during spaceflight.
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Analysis of phylogenetic relationships
To understand the effect of the environment on strain evo-
lution, the phylogenetic relationship between LCT-KP214
and LCT-KP289 was analyzed, and the base substitution
rates were compared. We downloaded five other K. pneu-
moniae genome sequences from NCBI (ftp://ftp.ncbi.nih.
gov/genbank/genomes/Bacteria) and used Bayesian ana-
lysis to generate phylogenetic trees at the whole-genome
(Figure 3A) and gene levels (Figure 3B). The base substitu-
tion rates in LCT-KP214 and LCT-KP289 were 3.4e-05
and 4.6e-05, respectively, at the genome level, and 5e-06
and 5.7e-04, respectively, at the gene level. Therefore,
LCT-KP289 had higher base substitution rates at the gen-
ome and gene levels. We used the phylogenetic trees and
3,678 core genes of the seven K. pneumoniae strains
(Figure 3C) to calculate the dN/dS ratios in LCT-KP214
and LCT-KP289 using the CODONML software (in
PAML version 4.4, January 2010) with the GY-HKY
model. Comparison of LCT-KP214 and LCT-KP289 re-
vealed that most genes in these strains shared the same
selection pressure, and the dN/dS value of most of the
genes was greater than 1 (Figure 3D), which indicated
that the strains tended to have greater diversity under
special circumstances, such as spaceflight.
Furthermore, heterozygotic SNPs, which might reflect
differential rates of evolution, were observed in these
two strains. We mapped the reads to the assembly
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Figure 3 Phylogenetic analysis. Picture A: A phylogenetic tree was constructed at the genome level, and the phylogenetic relationships among
these 7 strains are shown. Picture B: A phylogenetic tree was constructed at the gene level. The base substitution rates of the genes in LCT-KP289
were higher compared to those in LCT-KP214. Picture C: The distribution of the number of genes in each K pneumoniae strain and the number of their
core genes. Picture D: dN/dS comparison between LCT-KP214 and LCT-KP289. For the paired samples, the p value was 0.001989 by the Wilcoxon test
and 2.66e-06 by Student's t-test.
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results and selected bases with a query value greater
than 20 to analyze SNP heterozygosis. We selected het-
erozygotic SNPs that satisfied the following criteria: fre-
quency of the second-most abundant nucleotide greater
than 0.05 and total depth greater than 50X. The com-
parison of the base frequencies in the core genomes of
strains LCT-KP214 and LCT-KP289 is shown in Figure 4.
We observed that most base types were stable in LCT-
KP214, but strain LCT-KP289 had increased base-type di-
versity. The statistics of the annotation results in Table 3
indicated that most heterozygotic SNPs were nonsynon-
ymous. The analysis also revealed that the K. pneumoniae
bacterial colonies had greater genome variation after
spaceflight.

Characterization of drug-resistance and related genes
Spaceflight can cause genome variation that leads to al-
terations in bacterial drug resistance [13,14]. We mea-
sured the growth rates and characterized the drug
resistance phenotypes of strain LCT-KP289 after space-
flight and of the ground-control strain LCT-KP214. Both
strains had similar growth curves (Figure 5A). However,
the two strains differed in their resistance to sulfameth-
oxazole; LCT-KP289 was resistant to this compound,
but LCT-KP214 was not. Both strains exhibited similar re-
sistance to benzylpenicillin, ampicillin, lincomycin, vanco-
mycin, chloramphenicol, and streptomycin (Figure 5B).
The sulfonamide sulfamethoxazole might inhibit dihydro-
folate synthetase and repress DNA synthesis in K. preumo-
niae. To identify the sulfamethoxazole-resistance mechanism
in LCT-KP289, we analyzed the ARDB annotation results
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and observed that the sull gene, which is important for
sulfonamide resistance, was duplicated. LCT-KP214 had
only one copy of sull (in Scaffold4), but LCT-KP289 had
two copies of this gene (in Scaffold4 and Scaffold?). sull
encodes an alternative dihydrofolate synthetase that is not
inhibited by sulfonamide; therefore, sulfonamides cannot
block the synthesis of dihydropteroate, leading to sulfona-
mide resistance [15]. Plasmid annotation analysis revealed
that the scaffolds containing the sull gene were homolo-
gous to plasmid genomes (Table 2). As the sull gene is
mostly associated with class 1 integrons, we decided to ex-
plore the genetic context of sull. In both strains, the su/l
gene was part of a class 1 integron (Figure 6). Integrons
can capture gene cassettes by site-specific recombination
and drive the expression of these genes. Integrons are
present in plasmids or transposons [16], which leads to
the spread of drug-resistance genes. In addition to the
integrase (intl) gene, Class 1 integrons usually contain
genes encoding resistance to quaternary ammonium com-
pounds, ethidium bromide (qacED) and sulfonamides
(sull) [17-19]. In this study, LCT-KP214 and LCT-KP289
contained resistance integrons (RI), which included the
gene emrE (encoding the ethidium bromide-methyl violo-
gen resistance protein) and other resistance genes such as
ant (ant2ia and ant3ia encode streptomycin 3’-adenylyl-
transferase and aminoglycoside o-nucleotidyl transferase,
respectively, which can modify aminoglycosides such as
spectinomycin, streptomycin, tobramycin, kanamycin, siso-
micin, dibekacin and gentamicin by adenylation) (Figure 6).
In addition to integrons, transposon resolvase (Tn21) and
the gene ampC were observed near the sull gene. ampC
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Table 3 Statistics of the annotation results for heterozygotic
SNPs

Mutation Type LCT-KP214 LCT-KP289
Number Percentage (%) Number Percentage (%)
Start codon 0 0.00 0 0.00
nonsyn
Stop codon 0 0.00 1 143
nonsyn
Premature stop 0 0.00 0 0.00
Nonsynonymous 41 7321 44 62.86
Start codon syn 0 0.00 0 0.00
Stop codon syn 0 0.00 0 0.00
Synonymous 9 16.07 11 1571
Total Mutated 50 89.29 56 80.00
SNP within CDS 49 87.50 56 80.00
Intergenic SNP 7 1250 14 20.00
Total SNP 56 100.00 70 100.00

encodes a Class A beta-lactamase, which confers resistance
to penicillin, cephalosporin-ii and cephalosporin-i. In
addition, 30 genes in LCT-KP289 and 26 genes in
LCT-KP214 were assigned to ARDB, and these genes
are important for K. pneumoniae antibiotic resistance
(Additional file 2: Table S2).

Discussion
Based on the assembly results, the genome of LCT-
KP289 was larger than that of LCT-KP214; genome
alignment and prediction of genome elements revealed
that the extra sequences in LCT-KP289 were from tan-
dem repeat fragments and interspersed repeated se-
quences. Analysis of genome variation revealed that
LCT-KP289 contained more unique genes than LCT-
KP214. GO functional annotation revealed that the
unique genes of LCT-KP289 were enriched in 9 func-
tional items, including oxidation-reduction, biofilm for-
mation, and arginine catabolism. Therefore, the genomic
changes in LCT-KP289 were related to environmental
adaptation. We analyzed the evolutionary rate and
phylogenetic relationships of LCT-KP289. The base fre-
quencies of the core genomes revealed a greater number
of heterozygotic SNPs in LCT-KP289 compared to LCT-
KP214. The phylogenetic trees at the genome and gene
levels indicated that LCT-KP289 had a greater base-
substitution rate. The dN/dS analysis revealed that most
genes in LCT-KP289 had dN/dS values greater than 1.
Together, these data indicated that special environmen-
tal factors can stimulate base substitutions in bacteria
and that environmental selection pressure might influ-
ence the direction of bacterial evolution [20].

To identify the genes that were most affected by the
environment, the variant genes in LCT-KP214 and LCT-
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KP289 were annotated using the COG, KEGG and GO
databases. These annotations revealed that some func-
tional categories were enriched in LCT-KP289 compared
to LCT-KP214; these categories were related to bacterial
metabolism such as “Lipid transport and metabolism”,
“Inorganic ion transport and metabolism” and “Second-
ary metabolites biosynthesis, transport and catabolism”.
However, using KEGG annotation, LCT-KP289 lacked
the dihydroxyacetone kinase gene, which is important
for the generation of ATP and NADH, because of a pre-
mature stop codon [21]. Therefore, we propose that, in
LCT-KP289, mutations occurred more frequently in
genes related to environmental adaptation.

K. pneumoniae is highly pathogenic and encodes mul-
tiple types of drug resistance genes. In this study, we an-
alyzed the drug-resistance phenotypes of LCT-KP214
and LCT-KP289. Both strains were resistant to several
drugs, except sulfamethoxazole, and LCT-KP289 was
more resistant to this drug than was LCT-KP214. Based
on genome alignment and ARDB annotation, we ob-
served that LCT-KP289 contained an extra copy of the
sull gene in scaffold7. sull encodes an alternative form
of dihydrofolate synthetase, which cannot be inhibited
by the drug [22]. Therefore, environmental selection
pressure might cause genome variations, leading to an
additional copy of the sull gene in LCT-KP289 and sub-
sequent enhanced drug resistance.

Furthermore, we observed gene elements related to
antibiotic resistance in K. pneumoniae. Integron deter-
minants, including gene cassettes and several antibiotic-
resistance genes (e.g., emrE, ant and sull), were ob-
served in both strains. Antibiotics can be divided into
four classes based on their mechanism of action: i) re-
pression of bacterial cell-wall synthesis, ii) destruction of
the cell membrane structure, iii) repression of protein
synthesis, and iv) repression of DNA synthesis. emrE en-
codes an efflux pump that confers multidrug resistance
[23]. The protein encoded by the gene ant potentially
modifies aminoglycosides by adenylation, conferring resist-
ance to protein synthesis inhibitors such as spectinomycin,
streptomycin, tobramycin, kanamycin, and gentamicin
[24]. Because integrons are mobile genetic elements, the
antibiotic genes contained in integrons can be transferred
among different strains. Based on plasmid annotation, we
observed that the integrons in LCT-KP289 and LCT-
KP214 might originate from Escherichia coli plasmids. We
observed the gene ampC, which encodes beta-lactamase,
flanking the integrons. This enzyme can inactivate cell-wall
synthesis inhibitors such aspenicillin and cephalosporin
[25]. Furthermore, the Tn21 resolvase was observed near
the integrons, which might enhance the mobility of the
antibiotic-resistance genes. Other antibiotic-resistance
genes, including those related to polymyxin and bacitra-
cin, were dispersed in the genome of K. pneumoniae.
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Figure 5 Phenotypic analyses. Picture A: The growth curves of LCT-KP214 and LCT-KP289 were determined by measuring OD600 values, which
represent the concentration of the bacterial population. The growth curves of LCT-KP214 and LCT-KP289 were nearly identical. Picture B: The antibiotic
resistance phenotypes were characterized by diffusion tests. The diameter of the zone of inhibition was measured for each antibiotic, and the drug was
applied in a 0.6-cm diameter circle. If the diameter of the zone of inhibition of an antibiotic was 0.6 cm after incubation of the bacterial plate, the strain

was considered resistant to the antibiotic. The data showed that LCT-KP289 was resistant to sulfamethoxazole, but LCT-KP214 was not.

Conclusion

In this study, comparative genomics was used to analyze
the strain LCT-KP289, which was selected after space-
flight, and the ground-control strain LCT-KP214 to
identify the relationship between the unique space envir-
onment and genome variation; furthermore, the poten-
tial rate of evolution was studied using phylogenetic
analysis. We observed that the space environment af-
fected the evolutionary rates of environment-related
genes. Phenotypic analysis revealed that LCT-KP289 had
increased resistance to sulfonamides, potentially due to
an increased copy number of the gene sull. Further-
more, the observation of integrons in K. pneumoniae
provides insight into the mechanism of multidrug resist-
ance. The HMP data have shown that the bacteria were
multidrug resistant and highly pathogenic. Therefore, this

study paves the way for future studies on the effect of
spaceflight on drug resistance and pathogenicity.

Methods

Bacterial strains and growth conditions

The K. pneumoniae strain (CGMCC 1.1736) used in this
study was obtained from the Chinese General Microbio-
logical Culture Collection Center and was carried in the
Shenzhou VIII unmanned spacecraft for more than
17 days (398 hours). This strain is NCTC 5056, which
was clinically isolated from patients diagnosed with
pneumonia. The strains were cultured in LB, which con-
tained tryptone (10 g/liter), yeast extract (5 g/liter), NaCl
(10 g/liter), and agar powder (15 g/liter). The pH of the
culture medium was adjusted to 7.0-7.2. The culture
broth was identical to the culture medium but lacked
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Bacto Agar. The Shenzhou VIII unmanned spacecraft was
launched by a Long March 2 F rocket at 5:58 on Novem-
ber 1, 2011 (GMT + 8). It arrived at the Tiangong-1 space
station (approximately 340 km apogee distance) and suc-
cessfully docked with the space station at 17:28(GMT + 8).
After docking, the Shenzhou VIII spacecraft and
Tiangong-1 remained connected for 12 days at an ap-
proximate apogee distance of 350 km. The Shenzhou
VIII spacecraft successfully separated from the Tiangong-
1 space station and docked again on November 14. Subse-
quently, the Shenzhou VIII spacecraft remained with the
Tiangong-1 space station for three more days. The return
capsule of the Shenzhou VIII spacecraft completed the ex-
perimental task and left the Tiangong-1 space station on
November 17. It landed in the Inner Mongolia region at
20:38 on November 17 (GMT + 8). Microbiological sam-
ples were quickly removed and transported to Beijing
by military helicopters. The samples arrived at the labora-
tory of the Chinese PLA General Hospital at 7:17 on
November 18 (GMT +8). As a control, the same K
pneumoniae strain was maintained in a laboratory incuba-
tor on earth under the same temperature conditions as the
cabin of the Shenzhou VIII spacecraft. The temperature
conditions were adjusted according to the spacecraft condi-
tions. During spaceflight, the temperature fluctuated be-
tween 16-21°C. Because the warehouse was not equipped
with a radiation-measuring device, we were unable to
obtain relevant data. After the Shenzhou VIII spacecraft
landed, the bacterial colonies were randomly selected from
plates coated with K. pneumoniae. Phenotypic analyses,
including disk diffusion tests and growth curves, were per-
formed to compare the spaceflight clones and the ground
control strain (Additional file 3: Figure S1). The ground

control strain was named LCT-KP214. One clone that was
obtained after spaceflight and was significantly different
from LCT-KP214 was named LCT-KP289.

Growth curve and antibiotic-resistance analyses

The strains were grown on LB liquid medium for 18 h
at 37°C. Approximately 20-ul suspensions were inocu-
lated into microtiter plates (honeycomb plates) contain-
ing 350 pl LB broth and detected by Bioscreen C (Lab
Systems, Helsinki, Finland) at 37°C with continuous
shaking. The growth of each sample was monitored by
measuring the optical density at 600 nm (OD600) at
three time points. A well containing 370 pl LB was in-
cluded as a negative control. The growth curve of each
strain was generated based on the OD600 measure-
ments. The K. pneumoniae strains were transferred from
the plate culture system to 1.5-ml centrifuge tubes con-
taining 1 ml of physiological saline, and the concentra-
tions of the bacterial suspension were diluted to 10" ~ 10°
bacteria per ml. Culture plates were then coated with
100 pl of bacterial suspension of each strain. Tablets of fil-
ter paper were moistened with 17 different antibiotics, in-
cluding benzylpenicillin, ampicillin, cefazolin, ceftazidime,
ceftriaxone sodium, azithromycin, ciprofloxacin, lincomy-
cin, vancomycin, the pediatric compound sulfamethoxa-
zole, chloramphenicol, cefoperazone sodium, amikacin,
streptomycin, minocycline, meropenem, and piperacillin.
The tablets were then placed on the surface of the culture
plates. Each plate contained three types of antibiotics, and
two tablets were used for each antibiotic. The plates were
then incubated at 37°C for 18 ~ 24 h, and the diameters of
the inhibition zones were measured and recorded. The
diameter of the tablets was 6 mm.
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DNA sample preparation and sequencing

K. pneumoniae genomes were sequenced using an Illu-
mina Hiseq2000 with a multiplexed protocol. Paired-end
reads of 90 bp each were generated from 500-bp and 6-
kb random sequencing libraries for the control strain
LCT-PK214 and the strain obtained after spaceflight,
LCT-PK289. We filtered the raw data in four steps: re-
moving reads with 5 bp of Ns, removing reads with
20 bp of low-quality (<Q20) bases, removing adapter
contamination, and removing duplicate reads. Finally,
100X and 50X filtered paired-end reads were obtained
for the 500-bp and 6-kb libraries, respectively. The as-
sembly was performed using the SOAPde novo algo-
rithm [26,27] (http://soap.genomics.org.cn/soapdenovo.
html, version: 2.04). Local assembly and gap closure
were performed on paired-end reads located in gaps. For
highly complex regions, PCR gap closure was performed
to obtain sequences without outer gaps. Finally, the
SOAPaligner/soap2 software was used for error correc-
tion [28,29] (http://soap.genomics.org.cn/soapaligner.
html, version 2.21). The reads were mapped to the se-
quence, mapping information was recoded, and single-
base and local proofreading were performed to analyze
the assembly results.

Analysis of genomic components and identification of
variations

The sequence of the query strain LCT-PK289 was com-
pared to the reference sequence LCT-PK214 using
Mummer [30] (http://mummer.sourceforge.net, version
3.22) and LASTZ [31,32] (http://www.bx.psu.edu/mill-
er_lab/dist/ README lastz-1.02.00, Version: 1.01.50). We
used Mummer for chain stander and start site selection,
and LASTZ was used for detailed alignment. Next, the
syntenic regions and structural variations, including de-
letions, insertions, inversions and translocations, were
identified in the alignment blocks [33]. SNPs were iden-
tified by measuring the distances between mismatched
sites in syntenic regions. SNPs located in sequence gaps,
repeat regions, or scaffold ends were discarded. To valid-
ate the results of the non-redundant candidate SNPs in
the genomes, the high-quality, paired-end reads were
first mapped to the corresponding genomes using SOA-
Paligner [28,29] (http://soap.genomics.org.cn, version
2.21). Next, the numbers of the most abundant (nl1) and
second-most abundant (n2) nucleotides at each SNP
position in each strain (counted according to the num-
ber of reads in each strain supporting this nucleotide)
were examined. High quality SNPs were defined as SNPs
that satisfied the criteria n1+n2>10 and nl/n2>5
and for which the quality score of each mapped base
was >20. Raw small InDels shorter than 50 bp were
predicted from the regions recognized as gaps in the
alignment of syntenic regions. InDels containing more
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than one mismatch 5 bp upstream or downstream
were eliminated. Read validation was then performed
on the remaining InDels, and the InDels for which >3
query reads mapped to the InDel-removed sequence of
the subject were retained.

Function enrichment of variant genes

We analyzed the relationships between all gene function
variations (genes at SV regions or those containing SNPs
or InDels) using different gene/protein databases (COG/
GO/KEGG). This allowed us to compute the numbers of
proteins for each corresponding COG/GO/KEGG term.
We determined the GOG/GO/KEGG enrichment terms
for the variant genes using a hypergeometric test [34,35]
and calculated the P-value. P<0.05 was considered a
significant enrichment of the GOG/GO/KEGG term for
the variant gene/protein. We determined the main bio-
logical function of differential proteins using function
enrichment analysis.

Phylogenetic analysis

We converted the protein sequence alignment results
into multiple amino acid sequences in the CDS regions
and aligned multiple sequences in the clustered gene
family using the Muscle software (http://www.drive5.
com/muscle, v3.8.31). Finally, we generated the gene fam-
ily tree by analyzing the multiple-sequence alignment re-
sults based on Muscle using the Bayes method with the
MrBayes software (MrBayes v3.1.2). The dN/dS ratios
were calculated using the CODONML software (in paml
version 4.4, January 2010) with the GY-HKY model [36].

Accession numbers

K. pneumoniae strains LCT-KP214 and LCT-KP289 gen-
ome sequences have been deposited in GenBank under
accession numbers AJHE00000000 and ATRO00000000,
respectively.

Additional files

Additional file 1: Table S1. Enrichment analysis for gene variants in
LCT-KP214 and LCT-KP289.

Additional file 2: Table S2. Annotation of antibiotic-resistance genes in
LCT-KP214 and LCT-KP289.

Additional file 3: Figure S1. Flow chart for the selection of K.
pneumoniae mutants.
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