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neuroendocrine tumors

Mark Kidd"", Irvin M Modlin'™ and Ignat Drozdov?

Abstract

Background: Tumor transcriptomes contain information of critical value to understanding the different capacities
of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information
regarding the cellular "toolbox” e.g., pathways associated with malignancy and metastasis or drug dependency.
Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess
neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess
neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles
as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further
delineation of the genomic basis of small intestinal neuroendocrine tumors.

Results: We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality
control parameters and network-based approaches and validated expression of core secretory regulatory elements
e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription
factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The
candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes
previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (—1.5 - -2, p < 0.02). Genomic
interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms
and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine
tumors), confirmed up-regulated expression of 87% of genes (13/15).

Conclusions: An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that
they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of
malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further
refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master
regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and
treat tumors.
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Background

Neuroendocrine neoplasms (NENs) or NETs represent 1-
2% of all neoplasia and are comparable in incidence to tes-
ticular cancer, gliomas and Hodgkin’s lymphoma [1]. The
most common variety, constituting approximately 29% of
all NETs, develops within the small intestine or “midgut”
and are the most common tumor of the small intestine
[2,3]. Although previously considered to be benign, they
are indolent cancers (~60% overall five year survival rate)
exhibiting a better survivals than adenocarcinomas of the
same location [2,4]. Although their biological behavior is
generally non-aggressive, metastatic invasion is evident in
50% of tumors <1 cm [2]. The modest prognosis reflects
the inherent clinical difficulty in diagnosis of small intes-
tinal malignancy; disease may often have been present for
some time before identification [2].

NETs are considered to be derived from neuroendocrine
cells within the diffuse neuroendocrine system [5]. Like
normal neuroendocrine cells, tumors exhibit a functional
secretory apparatus e.g., chromogranins and proteins in-
volved in amine uptake e.g, VMATSs, as well as vesicular
trafficking and fusions e.g, SNAP25 [6-9]. In addition,
well-described signaling pathways involving G-protein
coupled receptors such as somatostatin and dopamine
have been defined e.g, cAMP/PKA [10,11]. These have
provided the basis for establishment of a histological clas-
sification, the development of targeted agents e.g., peptide
receptor radiotherapy, as well as imaging strategies that
utilize identification of cellular amine uptake mechanisms
[12,13]. The transcriptomic basis of tumor development
and malignancy, however, remains largely unknown.

Chromosomal-based studies [14,15] e.g.,, CGH and high
resolution SNP arrays [16] and molecular profiling through
exome analyses have identified alterations e.g., loss of
18q22-mer [17,18] or SMAD4 LOH [19], that may be asso-
ciated with neuroendocrine neoplasia. Similarly, gene ex-
pression profiling has identified a plethora of “marker
genes” that include NAP1L1 [20], NKX2-3 [21], TGFPR2
[22] and CD302 [23]. However, no studies have been
undertaken to generate an integrated molecular view of
these neoplasms — the “interactome”. The relevance of such
an analysis is that the delineation of the transcriptome, as a
global measure, offers a complete overview of the cellular
machinery at an RNA level — the cellular “toolbox”. This in-
formation provides the basis whereby network analysis can
be utilized to identify specific interactive pathways associ-
ated with e.g., proliferation and metastasis rather than indi-
vidual components. The establishment of the integrative
pathways regulating the biological functions that constitute
malignancy will likely have substantial translational
applications.

Transcriptomic analysis can thus be utilized to provide
a better understanding of tumor development as well as
neoplasia. Such analyses have been demonstrated to be of
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considerable utility in other tumor types e.g., breast,
particularly when translated to the clinical setting. Thus,
considerable advance has occurred by upgrading histo-
pathology, where gene-based analyses have allowed for the
development of PCR-based arrays as well as custom-built
chips to assess breast cancer classification [24-26], metas-
tases [27] as well as predict therapeutic responsiveness
[28]. Circulating tumor cells can readily be detected
through PCR applications — such approaches appear to be
more sensitive than current capture-based techniques —
and may be more informative especially because multiple,
biologically informative genes identified from RNA ana-
lyses can be assessed e.g., in non-small cell lung cancer
[29], prostate cancer [30] or colon cancer [31]. Finally, a
logical framework for the development of therapeutic tar-
gets can be generated through in silico-based reverse en-
gineering of transcriptome data — this has previously been
used to identify signaling pathways e.g., CREB targets [10]
as well as master regulators — cardinal, potentially target-
able genes that regulate nodes in pathways [32,33].

Given the absence of any large-scale transcriptome
study and the lack of analytical homogeneity between
different NET transcriptome studies, we reanalyzed
two publically available small intestinal NET microarray
datasets [20,21] (ArrayExpress: E-GEOD-6272/E-TABM-
389). In order to identify genes that constitute the intes-
tinal “NETwork”, we used a strategy that included
stringent quality control techniques consistent with differ-
ential expression and validated network-based approaches
[10,34-36]. Thereafter, we undertook qPCR to corroborate
transcript alterations in candidate targets in an independ-
ent collection of NETs. Finally, we screened public data-
bases (e.g., [37]) and published literature (e.g., [38]) to
focus on validated signaling pathways and critical tran-
scription factors. This approach allowed us to confirm or
reconsider known disruptions in signaling pathways in
small intestinal NETs and identify pathways involved in
development as well as novel transcription targets with
putative therapeutic and biomarker potential.

Results

Sample set 1

Of the 22,283 features, 10,763 were present in more than
50% of total samples (7 = 6) and therefore retained for fur-
ther analysis. Overall, 7519 genes and 12 samples passed
quality control procedures (see Additional file 1: Supple-
mentary Methods, Additional file 2: Figure S1, Additional
file 3: Figure S2 and Additional file 4: Figure S3) and were
retained (Figure 1A, B). Of these, 781 up-regulated and
368 down-regulated genes were identified. The most dif-
ferentially expressed genes are included in Table 1 and
Figure 1C. Highly expressed genes included SCG5 (Fold
change [FC] +33.4, p =0.03), PCSK1 and PCSKIN (FC +
30.6-28.6, p<0.05), SCN3A (FC+19.2, p<0.02),
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Figure 1 Re-analysis of two small intestinal NET sets (details in methodology). A, B. Principal component analysis and scatterplot of arrays
along the first two principal components demonstrating spatial separation between control (normal mucosa) and tumor samples. C, D. Volcano
plot of differentially expressed genes in Tumor compared to Normal for each of the sample sets. The most differentially expressed genes are
labeled according to their fold changes.
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PNMA2 (FC+16.3, p<0.02) and NKX2-2 (FC + 15.2,
p <0.03). Additionally, differential expression analysis
identified transcription factors such as INSMI1 and
NKX2-2, regulatory nucleoproteins including BEX1,
PNMAZ2, AKT3, and CEBPA, transcripts involved in
regulation of secretion through depolarization (e.g.,
SCN3A) and the regulation of insulin signaling and
homeostasis (e.g., APLP1). Secretory protein subnetwork
analysis identified members of the secretogranin family
(e.g., SCG2, SCG3, SCG5) and involvement of the

serotonin metabolic pathway (TPH1, ATP7A) (Figure 2A).
Assessment of microarray expression of the 29 enteroen-
docrine transcription factors (TFs) previously identified in
highly enriched gut endocrine cells [38], demonstrated the
expression of four TFs including INSM1, NKX2-2 and
ST18 (Figure 3A). Comparison of gene expression in Set
1 with the Sanger COSMIC dataset [37] identified five
down-regulated genes that have previously been con-
firmed to result in neoplasia [39-43]; these included
CEBPA, ERBB2, EXT1, PIM1, and SDHD. Differentially
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Table 1 Highly elevated genes in each of the two sample sets based on microarray re-analysis

Sample 1 [20] Sample 2 [21]

Symbol Fold change Adjusted P-value Symbol Fold change Adjusted P-value
SCG5 +334 39E-02 TAC1 +263 1.6E-03

PCSK1 +30.7 5.2E-02 TTR +167 8.5E-04
PCSK1N +28.6 2E-02 PCSK2 +128 1.2E-03

SCN3A +19.2 1.6E-02 GPM6A +116 1.87E-06
PNMA2 +16.4 24E-02

NKX2-2 +15.2 3.2E-02

expressed genes and all functional enrichments are

listed in Additional file 5: Table S1.

Sample set 2

Of the 54,675 features, 12,420 genes passed quality control
procedures and were retained. Differential expression

analysis identified 554 up-regulated and 605 down-

regulated genes. The most differentially expressed genes
are shown in Table 1 and Figure 1D. Highly expressed
genes included TAC1 (substance P/tachykinins: FC +

(FC+128, p<1073).
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Figure 2 Secretory interactome analysis of two small intestinal NET sets. A, B. BioGRID secretory protein-protein interaction subnetworks of
small intestinal NET microarrays. Proteins involved in secretory function are shown in green, while their neighbors are shown in white. Key genes
in these pathways were examined by gPCR in the independent set (see Figures 3 and 4). C. Subnetwork cluster similarity heatmap. Darker shades
reflect greater extent of shared proteins across network clusters in the two small intestinal NET protein-protein interaction subnetworks.
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Figure 3 Neurodevelopmental and COSMIC-based transcript expression in SI NET samples. A. Enteroendocrine-related transcription factors
in each of the data sets identified expression of 3 and 12 murine ortholog TFs, respectively. Commonly expressed TFs, involved in the regulation
of neurodevelopment, included INSM1, NKX2-2 and ST18. B. QPCR analysis of transcripts predicted by COSMIC analysis to be decreased in small
intestinal NETs. Both CEBPA and SDHD expressed levels ~50% of normal mucosa consistent with a decreased expression and potentially a loss of
function as has been noted in hematological cancers [71] and paragangliomas [39]. C. QPCR analysis of neurodevelopmental transcripts in the
independent set confirmed elevated expression of INSM1, and NEUROD1 and elevated expression of BEXT and NKX2-2 validating the
transcriptome-based analyses. Mean + SEM, *p < 0.05 vs. normal mucosa. Tumors n= 13, normal mucosa n=38.

analysis identified a core set associated with secretion e.
g, SCG2, SCG3, SCG5, SCN3A, serotonin metabolism
(TPH1), and tachykinin receptor signaling (TAC1)
(Figure 2B). Assessment of candidate enteroendocrine TFs
identified expression of 12 TFs including INSM1, NEU-
ROD1, NKX2-2, ST18 and TBX3 (Figure 3A). Comparison
of gene expression in Set 2 with the Sanger COSMIC data-
set identified twenty-nine down regulated genes previously
confirmed to result in neoplasia; these included BCL11B,
BUBI1B, CANT1, CEBPA, EZR, FGFR2, HMGA1, HMGA2,
LCK, MAEF, MALT1, MYCL, POU2AF1, PPARG, PRDM],
and TNFRSF17. Differentially expressed genes and all func-
tional enrichments are listed in Additional file 6: Table S2.

Co-analysis of NET microarrays

At the protein-protein interaction level, interactions
involved in “Cell cycle” and “Metabolism” were the
most conserved between the two datasets (Figure 2C).
Additionally, a correlation was noted between changes
in common gene expressions for Set 1 and Set 2
datasets (n=7,299, R =0.50, p=2.2x10""'%, Figure 4A).
Interestingly, there were only 306 shared differentially

expressed genes (26% of Set 1 and Set 2) between the
two sample sets (Table 2). These included the SCG
and PCSK family of genes, SCN3A, PNMAZ2, and
the transcription factors, NKX2-2, ST18 and INSM1
(Figure 4B, C). At a Gene Ontology Biological Pro-
cess level, the two tumor sets expressed over-
lapping enrichments in terms including “Secretion”,
“Xenobiotic metabolic process”, and “Neuron develop-
ment” (20% overlap) (Figure 4D). Similarly, overlapping
Gene Ontology Cellular Component terms included
“Secretory Granule” and “Vesicle Membrane” (22%
overlap), while overlapping Molecular Process terms in-
cluded “Voltage-gated Cation Channel Activity” and
“Phospholipase Activity” (12% overlap) (Figure 4D).
Reactome pathway analysis identified 73% overlap
across significantly enriched pathways in Set 1 (n =192)
and Set 2 (n=182); these included “Cell Cycle” and
“Platelet Homeostasis (Figure 4D).

PCR validation in independent set
qPCR analysis confirmed up regulated expression of 13/15
(87%) genes in small intestinal NETs compared to normal
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mucosa. Of the most expressed genes (identified at a
transcriptome level), SCG5 (FC +24, p<0.04), PCSK1
(FC + 26, p <0.02), SCN3A (FC + 19, p <0.002), PNMA2
(FC +27, p<0.05), NKX2-2 (FC+23, p <0.002), BEX1
(FC + 100, p < 0.002) and APLP1 (FC + 240, p = 0.01) were

all highly expressed as was the transcription factor ST18
(FC +43, p<0.003) (Figure 4E-F). Transcripts associated
with the COSMIC database and predicted to be down-
regulated included SDHD (FC-2.5, p < 0.002) and CEBPA
(FC-2, p<0.02) (Figure 3B). Core regulatory genes
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Concurrent analysis*

Symbol Name Process/function

SCG5  Secretogranin V (7B2 protein) Transport/Enzyme inhibitor activity

PCSK1  Proprotein convertase subtilisin/kexin type 1 Energy reserve metabolic process/Endopeptidase activity

SCN3A Sodium channel, voltage-gated, type Ill, alpha subunit lon transport/Voltage-gated ion channel activity

PNMA2 Paraneoplastic Ma antigen 2 Apoptotic process/Protein binding

NKX2-  NK2 homeobox 2 Type B pancreatic cell development/Core promoter proximal region DNA

2 binding

SCG2  Secretogranin |l MAPK cascade/Cytokine activity

ST18 Suppression of tumorigenicity 18 (breast carcinoma) Negative regulation of transcription from RNA polymerase Il promoter/DNA
(zinc finger protein) binding

INSM1  Insulinoma-associated 1 Regulation of transcription, DNA-dependent/DNA binding

CPE Carboxypeptidase E Cardiac left ventricle morphogenesis/Carboxypeptidase activity

BEX1 Brain expressed, X-linked 1 Multicellular organismal development/RNA polymerase Il activating

transcription factor binding

APLP1  Amyloid beta (A4) precursor-like protein 1 MRNA polyadenylation/Protein binding

AKT3  V-akt murine thymoma viral oncogene homolog 3 (protein Mitochondrial genome maintenance/Nucleotide binding
kinase B, gamma)

CD59 (D59 molecule, complement regulatory protein Cell surface receptor signaling pathway/Protein binding

*This manuscript.

involved in neurodevelopment were also expressed (FC +
3-6) (Figure 3C).

Discussion

The precise basis of small intestinal tumor genomic profile
has proven to be a complex subject and an integrated, cel-
lular transcriptomic appreciation of neuroendocrine tu-
mors has heretofore not been possible. This reflects a
number of issues namely the paucity of studies available,
the low number of tumor samples analyzed, the divergent
analytical tools utilized and dissimilar focuses of the inves-
tigative groups e.g., focus on identifying metastatic genes
[20]. We sought to define the issue using an integrated
transcriptome analysis based on gene network-approaches
that has successfully been proven to identify associations
not previously apparent [10,34-36]. Additionally, while it
is likely that the current paradigm in tumor sequencing
calls for tumor samples to be matched with control sam-
ples from the same individual [44], we hypothesized that
comparing diverse population may shed light on tumor-
specific behavior rather than on sample-specific behavior.
Overall, the information derived (from two independent
datasets) demonstrates four areas of novelty and consid-
erable interest. Firstly, expression of core regulatory
secretory regulatory elements, including genes involved
in depolarization, was identified. The data therefore
provide a complete overview of genes involved in regu-
lated secretion and demonstrate the conservation of
secretory apparatus in these tumors. Secondly, a set of
transcription factors associated with neurodevelopmental
processes including INSMI, NKX2-2 and BEXI were

identified indicating that the regulation of neuroendocrine
differentiation occurs in tumors and that aberrations of this
process may be of biological relevance in the evolution of
the neoplastic phenotype. Thirdly, we confirmed loss of
SDHD expression, a phenomenon associated with “benign”
conditions in other tumors e.g., paragangliomas [39]. Fi-
nally, our data may suggest that at a genomic level small in-
testinal NETs may be distinguished by at least two distinct,
secretory subtypes, serotonin-producing neoplasms and
serotonin/substance P (TAC1/tachykinin)-producing le-
sions. As such, this is supported by previous studies in
small intestinal NETs with “carcinoid syndrome” ie., pro-
duce excess serotonin which suggests at least two subtypes
of tumors. These include: 1) the demonstration that ele-
vated luminal concentrations of substance P (secreted from
mucosal sources) are only measured in 12% of patients
[45]; 2) fasting circulating substance P concentrations are
elevated in <20% of carcinoids [46]; and 3) at least two
distinct serotonin producing NET lesions have been identi-
fied — serotonin producing NETs in the pancreas are
TAC1/substance P negative [47].

Serotonin-secreting tumors (Set 1)

Genome-wide co-expression analysis of these lesions
[20] revealed processes including ‘Nervous system devel-
opment’ (e.g., BEX1, SYN1, GRIA2), Tmmune response’
(e.g, CD38, IGKC, SLAMEFS), and ‘Cell-cycle’ (e.g.,
ASPM, MKI67, TOP2A). Importantly, gene network
topology and differential expression analysis identified
over-expression of the GPCR signaling regulators, cAMP
synthetase (ADCY2), and the protein kinase A, PRKARIA.
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ADCY?2 was confirmed to be elevated in expression in our
independent set; PRKAR1A and the role of cAMP-
signaling have been previously studied in detail [10].

Serotonin/substance P (TAC1)-secreting tumors (Set 2)

A reanalysis of the microarray data [21] identified over-
expression of common genes with Set 1 including
APLPI, SCN3A, BEX, INSM1 and ST18. However, the
most highly and uniquely expressed gene was TACI, or
substance P/tachykinins. Our secretory subnetwork ana-
lysis suggests that these tumors may not be classical
serotonin-producing lesions.

Combinatorial-analysis

This interactome assessment of the highly expressed
genes identified canonical elements of secretory regula-
tion including secretogranins, vesicle trafficking and hor-
mone processing. The chromogranins (CgA and CgB),
secretogranins (secretogranin II and secretogranin III),
and additional related proteins e.g., PCSK1 and 2 (which
are found within dense core secretory granules in endo-
crine and neuroendocrine cells and process several hor-
mones and neuropeptide precursors), PNMA2 (a
secreted protein that may generate autoantibodies [48]),
APLP1 (which colocalizes with APLP2 and synaptophy-
sin [49]), as well as carboxypeptidase E (CPE) have es-
sential roles in the regulated secretory pathway or as
products of this pathway [50]. Elevated expression of
these genes was confirmed by qPCR in an independent
set and provides evidence corroborating the secretome
fingerprint of the tumor cells. Of interest was the identi-
fication of high expression of SCN3A (Navl.3). This
tetrodotoxin-sensitive voltage-gated sodium channel
gene mediates membrane depolarization in excitable
cells [51]. This suggests that this gene may be involved
in regulating aspects of neuroendocrine secretion which
mechanistically require a depolarization event. It is clin-
ically well recognized that small intestinal tumors are
sensitized to paroxysmal increased release of serotonin
or substance P/tachykinins by secretagogues [52]. In this
respect, Navl.3 is increased in expression following
nerve injury with the concomitant phenomenon of
hyperalgesia in dorsal root ganglia [53]. We speculate
that this elevated expression of Navl.3 in neuroendo-
crine tumors may be related.

An assessment of the twenty-nine enteroendocrine-
related transcription factors [38] identified that ST1I8,
INSM1 and NKX2-2 were commonly expressed in both
tumor sets. ST18 (Myt3) is a candidate tumor suppres-
sor in breast cancer; ectopic expression in MCF-7 breast
cancer cells strongly inhibits colony formation in soft
agar and the formation of tumors in a xenograft mouse
model [54]; it is also known to function as an pro-
apoptotic effector [55]. This gene, however, is involved
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in neuronal differentiation [56] as well as in normal pan-
creatic islet cell development [57]. Interactome analysis
of small intestinal NET transcriptomes identified neuro-
endocrine developmental pathways to be a key feature of
these lesions. INSM1, NKX2-2, and NEURODI were all
identified to co-exist and elevated expression levels of
these genes were confirmed by qPCR. Identification of
other genes for example, TBX family members, in each
transcriptome dataset supports a common activation of
developmental pathways in these lesions and suggested
the existence of a network of transactivating factors that
function together to regulate the neuroendocrine pheno-
type. Further support for this is provided by over-
expression of BEXI which is considered a regeneration-
associated gene [58] and may be involved in tumorigen-
esis [59]. Bex1 is epigenetically activated in neurosphere
cells and is considered relevant as a marker of reactiva-
tion of stem cell and pluripotency-associated genes;
Bex1 expression enlarges the differentiation potential of
precursor cells [60]. These data suggest that transcrip-
tion factors that regulate neuroendocrine cell develop-
ment or lineage specification are upregulated in
neuroendocrine tumors as has been noted in lung tu-
mors [61]. This may indicate an active control of the
neuroendocrine phenotype in tumors but also raises the
question as to whether an abnormal phenotype (i.e. less
well-differentiated tumor) could occur as a consequence
of a disruption in the TFs (e.g., through methylation-
mediated repression) that co-ordinate the neurodevelop-
mental pathway. A similar phenomenon has been identi-
fied for tumor progenitor cells in small cell lung
cancer [62].

At a developmental level, INSM1, apart from regulat-
ing neural and olfactory development [63], is essential
for proper specification of both gastrointestinal and pan-
creatic endocrine cells [64] through interruption of cell
cycle signaling, and cellular proliferation inhibition [65].
Endocrine transdifferentiation in BON cells is mediated
by INSM1 through activation of NGN3 [66]. The plasti-
city of the neuroendocrine phenotype is controlled by
NKX2-2 which regulates cell fate choices within the in-
testinal enteroendocrine population [67]. When this
transcription factor is down-regulated, pancreatic alpha-
and beta-cell development is impaired; the ghrelin-
expressing cell population, in contrast, is augmented
[68]. Upregulation of NKX2-2 is considered one of the
primary regulatory events required for the maintenance
of beta-cell identity [69]. Although the precise role of
these genes in NETs is unclear, given the known roles in
neuroendocrine development, it seems plausible that ac-
tivation of neuroedevelopmental pathway (s) can be im-
plicated in NET proliferation. INSM1, at least, functions
through disruption of the cell cycle by targeting the
CDK4/CyclinD1 complex.
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A second gene linked to this complex is CEBPA
(CCAAT/enhancer binding protein alpha (C/EBPalpha).
This is a basic/leucine zipper transcription factor that in-
tegrates transcription with proliferation to regulate the
differentiation of tissues involved in energy balance. In
the pituitary, C/EBPalpha functions to prolong the cell
cycle in G1 and S in pituitary progenitor cells [70]. An
assessment of the 487 genes in the COSMIC database
verified to be associated in a dominant or recessive fash-
ion with cancer identified that CEBPA was down-
regulated in both NET groups we studied. QPCR
confirmed decreased expression of this gene (~50% of
mucosal expression). Loss of function of this gene is as-
sociated with AML and MDS, largely through regulation
of differentiation; this gene product inhibits CDK2/4 and
the cyclin D1 pathway [71]. We postulate that a similar
mechanism exists in small intestinal NETSs; elevations in
cdks and cyclin expression are well-recognized in NETs
particularly as a consequence of IGF-1 stimulation [72].
It is noteworthy that inhibition of proliferation using in-
terferons specifically inhibits these effectors in vitro [73].

A consistent loss or decrease in expression of SDHD, a
recessive gene involved in paragangliomas, was noted in
both tumor sets. Mutations in SDHD result in loss of
complex II function and are associated with loss of
stabilization of HIF1 under normoxia and generation
of reactive oxygen species [74]. Mutations in this gene
are considered to result in a “benign” phenotype in para-
ganglioma, the mechanisms of which are considered to
be due to activation of cellular hypoxia responses [39].
Although no mutations have been detected in SDHD in
intestinal NETs [75], LOH has been identified in ~30%
of lesions [76]. Interestingly, LOH alone could lead to a
complete loss of function since SDHD is an imprinted
gene [39]. QPCR, in an independent dataset, confirmed
decreased expression (~50% of normal mucosal levels)
of SDHD indicating a potential role for hypoxia in intes-
tinal tumor biology.

Conclusions

We have identified two subtypes of intestinal neuroen-
docrine tumors, both associated with metastases, that
express common signaling pathways involved in neuro-
endocrine secretion, nervous system and neuroendocrine
development, as well as hypoxia and cyclin/CDK4 regu-
lation. Transcriptome analyses have previously been lev-
eraged to identify markers either of metastases [77] or
blood-based antigens [48] or circulating transcripts [78].
The latter has evolved from a single transcript approach
to a multiple gene screen — 51 marker genes — that are
closely correlated with neuroendocrine tumor biology [79]
and overlap with genes e.g., APLP1 family, PNMA2 and
CD59, in the current study. Detection of this enhanced
gene signature has been shown to be significantly more
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effective than measurements of chromogranin A by ELISA
as a peripheral blood tool for detecting NETs [79]. In
addition, because it is based on assessment of multiple
NET transcriptomes it is also effective at identifying all
gastroenteropancreatic lesions irrespective of the organ of
origin and tumors including in the absence of metastasis.

This manuscript provides an integrated transcriptomic
view of small intestinal neuroendocrine tumors and
identifies that these lesions are regulated at a develop-
mental level, have key activation of hypoxic pathways
(a known regulator of malignant stem cell phenotypes)
as well as activation of genes involved in apoptosis and
proliferation. Further analyses and leverage of these data
should provide novel tissue and blood-based tools to
better understand, diagnose and ultimately treat these
neoplasms.

Methods
Please refer to the Additional file 1: Supplementary
Methods for detailed description of computational
protocols.

Gene expression arrays and independent validation set
All samples were collected following informed consent
and analyzed according to Ethics Committee require-
ments of Yale University (IRB: 0805003870; expires 6/
18/2015) in accordance with the World Medical Associ-
ation Declaration of Helsinki regarding ethical conduct
of research involving human subjects [79]). Clinical de-
tails regarding the three samples sets are included in
Table 3. No statistically significant differences were
noted in distribution of gender, age or treatment re-
ceived between each of the sets.

Sample set 1

Nine NET (obtained from the small intestine) transcrip-
tomes and normal small intestinal mucosa (U133A
chips, #=9 tumors and n = 3 normal mucosa, ArrayEx-
press: E-GEOD-6272) [20]. Expression profiles were
monitored across 22,283 probes.

Sample set 2

U133 Plus2 chips, # =6 normal mucosa, n =3 primary
midgut NETs, and n=3 GEP-NET metastases [METs]
(ArrayExpress: E-TABM-389) [21].

Sample set 3 (Independent validation set)

Thirteen intestinal NETs (small intestine, including pri-
mary tumors: # =38, liver metastases: n=5) and eight
normal small intestinal mucosa (matched samples) were
collected. All samples were collected and analyzed ac-
cording to a standard IRB protocol (Yale University: 6/5/
2012) [79].
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Table 3 Demographics of NETs (Sample sets 1-3)
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Sample set Sample no. Gender Age range Site Metastases Treatment”
1 T M 45-49 lleum N N
1 T2 F 60-64 lleum N N
1 T3 F 45-49 lleum N N
1 T4 M 65-69 lleum N N
1 5 F 85-89 lleum N N
1 T6 M 40-44 lleum N N
1 7 F 65-69 lleum N N
1 T8 M 65-69 lleum N N
1 19 F 55-59 lleum N N
2 T M 70-74 lleum N N
2 T2 M 80-84 lleocecal junction N N
2 T3 F 60-64 lleum N N
2 T4 M 50-54 Liver® Y Y
2 T5 F 60-64 Liver* Y Y
2 16 F 75-79 Liver® Y Y
3 T F 65-69 lleum N N
3 T2 F 60-64 lleum Y N
3 T3 M 65-69 lleum Y Y
3 T4 M 65-69 lleum Y Y
3 T5 F 60-64 lleum N N
3 T6 M 75-79 lleum N N
3 7 F 60-64 lleum N N
3 8 F 55-59 lleum N N
3 19 M 40-44 lleum Y N
3 T10 M 45-49 lleum N N
3 1 M 50-54 lleum N N
3 T12 F 45-49 lleum N N
3 T13 F 50-54 lleum Y N

*Treatment included somatostatin analogs and/or interferon [211.

*All patients had carcinoid syndrome [21] so presumably the primary tumors were derived from the small intestine.

Female =female, M = Male, N=No, Y = Yes.

Gene expression analyses

Individual analyses were performed using the web-based
GeneProfiler tool (GeneProfiler, Bering Limited http://ber-
ingresearch.com/). Primary tumors were compared with
non-matched normal mucosal samples. Sample set 1 con-
sisted of 22,283 probes and 12 arrays, while sample set 2
consisted of 54,675 probes and 12 arrays. Probe sets that
were unlikely to be reliable were eliminated using detec-
tion of Present/Absent calls. Probes present in more than
50% of samples were retained [80]. Raw probe intensities
were normalized using the Robust Microarray Average
(RMA) approach [81]. Array outlier detection was per-
formed in the arrayQualityMetrics package [82] using the
Kolmogorov-Smirnov statistic between each array’s distri-
bution and the distribution of the pooled data. To en-
hance microarray annotation, probe identifiers (IDs) were

mapped to Entrez Gene IDs (accessed April 7, 2013) [83].
In cases were multiple probes mapped to the same Entrez
ID, the average probe intensity was calculated. Probes
without an Entrez record were removed from analysis.
Genes that were consistently identified as differentially
expressed using multiple ranking algorithms [84] (fold
change ranking, ordinary t-statistic, shrinkage t-statistic,
limma, significance analysis of microarrays) were called
significant and retained for further analysis. This approach
ensured that differential expression analysis was: 1)
unbiased, and 2) consistent across different array platforms.

Functional gene expression analysis

Differentially expressed genes were enriched for Gene
Ontology (GO) Biological Process (BP), Cellular Component
(CC), and Molecular Function (MF) terms using the topGO


http://beringresearch.com/
http://beringresearch.com/

Table 4 Details of Applied Biosystems Primers (n = 18), including the housekeeping gene, ALG9

SI-NEN Biomarker or housekeeping gene NCBI chromosome location UniGene ID RefSeq Amplicon produced using
forward and reverse primers
Symbol Name Length Exon boundary
ALGY* Asparagine-linked glycosylation 9, Chr. 11-111652919 - 111742305  Hs.503850 NM_024740.2 68 4-5
alpha-1,2-mannosyltransferase homolog
ADCY2 Adenylate cyclase 2 (brain) Chr.5: 7396343 - 7830194 Hs.481545 NM_020546.2 81 22-23
AKT3 v-akt murine thymoma viral oncogene homolog 3 Chr.1: 243651535 — 244006886 Hs.498292 NM_001206729.1 100 11-12
APLP1 Amyloid beta (A4) precursor-like protein 1 Chr.19: 36359401 - 36370699 Hs.74565 NM_001024807.1 142 11-12
BEX1 Brain expressed, X-linked 1 Chr.X: 102317581 - 102319168 Hs.334370 NM_018476.3 62 2-3
CEBPA CCAAT/enhancer binding protein (C/EBP), alpha Chr.19: 33790840 - 33793430 Hs.740432 NM_004364.3 77 1-1
CPE carboxypeptidase E Chr4: 166300097 - 166419482 Hs.75360 NM_001873.2 106 7-8
INSM1 Insulinoma-associated 1 Chr.20: 20348765 - 20351593 Hs.89584 NM_002196.2 72 1-1
NEUROD!1 Neuronal differentiation 1 Chr.2: 182541194 - 182545381 Hs.574626 NM_002500.4 110 2-2
NKX2-2 NK2 homeobox 2 Chr.20: 21491648 - 21494664 Hs.516922 NM_002509.3 114 1-2
PCSK1 Proprotein convertase subtilisin/kexin type 1 Chr.5: 95726040 - 95768985 Hs.78977 NM_000439.4 9% 13-14
PNMA2 paraneoplastic Ma antigen 2 Chr.8: 26362196 - 26371483 Hs.591838 NM_007257.5 60 3-3
SCG2 Secretogranin Il Chr.2: 224461658 — 224467121 Hs.516726 NM_003469.4 69 1-2
SCG3 Secretogranin Il Chr.15: 51973550 - 52013223 Hs.232618 NM_001165257.1 92 5-6
SCG5 Secretogranin V Chr.15: 32933870 - 32989298 5156540 NM_001144757.1 84 5-6
SCN3A Sodium channel, voltage-gated, type Ill, alpha subunit ~ Chr.2: 165944030 - 166060577 Hs.435274 NM_001081676.1 71 12-13
SDHD Succinate dehydrogenase complex, subunit D, Chr.11: 111957571 — 111966518 Hs.356270 NM_003002.2 187 4-4
integral membrane protein
ST18 Suppression of tumorigenicity 18 (breast carcinoma) Chr.8: 53023392 — 53322439 Hs.655499 NM_014682.2 69 22-23

(zinc finger protein)

*ALGY = housekeeping gene.

S65/SL/P9LT-L L L/WOD' [RIIUSIPIWIOIG MMM//:d1Yy
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Bioconductor package [85]. To ensure enrichment accuracy,
terms with fewer than 10 assigned genes were not included
in the analysis. Differentially expressed genes were also
assessed at the Reactome pathway level (version 47) [86]
using model-based gene set enrichment analysis [87].

For secondary analyses of selected genes, expression of
genes relevant to carcinoma were assessed using the Sanger
COSMIC database [37], while candidate enteroendocrine
transcription factors were assessed against murine orthologs
identified through transcriptome profiling of highly enriched
populations [38]. The aim of these analyses was to assess
the capacity to which differential expression analysis could
identify previously known oncogenes and transcription
factors.

Protein-protein interaction network analysis
Differentially expressed genes (seed nodes) were map-
ped to human interactions obtained from the BioGRID
database (version 3.2.109, n =15,068 proteins and #n =
124,370 interactions) [88]. High-scoring differential
subnetworks were extracted and visualized to identify
putative signaling regulators (see Additional file 1: Sup-
plementary Methods, Additional file 2: Figure S1, Add-
itional file 3: Figure S2 and Additional file 4: Figure S3
for a full description of the methods). Briefly, for each
differential expression analysis, network nodes were
assigned a weight of —log;o(p-value). Subsequently, all
shortest paths were calculated between seed nodes.
Each shortest path was assigned a weight, expressed as
the sum of nodes on that shortest path. A subnetwork
was extracted by selecting seed nodes and “linker” nodes
that fell on the highest weighted shortest path between
the seed nodes.

Pairwise interaction network similarity was assessed
by network community detection and subsequent calcu-
lation of inter-community similarity. For each network,
protein communities were identified by optimizing the
network modularity [89] (Additional file 1: Supplemen-
tary Methods, Additional file 2: Figure S1, Additional
file 3: Figure S2 and Additional file 4: Figure S3). Simi-
larity between protein communities was expressed using
the Jaccard coefficient, computed as a ratio of the
number of common proteins in any two network com-
munities to the total number of proteins in these
communities. Disparate and identical communities
would correspond to Jaccard coefficient of 0 and 1
respectively.

Secretory protein subnetwork analyses were per-
formed by extracting proteins from highly-scoring NET
subnetworks involved in serotonin metabolism (GO:00
42428, G0O:0042427, GO:0007210, GO:0004993), sub-
stance P signaling (GO:0071861, GO:0007217), and se-
cretion (GO:0007218, GO:0030141).
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Real-time PCR validation (Independent Set)

To validate candidate genes, we measured transcript ex-
pression in an independent Set 3 (SI NETs: n = 13, nor-
mal mucosa: 7 =8) using real-time PCR. RNA was
extracted (TRIZOL®, Invitrogen, USA) [90,91] and real
time RT-PCR analysis was performed using Assays-on-
Demand™ products and the ABI 7900 Sequence Detec-
tion System according to the manufacturer’s suggestions
[90,91]. Primer probe sets are included in Table 4. Cyc-
ling was performed under standard conditions (TagMan
Universal PCR Master Mix Protocol) and data normal-
ized (using ALG9 and the AACt method (Microsoft
Excel). Non-parametric Mann—Whitney and Spearman
correlations were used to compare samples and the
Fisher’s test was used for binary comparison (GraphPad
Prism 5).

Availability of supporting data section
Small intestinal neuroendocrine tumor microarray data-
sets are available from ArrayExpress:

Dataset1
E-GEOD-6272 (http://www.ebi.ac.uk/arrayexpress/exper-
iments/E-GEOD-6272/).

Dataset2
E-TABM-389 (http://embl-ebi.org/arrayexpress/experi-
ments/E-TABM-389/files/).

A supporting document with additional methodology
information as well as 3 figures are included with this
manuscript.

Additional files

Additional file 1: Supplementary Information [80-87,92].

Additional file 2: Figure S1. GeneProfiler pipeline for microarray
processing and quality control, differential expression analysis, and
functional enrichment.

Additional file 3: Figure S2. Overlap in the top 1000 differentially
expressed genes between two datasets of the same tumor expressed as
the Jaccard coefficient of similarity (number of genes in the intersection/
number of genes in the union).

Additional file 4: Figure S3. A toy graph to illustrate the
implementation of our greatest-weighted shortest paths extraction
algorithm. Seed nodes are shown in red, while linker nodes are shown in
grey. The weight of each node is shown as a numerical label.

Additional file 5: Table S1. Differentially expressed genes and
functional enrichment of Sample Set 1.
Additional file 6: Table S2. Differentially expressed genes and
functional enrichment of Sample Set 2.
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