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Abstract

Background: Plant cell walls are complex structures that full-fill many diverse functions during plant growth and
development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and
maintenance. However, functional association for the majority of these gene products remains obscure. One useful
approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach
has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale
measurements may improve the biological inferences.

Results: In this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new
insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly
available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions
from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the
conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the
modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries.
First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively.
Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and
with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to
play a regulatory role in the production of G-rich lignification.

Conclusions: Here, we integrated transcriptomic associations and cell wall metabolism and found that certain
co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining
multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new
insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the
functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical
co-expression approach to allow deeper insight into cell wall biology in rice.
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Background

Gene co-expression analyses can reveal functional relation-
ships between gene products. These types of relationships
are typically explored using some type of similarity meas-
ure, e.g. Pearson’s correlation coefficient (PCC), to quantify
the association between two genes in the genome. The pair-
wise relationships can be represented as a network struc-
ture, in which edges (co-expression relationships) connect
nodes (genes) that generally include the majority of genes
in a given organism’s genome [1]. Based on these associa-
tions, it is possible to predict functional gene clusters, or
groups of genes, that participate in common biological
pathways [2,3]. Moreover, this approach may also be used
to find the conserved orthologous gene clusters across sev-
eral species [4,5], with the implication that the clusters are
involved in similar biological processes.

Many co-expression networks have been constructed in
plants, such as Arabidopsis [1,3,6-11], barley [12], rice
[13,14], poplar [15], tobacco [16], and maize [17]. Several
of these efforts have been implemented as web-based
tools, e.g. the Arabidopsis Co-expression Toolkit (ACT)
[18], ATTED-II [19], AtCOECis [20], RiceArrayNet (Plan-
tArraynet) [14], Co-expressed biological processes (CoP)
database [15], The Gene Co-expression Network Browser
[13], and two AraNets [1,9], and PlaNet [21].

While the co-expression-based approaches have proved
successful for several biological processes, far from all cel-
lular aspects can rely on this type of metrics. Instead, inte-
grative approaches are increasingly applied to extend
knowledge gleaned from one type of dataset. These studies
are typically relying on functional and structural genomics
data, such as high-throughput microarray assays, next-
generation sequencing, and metabolomic and proteomic
technologies [22].

Plant cell walls are mainly composed of cellulose, non-
cellulosic polysaccharides (hemicelluloses and pectin) and
lignin, and represent the most abundant renewable bio-
mass on earth [23]. The primary and secondary cell walls
are typically distinct structures in plant growth and devel-
opment [23], where the primary wall is a flexible matrix
that allows directed cell growth and the secondary wall is
a robust structure surrounding cells that need extra sup-
port for their functions. In general, cellulose makes up al-
most 25-30% of dry matter in grasses [24] and 40-45% in
woody plants [25]. Hemicelluloses are polysaccharides that
contain xyloglucans, xylans, mannans and glucomannans,
and p-(1 — 3,1 — 4)-glucans, whereas pectins are diversi-
fied compounds that mainly are present in primary walls
[26]. Lastly, the polyphenolic molecule lignin is an
amorphous polymer of phenylpropane units with three
monomers: p-hydroxyphenyl (H), guaiacyl (G), and syrin-
gyl (S) [27,28], laid down during secondary wall formation.

More than one thousand gene products have been proposed
to be dedicated to plant cell wall biogenesis and modification
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[29-31]. During the past years, characterization of plant cell
wall mutants has revealed dozens of genes involved in cell
wall synthesis and modification [28,32-41]. However, the
functions of the majority of cell wall related genes remain
obscure, in particular in plant species other than the main
model organism Arabidopsis.

Rice (Oryza sativa) is one of the most important food
crops worldwide and serves as a model plant for cereal
genomic research [42,43]. Genomic resources in rice have
developed rapidly in recent years, in part due to the high
quality genome sequence. Genome-wide expression data
of 39 tissue/organs covering the life cycle of rice has been
obtained and deposited in the public database [44]. To
date, most insights into cell wall related properties of rice
have been obtained through the characterization of mech-
anical strength change in stems in forward genetic screens
[45,46]. These studies have revealed some mechanistic as-
pects of cell wall biosynthesis and identified the affected
genes in rice [47]. However, genetic screens are usually
quite involved, and a more rapid way of inferring relation-
ships between gene products and cell wall characteristics
would certainly be advantageous. In this study, we concen-
trated on establishing a platform that combines transcrip-
tomic associations with cell wall characteristics to infer
processes that are connected to cell wall biosynthesis and
re-modeling in rice.

Results and discussion
Data integration and network construction
To construct the rice gene co-expression network, micro-
array datasets from 39 tissues, covering almost the whole
life cycle of rice, were initially collected from CREP (Col-
lections of Rice Expression Profiling, http://crep.ncpgr.cn).
After data quality control and removal of non-specific
binding probes, a total of 38,868 probe sets were used for
mapping to the TIGR database using the Nipponbare gen-
ome sequence as reference. This resulted in 31,574 probe
sets each having at least six perfect match probes mapped
as unique genes, and thus termed by the corresponding
genes. As expression for any given gene is measured by
multiple probes (Additional file 1), we summarized the
information using R function collapseRows [48,49]. The
resulting expression matrix contained 33,204 genes or
probe sets. To be able to statistically compare the expres-
sion matrix to the cell wall data, we decided to construct a
weighted correlation network [50] based on the 33,204
probes for the 29 tissues that we also used for cell wall ana-
lyses. Here, the weights of edges in the corresponding co-
expression network correspond to the degree of similarity
of the expression profiles of two adjacent nodes/genes.
Subsequently, a clustering approach of the weighted
correlation network was undertaken, which resulted in
56 groups of highly co-expressed genes, also referred to
as gene modules (Additional file 2). Hence, modules


http://crep.ncpgr.cn

Guo et al. BMC Genomics 2014, 15:596
http://www.biomedcentral.com/1471-2164/15/596

were defined as groups of genes which exhibit a high
intra-module topological overlap [51]. The modules were
denoted by numbers from zero to 55 and prefixed with
“ME” referring to “module eigengene” [50]. Obviously,
the numbers of genes (probe sets) per module differed,
and more than half of the modules contained less than
500 genes (probe sets) (Additional file 3A). To explore
the co-expression relationships between modules, a
module’s representative expression pattern was summa-
rized using the first principal component of all the mod-
ule’s gene members. Further, all module eigengenes were
clustered by using complete linkage method (Additional
file 3B), which characterizes the similarity structure
between the modules.

Biological relevance and connectivity scores of

network modules

To assess the functional relevance of the gene modules,
and to make sure that the co-expressed modules reflect
biologically relevant information, we next examined
whether certain ontology terms were over-represented in
the modules. Gene ontology (GO) enrichment analysis
was therefore performed using a weighted method and
Fisher’s exact test [52] (Additional file 4). The analysis
showed that a total of 4,014 enriched terms and 1,175
unique terms were identified among the modules at p <
0.05. Notably, a significant over-representation of the
terms cellulose and non-cellulosic polysaccharide bio-
synthesis was observed for Module 24 (with 406 genes
or probe sets) and Module 44 (with 136 genes or probe
sets) (Additional file 4). Based on the representation of
KEGG reference pathway maps and BRITE functional
hierarchies [53], we furthermore performed a functional
enrichment analysis of KEGG Orthology for each mod-
ule using hypergeometric tests. Module 24 and Module
44 were enriched in glycan biosynthesis and metabolism,
consistent with the findings that genes in Module 24
and Module 44 may participate in cellulose and non-
cellulosic biosynthesis as observed in the GO enrich-
ment analysis. Detailed significant associations for each
module are supplied in Additional file 5.

Highly connected genes, or hubs, are thought to play a
central role in biological networks. Connectivity has been
found as an important complementary gene screening
variable for finding biologically significant genes in par-
ticular biological processes [54]. Intramodular connectivity
(kWithin) is defined as the gene connectivity inside a
given module. In weighted networks, intramodular con-
nectivity equals the sum of connection weights of a node
with all other nodes inside module. In this study, we de-
fined whole network connectivity kTotal, and external
module connectivity (kOut = kTotal-kWithin) for any given
node. To find genes of high connectivity (i.e. ‘hubs’) in con-
sensus modules, we evaluated the module eigengene-based
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connectivity (kME) as the correlation between the gene ex-
pression and the module eigengene [55]. We also calculated
all connectivity types in all models, and the genes sorted
out by their kME were listed in Additional file 6.

Cell wall composition analysis
In an attempt to assign certain cell wall related functions
to the modules, we harvested material from the 29 tissues
that corresponded to the microarray data sets above. We
sequentially extracted wall polysaccharides including pec-
tin with ammonium oxalate, hemicelluloses with KOH,
and cellulose in the remaining pellet [56,57]. The pectin
was present at very low levels, or absent, in most rice tis-
sues, and we therefore did not use the pectin data for any
further investigation in this work. In summary, the cell
wall composition varied greatly across the 29 tissues
(Figure 1; Additional file 7). Cellulose content ranged
from 0.29% (endosperml) to 31.33% of dry matter
(palea/lemma) (Figure 1A). Three major monosaccharides
of hemicelluloses also varied significantly [58], with xylose
(Xyl) levels ranging from 3.49 (endosperml) to 245.82 mg/
g (palea/lemma), arabinose (Ara) levels ranging from 3.26
(endosperml) to 41.07 mg/g (callus), and galactose (Gal)
levels ranging from 0.03 (endosperml) to 14.81 mg/g
(callus) (Figure 1B,C,D; Additional file 7). The main constit-
uents of lignin, ie. the H, G and S monolignols, also
showed major changes among tissues; p-hydroxyphenyl (H)
levels varied from 4.93 (endosperml) to 71.72 pmol/g
(palea/lemma), guaiacyl (G) ranged from 1.18 (endosperm1)
to 107.19 pmol/g (spikelet) and syringyl (S) ranged from
1.06 (endosperm2) to 25.42 pmol/g (old stem) (Figure 2;
Additional file 7). Hence, the plant cell wall composition
displayed major differences across the different rice tissues.
To assess the degree of correlation of the cell wall com-
ponents across the tissues, we performed a correlation
analysis of the glucose of cellulose, monosaccharides of
hemicelluloses and monomers of lignin (Additional file 8).
Interestingly, cellulose was significantly positively corre-
lated with Xyl (0.89) and the three monolignols (H: 0.81,
S: 0.70 and G: 0.71) with student asymptotic p-value at
p <0.01, whereas Ara and Gal exhibited a significant posi-
tive correlation (0.81) at p<0.01. Notably, the three
monolignols were also positively correlated to each other
(0.81, 0.89 and 0.76) at p <0.01. These data suggest that
certain cell wall components are produced in a coordi-
nated fashion in rice.

Connecting module eigenvectors and cell wall datasets
To investigate the associations between the co-expressed
gene modules and the cell wall composition we con-
ducted correlation analyses between the previously de-
rived module representative eigengenes and the cell wall
composition data using PCC (Figure 3).
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Figure 2 Monolignol content across rice tissues. Three monolignols of 29 tissues in rice were measured. These were p-hydroxybenzaldehyde

(H), vanillin (G) and syringaldehyde (S).
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Figure 3 Certain modules correlate with specific cell wall content in rice. Correlative analysis between cell wall composition and module
eigenvectors. Boxes contain Pearson correlation coefficients and their associated P values. Color scales indicated the correlation coefficient levels: red and
green for high and low correlation level, respectively. The hierarchical clusters of Module eigenvector were obtained using the agglomeration method of
‘complete linkage’ based on the Euclidean distances of all Module eigenvector similarities in cell wall characteristics. The clades are, furthermore, color
coded (colored lines above the clades). These colors are used to denote cell wall characteristics in the module based co-expression network depicted

A cell wall related process that has extensively been used
for co-expression analyses is secondary wall synthesis [59].
As this process also should be associated with distinct cell
wall characteristics, i.e. cellulose, xylan and lignin, we first
investigated whether such patterns were evident from our
cell wall analyses, and secondly, if these characteristics
correlated positively with any modules. Notably, Module
44 displayed a significantly positive correlation with cellu-
lose, xylose, and H and S monolignols (p < 0.001), suggest-
ing that the module plays a major role in the synthesis of
these components. Strikingly, the genes contained in
Module 44 included cellulose synthases (CesAs), OsCO-
BRA, chitinase-like (CTL) and other genes that have been
assigned to cellulose biosynthesis (Additional file 6A) [42].
Furthermore, several of the genes included in this module
have been obtained via forward genetic screens for brittle
culms, such as OsBCI, OsBC7, OsBCl1 [45,47,60,61].
Based on these observations, and the fact that the clos-
est homologs for many of the genes in this module are
involved in secondary wall formation in Arabidopsis,
we assumed that Module 44 is associated with second-
ary wall synthesis. These data were supported by
the fact that the rice orthologs of the NAC transcrip-
tion factor (TF) SND2 (LOC_Os05g48850) and the
MYB TFs, AtMYB42 (LOC_0s09¢36250), AtMYB52/54

(LOC_0s03g51110), AtMYBS58/63 (LOC_0s04g50770,
LOC_0s02¢46780) and AtMYB103 (LOC_0Os08g05520)
were included in this module. These TFs have been shown
to regulate secondary wall deposition in Arabidopsis [62-64].
Surprisingly, the two well-known secondary wall TFs
(OsSWN2/LOC_0s08g02300, OsSWN1/LOC_Os06g04090)
were found in modules 21 and 51. Although these mod-
ules did not show any significant correlation with cell wall
polymers in this study, both modules are in close vicinity
of modules 24 and 44 (Figure 4; ie. somewhat co-
expressed with these modules) indicative of their role in
cell wall formation [65,66]. Several genes were identified
for glucuronoxylan biosynthesis, such as the rice homo-
logs for AtIRX14L (LOC_Os06g47340, GT43 family, kME
0.776) [67], AtIRX15L (LOC_Os04¢55640, DUF 579, kME
0.717) [68], and the rice xylosyltransferase OsGT61-1
(LOC_0s02¢22380, kME 0.714) [69] in module 44. The
strong positive correlation between the module eigen-
gene and the cell wall content, which typified secondary
wall content, supports that our combined large-scale
dataset strategy is useful in obtaining meaningful bio-
logical information.

In an attempt to assess how the cell wall characteris-
tics were globally distributed over the co-expressed
modules, we color-coded the cell wall-related clades
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MES0

Only ontology terms with a significance score above 0.001 are shown.

Figure 4 Rice module-related co-expression network, and MapMan ontology term enrichment for Modules 34 and 42. (Left panel)
Module based gene co-expression network in rice. Different colors of the nodes (modules) indicate different cell wall composition associated with the
module eigenvectors. Colors as indicated in Figure 3 (clade color code). (Right panel) Pie charts depicting ontology term enrichment for genes in
Modules 34 (upper pie) and 42 (lower pie). Only major Bin terms have been used for pie construction. For complete set, see Additional file 9A and B.
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obtained in the dendrogram in Figure 3 (see clade color-
ation in this figure). Figure 4 shows that the different cell
wall characteristics nicely groups together in a module
meta-network, i.e. a network that displays the co-expression
relationships between the modules. These data corroborate
that certain groups of co-expressed modules may be linked
to distinct cell wall features. For example, the purple well-
grouped modules typically correlate with high levels of gal-
actose and arabinose (compare Figures 3 and 4).

Module 24 genes participate in primary cell wall

cellulose formation

Based on the GO enrichment analysis, Module 24 was
also identified as likely to be associated with cellulose
biosynthesis (Additional file 4; Figures 3 and 4). Notably,
many genes for primary wall cellulose biosynthesis were
included in this module (Additional file 6B), such as
OsCESA1L 3, 5, 8, OsCSLF6 and OsCOBRA [42]. Interest-
ingly, orthologous genes to the once associated with xylan
backbone elongation in Arabidopsis [70,71] were also iden-
tified in Module 24, including AtRX9 (LOC_Os05¢03174,
GT43 family), AtIRX9L (LOC_Os01g48440, GT43 family),
AtIRX10 (LOC_Os01g70190/LOC_Os01g70200/LOC_Os10g
10080, GT47 family) and AtIRX14 (LOC_Os04¢55670,

GT43 family). Here, it is important to bear in mind that the
rice primary walls, in contrast to Arabidopsis, contain
large amounts of glucuronoarabinoxylan. Curiously, four
lignin biosynthesis related genes were also found in this
module, i.e. OsCCR1/IRX4 (LOC_0s08¢34280) [72], OsC-
COMT (LOC_0Os08g38900), Os4CL1 (LOC_Os06g44620),
and OsCOMT (LOC_Os08g06100). One possible explan-
ation for this is that the co-expressed gene vicinities for
primary and secondary wall synthesis are more closely
connected in monocots than in dicots (observations made
from PlaNet) [21]. Hence, it is plausible that the lignin re-
lated genes in module 24, which represent rather early
steps in the lignin biosynthesis, represent connecting
elements between the primary and secondary wall produc-
tion. Importantly, Arabidopsis homologs for several TFs
contained in Module 24 have been reported to regulate
plant cell wall formation in Arabidopsis [73-76], includ-
ing AtMYB86 (LOC _Os05g46610), AtMYB61 (LOC_
0s07g44090), ANAC073/SND2 (LOC_0Os01g48130) and
AtVND4 (LOC_0Os02¢42970). In addition, LOC_Os0
3¢42630 and LOC_0Os04g43560 are also present in this
module and correspond most closely with ANAC058
and ANACO074 in Arabidopsis. Although, these TFs
have not been associated with cell wall formation
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previously they may represent interesting candidates
for such functions. Intriguingly, several of the TFs in
this module typically regulate features associated with
secondary wall synthesis, corroborating a close con-
nection between primary and secondary wall synthesis
in grasses. As Module 24 is significantly correlated
with cellulose and other non-cellulosic cell wall mono-
mers, and given that several orthologs correlate with
primary wall cellulose synthesis in Arabidopsis, we
conclude that Module 24 is enriched for primary wall
cellulose related functions.

Module association with other cell wall characteristics

The cell wall content and gene co-expression supported a
role for the genes in Modules 24 and 44 in cellulose synthe-
sis during primary and secondary wall synthesis, respect-
ively. These findings are consistent with previous findings
[5]. This also suggests that the cell wall characteristics for a
module may be complementary to the co-expression ap-
proach to assign function(s) for the module. We therefore
argued that other modules that have tight positive correl-
ation with certain cell wall characteristics (Figure 3) can be
assigned to such functions with the additional aid of co-
expression. Several modules are strongly associated with
specific cell wall characteristics, including Modules 7, 17,
34, 37, 39, 40, and 42. Module 34 has a strong positive cor-
relation with Ara and Gal cell wall content (Figure 3), but
little is known about the function of the genes associated
with this Module. To first investigate whether the genes in-
cluded in the Module are associated with cell wall synthesis
or modifications, we analyzed the genes for MapMan ontol-
ogy term associations [77]. Figure 4 shows a pie chart of
significant MapMan terms associated with Module 34.
Interestingly, the term cell wall was among the most highly
enriched terms for the genes included in the Module. More
specifically, the term hemicellulose synthesis was highly sig-
nificantly enriched (p-value < 3.6e-17) as was the term cell
wall modification (p-value < 6.4e-12; Additional file 9A).
These terms corresponds very well with the positive cor-
relation of the Module with Gal and Ara content, which
are typically found associated with hemicelluloses in
grass species. Moreover, when we investigated the anno-
tation of the genes included in Module 34, we discovered
that many of the genes were associated with glycosyltrans-
ferase and other cell wall annotation, including expansin
(LOC_0s10g30340, LOC_0s01g14650, LOC_Os02¢16800,
LOC_0s02¢16780, LOC_0s02g¢16730, LOC_0s03g06010),
endoglucanse (LOC_0s08g12800, LOC_Os11gi4410, LO
C_0s04¢36610) and peroxidase (LOC_0Os07¢44550, LOC_
0s08¢42030, LOC_0s05g04410, LOC_0s03g02939, LOC_
Os01g16450) activities. More specifically, we found that
many xyloglucan associated functions, including xyloglu-
can galactosyltransferase (LOC_Os10¢g32170, LOC_Os07g0
9670), fucosyltransferase (LOC_0s09¢28460, LOC_OsO
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2¢52630, LOC_0s08g24750, LOC_Os06¢g10910), and CS
LC3-cellulose synthase-like (LOC_Os08¢15420) families,
where present in the Module. While xyloglucan is not a
prominent wall component in grasses, it is likely that these
genes play important functions in hemicellulose synthesis
in these species. Also, as Ara and Gal are two major
monosaccharides branched in xylans in grasses [26,57,58],
the Ara and Gal substitution degrees could be determi-
nants in hemicellulosic structures. In addition, expansins
are typically associated with modifying interactions be-
tween hemicelluloses and cellulose, and therefore induce
extensibility in the wall matrix. Hence, it appears likely
that many of the components included in Module 34
would have a direct influence on the formation and modi-
fication of hemicellulose polymers and interactions.
Module 42 was, similar to Module 34, also signifi-
cantly positively correlated with Ara and Gal content
(Figure 3). Similar to analyses done for Module 34, we
investigated the genes in Module 42 for significant Map-
Man ontology enrichments (Figure 4; Additional file 9B).
From this analysis it became evident that terms like cell
wall degradation was prominent (p-value < 1.4e-05). In
particular, many glycosyl hydrolases, such as OsGH3
(LOC_0s02¢51620), OsGH16 (LOC_0Os10g39840), OsGH9
(LOC_0s01g12070/LOC_0s02g03120), OsGH17 (LOC_Os
03g62860) and OsGH3I (LOC_0Os01g03950) are part of
this Module. Similar to Module 34, we also found several
expansin genes, including LOC_0s05¢15690, LOC_Os
07g29290, and LOC_Os10g40720. These data support a
role in cell wall modification and degradation for Module
42. To analyze the associations between the Module com-
ponents and the cell wall content a bit more in detail, we
calculated PCC between the genes, or probes, with the cell
wall components and student asymptotic p-values. The
more likely candidate genes were sorted out based on the
correlative coefficient p values relatively lower than 75% of
all student asymptotic p-values according to cell wall com-
ponent. As a result, a subgroup of 13 genes from Module
42 showed a high correlation with Ara level and another
subgroup of 13 genes correlated significantly with Gal
content (Additional file 6D). Notably, another 32 genes
in Module 42 that were not part of the two previous
subgroups displayed a correlation with both Ara and
Gal (Ara + Gal) levels. Notably, several OsGH9 family
members have recently been identified with a role in
cellulose crystallinity modification [43], and the Ara
substitution degree of xylans in Miscanthus displays a
significantly negative correlation with the cellulose crys-
talline index [58]. Perhaps these relationships are also
reflected in the Module 42 correlation with Ara. Taken
together, it is plausible that the genes in Module 42
could be associated with cell wall modification and deg-
radation of cell wall polymers, particularly concerning
hemicelluloses. While the Module included several cell
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wall related genes, most notably glucanses, most of the
other genes have not previously been associated with
cell wall related functions. We find it likely that these
genes might reflect underlying growth programs that
need to be coordinated with cell wall modifications.
These relationships will certainly be interesting to ex-
plore in more detail in the future.

Module 40 displayed a significantly positive correlation
with cellulose, Xyl, and H or S, which is similar to Module
44 (Figure 3). However, the majority of genes contained in
this module have not been associated with cell wall syn-
thesis or modification yet. To investigate the potential
function in cell wall formation process of genes or probes
included in this Module, we also performed a correlation
analysis between the genes or probes with the cell wall
components (cellulose, Xyl, H, S) and calculated the stu-
dent asymptotic p-values. We then sorted the p-values cal-
culated between genes or probes expression values with
the cell wall components, individually. Genes or probes
got lower p-values than 75% of all student asymptotic p-
values calculated were screened out as candidate genes ac-
cording to the cell wall components. The selected genes
were then classified into ten groups. A subgroup of six
genes exhibited a high correlation with cellulose, while an-
other subgroup that held seven genes correlated signifi-
cantly with xylose (Additional file 6C). Another four genes
that were not found in the previous subgroups exhibited a
correlation with both cellulose and Xyl levels (Cel + Xyl),
suggesting a potential role for the corresponding gene
products in wall synthesis or modification. In addition, a
NAC TF (LOC_0s03g01870) was associated with sub-
group Multi which may play multiple roles in cell wall
synthesis or modification. As NAC TFs have been re-
ported as key regulators of secondary cell wall synthesis in
Arabidopsis [64], we propose that the OsNAC gene may
similarly play a regulatory role in the cell wall networks as-
sociated with Module 40. Hence, our data suggested that
Module 40 may participate in re-organization of the
cell wall.

Furthermore, 32 genes in module 46 were highly corre-
lated with G-monolignols based on the student asymptotic
p-values calculated between the G content with the ex-
pression values of genes, or probes (Figure 3; Additional
file 6E). However, none of these genes encode the enzymes
involved in the lignin biosynthesis pathways [27]. Notably,
the OsMYB26 TF (LOC_0Os01g51260) of this module cor-
responds to the Arabidopsis MYB TF AT3G13890 (also
known as AtMYB26) (Additional file 6E). This TF has
been identified as an activator of secondary wall thicken-
ing [78,79]. Hence, we hypothesize that Module 46 may be
involved in the regulation of secondary cell walls, in par-
ticular for the production of G-rich lignification.

To further find more complex associations between
gene modules represented by their eigengenes and
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cell wall properties, we used canonical correlation ana-
lysis (CCA). CCA is a multivariate statistical technique
employed for studying associations between two sets of
variables [80], which are represented as two matrices X
and Y. Instead of analyzing pair-wise similarities of indi-
vidual variables as it is the case for Pearson’s correl-
ation coefficient, CCA finds two linear combinations for
each of the two matrices X and Y, which are maximally
correlated and was used here to find association be-
tween cell wall related measurements and modules of
transcripts represented by eigengenes.

Clear similarities resulting from the CCA between
eigengenes and cell wall properties are visualized in a rele-
vance network (Figure 5; ¢f Methods). Here, cell wall re-
lated features are represented as circles, while eigengenes
are depicted by (rounded) rectangles. An edge between a
circle and a hexagon illustrates an association found by
CCA (blue colored edges show negative, and red colored
edges, positive association, respectively).

Again, Modules 40 and 44 are clearly related to each
other (compare cell wall characteristics and gene module
co-expression network; Figures 3 and 4) and are associated
with typical secondary wall traits, such as lignin monomers,
cellulose and xylose (Figure 5). Several modules are also
positively associated with galactose, including the modules
17, 31, 34, 39, and 42, perhaps indicative of some primary
wall hemicellulose synthesis and plant growth as indicated
above. Interestingly, module 54 showed a negative associ-
ation with several cell wall traits, including xylose, arabin-
ose, cellulose and G lignin monomers (Figures 3 and 5).
This could perhaps indicate that the genes associated with
this module negatively regulate the deposition of cell walls
in general.

Conclusions

We integrated transcriptomic associations and cell wall
metabolism for 29 rice tissues and found that certain
co-expressed gene modules are positively correlated
with distinct cell wall characteristics. In addition to con-
firmatory relationships, i.e. that primary and secondary
wall gene modules were correlated with cellulose syn-
thesis, cell wall related characteristics for several other
modules could be inferred. Based on these relationships
we propose a draft network for cell wall metabolomics
(Figure 5). This framework may lie as a foundation for
cell wall transcriptional regulatory and biosynthesis net-
work in monocots and beyond. It is important to note
that these inferences would have been difficult to
achieve by simply looking at co-expression alone. We
therefore propose that combining multiple data-types,
such as coordinated transcription and cell wall analyses,
may be a useful approach to glean new insight into bio-
logical processes.
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and red colored edges, positive association, respectively).

Figure 5 A model on the module network for cell wall metabolomics. Central modules 44 exhibited a dominant function on cellulose
biosynthesis from primary to secondary cell wall formation, followed with the module 40 involved in re-organization of cell wall; Modules 34 and 42
displayed a distinct modification in hemicellulosic formation and degradation; Cell wall related features are represented as circles, while eigengenes are
depicted by (rounded) rectangles. An edge between a circle and a hexagon illustrates an association found by CCA (blue colored edges show negative,

Methods

Data integration and network construction

A total of 98 Affymetrix Rice GeneChip Genome Array
microarray datasets were obtained from CREP (Collec-
tions of Rice Expression Profiling, http://crep.ncpgr.cn)
from an indica variety (Zhenshan 97). This dataset com-
prises transcriptomics profiling of 39 different tissues
(organs) covering the whole life cycle of rice. Note, that
those samples which involve hormone treatments (NAA,
GA3 and KA) and additional seven samples (Additional
file 7) were discarded to match the tissues from which
cell walls were measured. Before mapping all probe sets
to the annotated rice gene models, those probe sets that
exhibited expression values lower than 80% of the ex-
pression values for the negative control probe sets on
the microarray in any of 39 tissues were removed and
were assumed as background intensities (noise). This fil-
tering step resulted in a total number of 38,868 probe
sets for further analysis. Successively, the BLAST-like
alignment tool (BLAT) developed by Kent [81] was used
to align the nucleotide sequences of the remaining probe
sets to the Michigan State University (MSU) Rice Genome
Annotation version 6.0 [82] which currently contains
56,797 protein-coding gene models (BLAT parameters
used: minldentity = 100, minMatch = 1, stepSize = 5). Sub-
sequently, 31,574 probe sets could be mapped to a unique
genomic location with at least six perfect match probes
(more than 50% of the 11 spotted probe-pairs per

sequence). The probe sets in the expression matrix were
annotated with the corresponding genes names; probe sets
which could not be mapped to genes remain annotated
with their original probe names. Further, to obtain a single
expression level estimate per gene based on multiple
probes the collapseRow function implemented in the
WGCNA R package [48,50,83] was used to summarize the
probe intensities. The resulting microarray expression
matrix contained 33,204 genes or probe sets (i.e. where no
mapping to genomic location was found).

To finally construct a genome wide rice co-expression
network, the following approach was conducted: Ini-
tially, the pairwise similarities of all 33,204 genes or
probe sets based on the expression profiles across the
29 tissues were quantified using PCC. Further, the ap-
proach developed by Langfelder and Horvath [50] is
used to derive a weighted co-expression network. More
specifically, a similarity matrix S was constructed in
which the entry S;; corresponds to the absolute value of
the pairwise PCC:

Sy = |cor(xi,xj)} (1)

where x; and x; represent of the expression profiles for
genes or probe sets i and j,respectively.

Furthermore, the similarity matrix S was transformed
into a weighted adjacency matrix, denoted by A. Here,
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the entry Aj; is obtained by raising the previously derived
co-expression similarity S; to a power, 3, f > =1:

Ay -y (2)

The power, B, used to transform the similarity matrix
is selected such that to the resulting network (described
by its adjacency matrix) best approximates a scale-free
topology — a defining network property of biological net-
works [84,85]. In the case of the rice genome wide co-
expression network, the parameter =7 was chosen
(Additional file 10).

Gene modules were defined as sets of nodes in the co-
expression network, i.e. genes and probe sets, with a high
topological overlap [50,51]. The topological overlap meas-
ure (TOM) between the i™ and j™ node is defined as

Z AAy + Ay

uzi,j

TOM =
min{K;, K} + 1-A;

(3)

where Z Aj Ay denotes the number of nodes to which
uzi,j
both nodes i and j are connected by an edge, K; = Z ajj
i
denotes the sum of edge weights, ie. the connection
strengths, between i™ gene and the other genes. Further,
1-TOM denotes the TOM based dissimilarity measure (1-
TOM) which was used for hierarchical clustering. Finally,
gene modules are obtained by using dynamic tree cutting
algorithm on the resulting dendrogram. This outlined pro-
cedure were carried out using the blockwiseModule
method implemented in the WGCNA R package (parame-
ters: maxBlockSize = 20000, power =7, minModuleSize =
50, reassignThreshold = 0, mergeCutHeight = 0.20) [83].

Connectivity scores of rice genes

Highly connected nodes in a network, commonly termed
hubs, are thought to play a central role in the case of bio-
logical networks. The connectivity of a node has been
used as a defining property for finding biologically relevant
genes in co-expression networks [54]. Here, the intra-
modular connectivity (kWithin) is used as a measure of
centralization of genes. It is defined as the degree of the
node corresponding to a gene inside a given module of
the genome wide rice co-expression network [54]. The
parameter kTotal was defined as the whole network con-
nectivity for genes, reported as the sum of its connection
strengths with all other genes in the network. A module’s
eigengene-based connectivity (kME) was defined as the
correlation between a gene expression value and the mod-
ule eigengene (the average module expression value for an
individual), which can be derived using R function consen-
susKME in the WGCNA package [50,55].
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Plant material collection and cell wall composition
determination

The 29 tissues, or organs, of Zhenshan 97, indica variety
were harvested at 16:00-18:00 of the day according to
Wang et al. [44]. All samples were dried at 50°C after in-
activation at 105°C for 5 min. The dried tissues were
ground through a 40 mesh screen and stored in a dry
container until use.

Plant cell wall fractionation procedure and cell wall
composition analysis were described by Peng et al. [56]
with modification by Li et al. [58]. The crude cell wall
material was suspended in 0.5% (w/v) ammonium oxal-
ate and heated for 1 h in a boiling water bath (super-
natant referred to as pectins). The remaining pellet was
first re-suspended in 4 M KOH containing 1.0 mg/mL so-
dium borohydride for 1 h at 25°C,, and then the combined
supernatant was neutralized, dialyzed and lyophilized (re-
ferred to as hemicelluloses). The non-KOH-extractable
residue defined as crude cellulose, was further extracted
with acetic:nitric acids:water (8:1:2) for 1 h at 100°C, and
the remaining pellet was defined as cellulose. Cellulose was
analyzed by anthrone/H,SO, method. Monosaccharides
(xylose, arabinose, galactose) of hemicelluloses were deter-
mined by GC-MS [58].

Three monolignols were detected by HPLC [57]. All the
samples were extracted with benzene:ethanol (2:1, v/v) in
a Soxhlet for 4 h, the remaining pellet was then collected
as cell wall residue (CWR). The procedure of nitrobenzene
oxidation of lignin was carried out as follows: First, 0.05 g
CWR was added with 5 mL 2 M NaOH and 0.5 mL nitro-
benzene, and a stir bar was put into a 25 mL Teflon gasket
in a stainless steel bomb, and the bomb was sealed tightly
and heated at 170°C (oil bath) for 3.5 h and stirred at
20 rpm. Then, the bomb was cooled with cold water, the
chromatographic internal standard (ethyl vanillin) was
added to the oxidation mixture. To remove nitrobenzene
and its reduction byproducts, the alkaline oxidation mix-
ture was washed 3 times with 30 mL CH,CI,/ethyl acetate
mixture (1/1, v/v).The alkaline solution was acidified to
pH 3.0-4.0 with 6 M HCl, and then extracted with CH,CL,/
ethyl acetate (3x30 mL) to obtain the lignin oxidation
products which were in the organic phase. The organic ex-
tracts were evaporated to dryness under reduced pressure
40°C. Finally, the oxidation products were dissolved in
10 mL chromatographic pure methanol. All experiments
were carried out in triplicate. Standard chemicals: p-
Hydroxybenzaldehyde(H), vanillin(G) and syringaldehyde
(S) were purchased from Sinopharm Chemical Reagent
Co., Ltd.

Identification of the cell wall-related modules through
functional enrichment

GO terms of probes and genes were derived from
agriGO [86]. To elucidate key biological processes,
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rather than conserved particular molecular functions,
the GO sub-ontology ‘biological process’ (GO-BP) was
used for the gene-set enrichment analysis [87]. The en-
richment analysis of particular GO-BP terms was per-
formed using a weighted method in combination with
Fisher’s exact test which is provided by topGO package
[52]. KEGG ontology (KO) from the KEGG database
(http://www.genome.jp/kegg/) [53] was additionally ob-
tained and RAP IDs were converted to TIGR IDs using
the RAP-DB ID converter tool (http://rapdb.dna.affrc.go.
jp/tools/converter) [88]. KO enrichment was calculated
by using hyper geometric test [89].

Analysis of the cell wall-related modules through
physiologic traits

For each gene module, the module eigengenes, ie. the first
principle component of the expression profiles of all the
modules members, was derived as a representative expres-
sion profile for each module. Module eigengenes were calcu-
lated through the WGCNA R package [50,83]. Subsequently,
the association of module eigengenes and the measured
physiological traits was determined as follows: for each mod-
ule, the eigengene (ME) was tested for significant associa-
tions with the external traits. In case such an association is
present, subsequently, a correlation analysis was performed
between all of the modules genes and the cell wall compo-
nents individually to study finer substructure of particular
gene/external trait relationships. In addition to the degree of
correlation to the trait, the genes intra-modular connectivity
is used to rank putative gene candidates.

Canonical correlations of cell wall traits and modules
eigengenes

The set of cell wall features is represented by the matrix X
in which rows correspond to the 29 tissues and columns
correspond to the 7 cell wall measurements. Likewise,
matrix Y of denotes the set of eigengenes whereas rows also
correspond to the 29 tissues and columns correspond to

T
the obtained 56 eigengenes. In CCA, a' = (a}, ...,a}?)

T
and b' = (b}, s b;) denote the two basis vectors, such

that the correlation between the projections of the vari-
ables — columns in X and Y — onto these basis vectors
given by U' = Xa' = a}X' + a3X* + ... + a,X” and V'
=Yb' =bY +DYY? 4.+ b}]Yq are mutually maxi-
mized: p, = cor(U", V') = max, , cor(Xa',Yb").
These derived linear projections U' and V* are called
the first canonical variates. To investigate association be-
tween individual variables, i.e. eigengenes and cell wall fea-
tures the similarity between variables in X and Y is
quantified based on the Pearson correlations of their initial
representation and the determined canonical variates. This
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form of correlations is known as canonical structure cor-
relations [90] and can be further visualized by means of a
relevance network [91]. Both, the CCA analysis as well the
network are derived using the mixOmics package (http://
www.math.univ-toulouse.fr/~biostat/mixOmics/) [92].
As a threshold for deriving edges between eigengenes and
cell wall features in the relevance network, rcc4 = 0.5 for
the absolute values of association between variables was
chosen further ensuring that all 7 cell wall parameters are
not isolated in this network.

Availability of supporting data

All data sets supporting the results of this article are in-
cluded within the article and also provided in the reposi-
tory hosted by LabArchives, LLC (http://www.labarchives.
com/) with DOL http://dx.doi.org/10.6070/HANVIG6V.

Additional files

Additional file 1: The distribution of probes mapped to genes.
Columns in red enclosure indicate the different probes mapped to the
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Additional file 2: Gene modules with rice locus identifiers, kME
value of interested modules, kTotal, kWithin and kOut for each
gene or probe set.

Additional file 3: Module eigenvector clustering and number of
genes (probes) in each module. A. Distribution of genes (probes) in each
module, Red line indicated number of 500 genes. B. The co-expression
network with 56 modules, and the eigenvectors of each module, calculated
and clustered using the WGCNA software.

Additional file 4: Gene ontology enrichment analysis of all modules
at p <0.05.

Additional file 5: KEGG enrichment analysis of all gene
co-expression modules at p < 0.05.

Additional file 6: Genes/Probes and their orthologs involved in
Module 44, 24, 40, 42, 46 with all k-values (kTotal, kWithin kOut and
kME except 6B) and predict function were listed. Ara:Arabinose
related function; Gal:Galatose synthesis;Multi:Mutile roles;NA: None
mapped;NF:None ortholog genes.

Additional file 7: Variation of cell wall components in rice.

Additional file 8: Correlation coefficient values between cell wall
components.

Additional file 9: MapMan ontology term enrichment for Module
34 and 42 genes.

Additional file 10: Analysis of network topology through different
soft-thresholding powers. Left panel displays the scale-free fit index as
a function of the soft-thresholding power. Right panel shows the mean

connectivity (degree) as a function of the soft-thresholding power.
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