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Abstract

Background: An important challenge in cancer biology is to computationally screen mutations in cancer cells,
separating those that might drive cancer initiation and progression, from the much larger number of bystanders. Since
mutations are large in number and diverse in type, the frequency of any particular mutation pattern across a set of
samples is low. This makes statistical distinctions and reproducibility across different populations difficult to establish.

Results: In this paper we develop a novel method that promises to partially ameliorate these problems. The basic idea is
although mutations are highly heterogeneous and vary from one sample to another, the processes that are disrupted
when cells undergo transformation tend to be invariant across a population for a particular cancer or cancer subtype.
Specifically, we focus on finding mutated pathway-groups that are invariant across samples of breast cancer subtypes.
The identification of informative pathway-groups consists of two steps. The first is identification of pathways significantly
enriched in genes containing non-synonymous mutations; the second uses pathways so identified to find groups that
are functionally related in the largest number of samples. An application to 4 subtypes of breast cancer identified
pathway-groups that can highly explicate a particular subtype and rich in processes associated with transformation.

Conclusions: In contrast to previous methods that identify pathways across a set of samples without any further
validation, we show that mutated pathway-groups can be found in each breast cancer subtype and that such groups are
invariant across the majority of samples. The algorithm is available at http://www.visantnet.org/misi/MUDPAC zip.
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Background

Large collaborative efforts, including the Cancer Gen-
ome Atlas (TCGA) [1] and the International Cancer
Genome Consortium (ICGC) [2], are taking initial steps
toward developing a blueprint of human cancer genomes
by identifying, characterizing and cataloguing alterations
in thousands of tumor samples. A major challenge in
interpreting the data generated by these projects is to
distinguish those mutations that play a role in the initi-
ation and progression of cancer, from the much larger
number of passenger alterations that play no role in can-
cer cell development [3].

Common approaches hypothesize that mutations con-
ferring a selective advantage on tumor initiation and pro-
gression will occur at high frequency across a wide range
of tumor samples. The useful implementation of this con-
cept, however, faces a number of well know challenges.
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First, the vast majority of drivers occur only rarely, making
them difficult to detect statistically [4]. Second, the num-
ber of different types of mutations and the number of al-
tered genes are both very large. As a result, the sets of
genes implicated by different studies often display rela-
tively low overlap. This makes it difficult to establish a
consistent causal mechanism for a given cancer [5]. Finally,
transformed cells are typically mutated in multiple mem-
bers of a set of functionally related genes. Consequently,
mutations that drive transformation, especially when rare,
are best sought and understood in that context [6]. This
idea of a functionally coupled set of genes is not new, and it
has been exploited in a number of studies aimed at disco-
vering drivers.

One way to proceed is to identify known pathways
that are enriched in genes carrying somatic mutations
[1,7]. More recent methods exploit genomic characteris-
tics of mutations, such as mutual exclusivity, to identify
oncogenic modules [8-10]. In addition, gene level know-
ledge -including gene size bias [11,12], gene-interaction

© 2014 Liu and Hu; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain

Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,

unless otherwise stated.


http://www.visantnet.org/misi/MUDPAC.zip
mailto:zjhu@bu.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/

Liu and Hu BMC Genomics 2014, 15:605
http://www.biomedcentral.com/1471-2164/15/605

networks and expression levels [4,6,13,14] - have been
incorporated to uncover the mutational significance of
a pathway. Copy number alteration [15] and other bio-
logical knowledge of mutational processes, such as
transcript isoforms, variation in mutation type and re-
dundancy of genetic code [16] are fully integrated into
analysis. Algorithms that infer patient specific path-
ways have also been developed [17,18].

However, very few methods involve a principled pro-
cedure for taking account of pathway interactions, i.e.
pathways that are mutated in the same sample, and that
are mutated together across a large subset of samples.
We develop a two-step procedure - referred to as Muta-
tional Driver Pathway Collaboration (MUDPAC) - for
identifying groups of interactive pathways, and apply it
to the analysis of 4 breast cancer subtypes.

The first step identifies candidate driver pathways using a
mutational pathway enrichment analysis, based on a modifi-
cation of Pathway Enrichment Analysis (PWEA) developed
previously in our Lab [19]. Genes are ranked, as described
in Methods, using a scoring function that combines a gene
Mutation Factor (MF) and a gene Interaction Factor (IF).
The MF scores a gene by a weighted difference between its
non-synonymous and synonymous mutation rates. The IF
takes account of mutational patterns, i.e., we allow the score
of a mutated gene g* in the list to depend on the number
and type of mutated genes (i.e,, mutual exclusivity, topology
distance) in its functional neighborhood, as explained in
Methods. The ranked list of genes is analyzed in the usual
way [20] to identify pathways whose genes are significantly
enriched in the highest scoring candidates.

The second step searches the identified pathways for
combinations that are most informative about a particu-
lar cancer subtype, assuming that pathways involved in
producing a distinct cancer phenotype will tend to be
cooperative, i.e., they will be simultaneously aberrant in
the majority population of samples. The main idea here
is that patients with the same cancer subtype will have
some common set of perturbed cellular functions.

We applied the method to 29,900 somatic mutations
identified in 11,897 genes from 498 breast cancer (BRCA)
patients distributed over four subtypes annotated in the
Cancer Genome Atlas (TCGA) project [5]: Basal-like (93),
HER2+ (57), Luminal-A (224), Luminal-B (124).

Results

Overview of MUDPAC

Details of the algorithm are described in Methods, while
a brief introduction is summarized here, with a sche-
matic representation shown in Figure 1. There are two
hypotheses when identifying collaborative driver pathways.
First, complex diseases such as cancers often result from
cooperative perturbations in multiple functions or path-
ways. Second, any gene that disrupts a driver pathway is
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considered to be a driver candidate; therefore a driver
pathway need not be dominated by the mutation of a sin-
gle gene.

In the first step of MUDPAC we proceed in analogy to
Gene Set Enrichment Analysis (GSEA) [20], which iden-
tifies pathways that correlate with phenotypic difference
(tumor VS normal) based on gene’s differential expres-
sions. For mutation data we use the differences between
the non-synonymous mutations, and a background of
synonymous mutations [7,21]. Genes are ranked by using
a score that integrates a mutation factor (MF), i.e., the dif-
ference between the impact of non-synonymous and syn-
onymous mutations, and an Interaction Factor (/F), which
takes account of the mutational landscape in the func-
tional vicinity (for example, propinquity on a pathway) of
a particular gene. Pathways whose genes are significantly
overrepresented toward the top of the ranked list are then
identified as candidate driver pathways.

The second step searches the identified pathways in
Step 1 for combinations that are most informative about a
particular cancer subtype, assuming that driver pathways
should collaborate to achieve a distinct phenotype. The
main idea here is that patients with the same cancer sub-
type will have the same set of disrupted cellular functions.
A greedy algorithm is used to find the single pathway that
is mutated in (covers) the largest number of samples, and
then iteratively adds new pathways to form a collaborative
group that achieves a Maximal Coverage Rate (MCR),
which is the percentage of samples covered by current set
of driver pathways. This is done subject to the restrictions
that (i) the collaboration (mutation co-occurrence) be-
tween a new pathway and all previously selected pathways
is statistically significant (P <0.01) in comparison to the
case where mutations of the genes in the new pathway are
distributed randomly (see Methods for details) across the
samples; (ii) the new MCR after the addition of the new
pathway is at least 5% (See Additional file 1 for detailed
explanation) higher than the mutation coverage of sam-
ples of any single gene in the new pathway. This is to en-
sure that the functional disruption of the pathway is not
dominated by the mutation of a single gene.

Detailed results of the Top 60 selected pathways from
Step 1, pathway collaborations along with MCR and P-
values of each subtype resulted from Step 2, can be
found in Additional file 2.

Application to breast cancer

Summary of results

We refer to a pathway as mutated in a given sample if the
pathway has at least one non-synonymous mutation in
that sample; the sample is then said to be covered by the
pathway. A set of pathways are collaborative in a given
sample if each member of the set is mutated. Using these
definitions and the results in Step 1, we iteratively search
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Figure 1 Schematic representation of MUDPAC. In Step 1 a ranking score is calculated as a function of Mutation Factor (MF) and Interaction
Factor (IF). MF is essentially the difference between non-synonymous and synonymous mutational impacts averaged across all samples; IF takes
account of the mutational landscape in the functional vicinity of the gene being scored. A ranking gene list is then computed based on the score
assigned to each gene (darker red indicates higher score), which is then used to find candidate pathways. In Step 2, the coverage rates of the
Top 60 candidate driver pathways are calculated based on the number of samples where there is at least one non-synonymous mutation in the
corresponding pathway. Greedy algorithm is applied to find a set of pathways whose composition and pattern, uniquely identifies a breast cancer

for a set of collaborative pathways for each subtype
(Figure 2A), such that MCR is achieved — with additional
restrictions as explained in Methods. Briefly, we proceed
as follows. To be concrete, we frame the description in
terms of Luminal-A.

We started with the Top 60 pathways obtained in Step
1, and identified the pathway that has maximum coverage

rate, which turns out to be PI3k-Akt. The MCR of PI3k-
Akt pathway is 78% and PIK3CA is the gene that has the
highest mutation rate in this pathway (44%). PI3k-Akt is
therefore selected as the first pathway of the collaborative
set because the MCR of the pathway is much higher than
the single gene mutation rate (threshold = 5%). We then
searched for the next pathway that has the largest coverage
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Figure 2 Driver pathway collaboration in breast cancer. (A) Identified collaborative driver pathways in each of the 4 subtypes. Mutational
pathway enrichment analysis is performed on the 4 subtypes separately, and collaborative driver pathway identification is applied over the Top 60
significantly enriched pathways. The numbers of driver pathways identified in subtype of Basal-like, HER2+, Luminal-A and Luminal-B are 2, 16, 6, 15

rate in the samples covered by the collaborative pathway
set. That turns out to be the focal adhesion pathway. The
MCR of these two pathways is 70%, and the gene with the
highest mutation rate in the focal adhesion pathway is still
PIK3CA, therefore the MCR is again much higher than the
mutation rate of any single gene in the focal adhesion

pathway. In addition, the collaboration between two path-
ways with an MCR 70% is statistically significant based on
5000 permutation test by randomly distributing the mu-
tations of the genes in focal adhesion pathway across
the different samples (P <0.0002). The focal adhesion
pathway is therefore selected as part of the set. The
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search procedure continues interactively until no quali-
fied pathways can be found.

As shown in Figure 2A, MCR in general drops quickly at
the beginning and becomes flat when more pathways are
added to the collaborative set. The plateau after the drop is
what we expected based on our hypothesis that disrupted
functions/pathways tend to be invariant across samples.
We also found that heterogeneous subtypes tend to have
larger numbers of collaborative pathways and lower MCRs.

The Basal-like subtype, which is dominated by TP53
(mutation rate 82%), is the most homogeneous subtype
in breast cancer, so there are only 2 collaborative path-
ways selected with MCR =88%. The luminal subtypes,
on the other hand, are reported as heterogeneous, with
the largest number of mutated genes but low overall
mutation rates [5]. This shows a marked consistence in
our results where PIK3CA is the highest mutated gene
in both Luminal-A and Luminal-B with mutation rates
of 44% and 31% respectively, and Luminal-B includes 15
collaborative pathways with MCR as low as 36%.
Luminal-A, however, is not as obviously heterogeneous
as Luminal-B, with only 6 pathways identified and MCR
equal to 49%. This might explain its better prognosis
and lower relapse rate in comparison with Luminal-B.

HER2+ is closely related to Luminal-B. Previous studies
found that about 50% of clinically HER2+ tumors are ob-
served predominantly in luminal mRNA subtypes [5], and
HER2+ tumors are classified molecularly as Luminal-B in
other studies [22]. Our results also show close overlaps
between these two subtypes: there are 16 collaborative
pathways selected in HER2+ with an MCR of 46%, which
are quite similar with Luminal-B, not only in the number
of selected pathways, but also in the overlap of those col-
laborative pathways. Pathways in HER2+ are a mixture of
TP53 (mutation rate 72%) related pathways and PIK3CA
(mutation rate 40%) related pathways.

A list of driver pathways identified in each of the sub-
types can be seen in Table 1. The common pathway in the
collaborative pathway sets of the 4 subtypes is “PI3K-Akt
signaling” (hsa04151), as shown in Figure 2B. PI3K is
known to play an important role in breast tumor progres-
sion [23-26]. Our results suggest that it is the single most

Table 1 List of driver pathways in each subtype
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informative pathway for breast cancer. In particular it
has significantly enriched genes in a higher percentage
of samples than any other pathway, the percentages be-
ing 96, 91, 78, 82 in Basal-like, HER2+, Luminal-A,
Luminal-B respectively. It is also the only pathway with
significant mutational enrichment in the majority of
samples in all subtypes.

Although the PI3K-Akt signaling pathway is common to
all subtypes, the significantly mutated genes of this pathway
in different subtypes are quite different, as shown in
Figure 3. All the genes within this pathway were drawn in a
3D plot using Kyoto Encyclopedia of Genes and Genomes
(KEGG) Color Pathway 3D, with its ranking scores propor-
tional to the color intensity and height of the red bar, and
darker red means higher gene ranking score. We can see
that Basal-like subtype is predominant of 7P53, HER2+
subtype is a series function of TP53, ITGAV, PTEN, TLR4,
COL5A3, CDKN1B and PIK3R1, in descending order of the
gene score. In Luminal-A subtype, PTEN and PIK3CA are
the most important genes while CDKN1B and KIT also play
roles in perturbing this pathway. Luminal-B is mainly af-
fected by PTEN and TP53, but TLR4, PIK3CA, KIT and
LAMAS also contribute to functional disruption.

For the genes mentioned above, TP53, PTEN, PIK3RI,
PIK3CA, KIT are all oncogenes or tumor suppressing
genes that have records in the Catalogue of Somatic Mu-
tations In Cancer (COSMIC) (http://cancer.sanger.ac.uk/
cancergenome/projects/cosmic/) or the Online Mendelian
Inheritance in Man (OMIM) (http://www.omim.org/), and
many of the genes have been reported to be associated
with cancer or other diseases. For example, it is proposed
that protein encoded by ITGAV interacts with several
extracellular matrix proteins to mediate cell adhesion and
may play a role in cell migration. This protein may also
regulate angiogenesis and cancer progression [27]. The
protein encoded by CDKNIB is found to bind to and pre-
vent the activation of cyclin E-CDK2 or cyclin D-CDK4
complexes, therefore controls the cell cycle progression at
G1 and its polymorphism appears to be an important pre-
dictive factor for breast cancer risk [28].

The KEGG Color Pathway 2D diagrams for every driver
pathway of all the 4 subtypes can be seen in Additional

Subtype Driver pathway

Basal-like  PI3K-Akt signaling; MAPK signaling

HER2+ PI3K-Akt signaling; MAPK signaling, Apoptosis; Phosphatidylinositol signaling system; Regulation of actin cytoskeleton; Focal adhesion; T
cell receptor signaling; Cholinergic synapse; ErbB signaling; Chemokine signaling; Insulin signaling; TNF signaling; Osteoclast
differentiation; Aldosterone-regulated sodium reabsorption; Carbohydrate digestion and absorption; Natural killer cell mediated
cytotoxicity

Luminal-A  PI3K-Akt signaling; Focal adhesion; Regulation of actin cytoskeleton; Chemokine signaling; Jak-STAT signaling; Estrogen signaling

Luminal-B  PI3K-Akt signaling; Focal adhesion; Apoptosis; ErbB signaling; Estrogen signaling; HIF-1 signaling; mTOR signaling; Jak-STAT signaling;

Progesterone-mediated oocyte maturation; Carbohydrate digestion and absorption; Cholinergic synapse; T cell receptor signaling; Insulin
signaling; Phosphatidylinositol signaling system; Natural killer cell mediated cytotoxicity
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File 1, with gene’s ranking score proportional to the color
intensity of the red box representing that gene, and darker
red mean higher gene ranking score.

Basal-like subtype

The driver pathway set in the basal-like subtype includes
pathways of “PI3K-Akt” and “MAPK signaling”, with a
MCR of 88%. As shown in Figure 2B, no unique path-
ways are discovered in this subtype. Basal-like tumors
showed a high frequency of TP53 mutations, suggesting
the loss of TP53 function occurs within most of basal-like
cancers [5]. Additional studies further support the idea
that both pathways play important roles in basal-like
breast cancer [29,30]. Although the small number of
driver pathway set may mainly be due to the homogen-
eity of the samples for this subtype, it may also results
from the potential artifacts of our method that will be
discussed in detail in the Discussion section.

HER2 positive subtype

A pathway collaboration of size 16 was identified with a
MCR of 46% in this subtype. Most of these pathways are
associated with two genes: the mutational enrichment of

pathways such as “ErbB signaling” [31] and “Focal adhe-
sion” [32], are subtype-representative because they are
all associated with the HER2 gene; while the enrichment
of TP53 associated pathways, including “PI3K-Akt sig-
naling” [33] and “MAPK signaling” [34], probably result
from the high mutation rate and toxic mutational func-
tion of TP53. They are shared with basal-like subtype.

The HER2+ subtype shares most of its driver pathways
with luminal subtype, especially Luminal-B: not only the
number and pattern of MCR of driver pathway collabo-
rations, but also the involved pathways. This agrees with
the clinical-pathological view that in general it may not
be necessary to divide samples with ERBB2 amplification
into Luminal B and HER2+ [22].

The exclusive pathways in this subtype are “INF sig-
naling”, “Osteoclast differentiation” and “Aldosterone-
regulated sodium reabsorption”. The TNF signaling
pathway induces a wide range of intracellular signaling
pathways including apoptosis and cell survival as well as
inflammation and immunity. TNFa, which is expressed
by nearly all cells and is the major receptor for TNE, can
cross-talk with the EGFR/HER2 pathway at various points
and affect the sensitivity to EGFR/HER?2 inhibitors [35].
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And overexpression of HER-2/neu induces resistance to
TNE, which causes cancer cells to escape from host im-
mune defenses [36]. For “Osteoclast differentiation”, there
is evidence suggesting a likely association between the lu-
minal subtype and bone metastasis [37]. Recent evidence
suggests that bone metastasis also occurs in the HER2+
subtype [38], consistent with our mutational enrichment
of the osteoclast differentiation pathway. This pathway is
responsible for bone resorption and is mainly regulated by
signaling pathways activated by RANK and immune
receptors.

From a pathway category perspective, we found that be-
sides categories of “Signal transduction” and “Cellular Pro-
cesses” that are common among all subtypes, HER2+ has
functional disruptions in “Organismal systems”, including
“Immune system” (“T cell receptor signaling”, “Chemokine
signaling”, “Natural killer cell mediated cytotoxicity”),
“Nervous system” (“Cholinergic synapse”), “Endocrine sys-
tem” (“Insulin signaling”), “Development” (“Osteoclast dif-
ferentiation”), “Excretory system” (“Aldosterone-regulated
sodium reabsorption”), and “Digestive system” (“Carbohy-
drate digestion and absorption”). A direct and complete
relation of HER2+ with organismal systems has not been
found, but some of the pathways above were indeed
highlighted with their considerable connections, like “In-
sulin signaling” [39] and “Chemokine signaling” [40]. We
expect the pathways that we identified can provide re-
searchers a better understanding of the cross-coupling ef-
fects from these different systems.

Some of the pathway collaborations could be supported
by the known drug resistance. Trastuzumab (Herceptin) is
a clinically approved antibody for HER2-overexpression of
breast cancer [41], but multiple HER2 cross-talk contrib-
uting to trastuzumab resistance has been reported. PI3K is
the major downstream signaling pathway activated by
HER?2 cross-talk [42], and a potential integrator of recep-
tor crosstalk is Src-focal adhesion kinase (FAK) signaling
[43]. Another mechanism includes cross-signaling from
related HER/erbB receptors and compensatory signaling
from receptors of insulin-like growth factor-I [44]. The
cross-talk effects involved above like “PI3K-Akt”, “ErbB
signaling”, “Focal adhesion” and “Insulin signaling” are all
reported in the driver pathway collaboration of our re-
sults, which may help to develop new pharmacological
strategies to overcome the drug resistance.

Luminal-A subtype

6 driver pathways have been identified with an MCR of
49%. There are no unique pathways in this subtype. In
addition to the common pathway “PI3K-Akt signaling”
that is present in all subtypes, there are 2 pathways shared
with HER2+, another 2 pathways shared with Luminal-B
and 1 pathway shared by both HER2+ and Luminal-B.
The 2 pathways that only appear in luminal subtypes are
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“Estrogen signaling” and “Jak-STAT signaling”. The estro-
gen signaling pathway is a new pathway released by KEGG
in 2013. It is not surprising that this pathway only appears
in the luminal subtypes, as the luminal subtypes are char-
acterized by the expression of genes activated by estrogen
receptor transcription factor that are typically expressed
in the luminal epithelium lining the mammary ducts [22].
The role of estrogen receptor (ER) in breast cancer has
been widely studied [45-48].

We demonstrated in Figure 4 how these 6 driver path-
ways work together, and how the genes within each of
the pathways cooperate. Gene ranking scores calculated
from our algorithm within each pathway are propor-
tional to the length and color depth of the red bar. In
order to show detailed gene score distribution of each
pathway, we did not calculate log scale of ranking score
here but use their original values. Two pathways are
connected with each other based on their co-covered
sample percentage; the width of each edge is propor-
tional to the sample coverage percentage. This figure not
only illustrates pathway collaboration by showing their
coordinating relationships, but it also shows that muta-
tions are well distributed across the genes in each path-
way, as an example of our hypothesis that any genes
with functional mutations can be driver genes.

Luminal-B subtype
The number of driver pathways in Luminal-B is 15 and
they cover a MCR of 36% tumor samples. Compared
with Luminal-A, Luminal-B always comes with a more
difficult prognosis and a higher recurrence rate. A lot of
efforts have been made to distinguish these two sub-
types, here we focus on the differences at a driver path-
way level. We found that both of these two subtypes are
active in signal transduction, like “PI3K-Akt signaling”,
“Jak-STAT signaling”, but Luminal-B tends to be more
active with more mutated pathways in this category, in-
cluding “HIF-1 signaling”, “mTOR signaling”, “ErbB sig-
naling” and “Phosphatidylinositol signaling system”.
“HIF-1 signaling” and “mTOR signaling” pathways are
the unique pathways in Luminal-B. The hypoxia indu-
cible factor-1 (HIF-1) is discovered to be interchangeable
with estrogen as both similarly modulate epithelial-
endothelial cell interaction [49], HIF-la is associated
with p21 but not against proliferation in ER positive tu-
mors [50]. It is well established that PI3K/Akt/mTOR
pathway plays a central role in resistance to endocrine
therapy in breast cancer, partly through regulation of es-
trogen receptor a (ER) activity [51]. Phosphorylation of
ER by mTOR’s downstream target p70S6K is potentially
important in deciding personalized treatment for ER +
breast cancers in the resistance to Tamoxifen [52].
Although both Luminal-A and Luminal-B are estro-
gen positive, Luminal-B seems to be more enriched in
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PI3K-Akt signaling

Chemokine signaling

Jak-STAT signaling

Estrogen signaling

Figure 4 Pathway collaboration of Luminal-A. This figure is drawn with KEGG color pathway 3D. Gene scores (not log scaled) calculated from
MUDPAC for each pathway are proportional to the length and color intensity of red bar. Two pathways are linked to each other with blue line,
and edge width is proportional to the sample co-coverage percentage of these two pathways. The color of the red bars is drawn based on gene
scores of a particular pathway only and are not comparable among different pathways. Genes with smaller values in a pathway are not able to
be displayed if there are genes with much higher values in this pathway.

endocrine system pathways. Besides “Estrogen signal-
ing”, there are two other endocrine related pathways in
Luminal-B, “Progesterone-mediated oocyte maturation”
and “Insulin signaling”. The “Progesterone-mediated oo-
cyte maturation” pathway is exclusive to Luminal-B. The
transition is accompanied by an increase in maturation
promoting factor MPF or Cdc2/cyclin B, which is the
main biological difference between two luminal subtypes
found so far [53,54]. Insulin/Insulin like growth factor 1

(IGF-I) and estrogens have potent positive effects on cell
proliferation in breast cancer. Cross-talk between insulin-
like growth factor (IGF) and estrogen receptor (ER) signal-
ing pathways plays a critical role in breast carcinogenesis.
The effects of ERa are mediated by the influences of in-
sulin signaling pathway, and estrogens enhance insulin
signaling by increasing the expression and/or the func-
tional activity of some proteins involved in the insulin
signaling pathway [55,56]. Although the immune system
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is disrupted in both subtypes, the molecular basis of al-
teration appears to be subtype-specific: in Luminal-A it
is a consequence of mutations in “Chemokine signal-
ing”, while in Luminal-B the “T cell receptor signaling”
and “Natural killer cell mediated cytotoxicity” pathways
contribute the functional perturbations.

Cross-talk between estrogen receptor and growth fac-
tor has been discussed broadly to act as a molecular target
for tamoxifen resistance [57,58]. These growth factors
include insulin-like growth factor-I (IGF1), which is
found to act through a complex cross-talk with estrogen
to stimulate the proliferation of normal mammary epi-
thelium to increase the risk of breast cancer [59,60].
The IGF1 involved pathways such as “PI3K-Akt signaling”,
“HIF-1 signaling”, “mTOR signaling ”, “Focal adhesion” and
“Progesterone-mediated oocyte maturation”, are all present
in Luminal-B driver pathway collaboration, and 3 of them
are even Luminal-B specific driver pathways, which is a
strong support and complementation for our current un-
derstandings of ER + subtype, especially Luminal-B. An-
other important growth factor is the epidermal growth
factor receptor 2 (HER2). Clinical evidence relates that
treatment resistance to the presence of a complex bidirec-
tional molecular crosstalk between the ER and HER2 path-
ways [61]. Treatment strategies that simultaneously block
both signaling pathways have been proven to be promising
in comparison with only targeting either one of them,
which ultimately resulting in resistance to therapy.

Driver gene summary analysis

Finally, our results identify the key genes in all driver
collaborative pathways for each subtype. In theory, we
assume all the genes in driver pathway collaborations
are with very high probability to be driver genes as they
cooperate with each other to make a unique mechanism,
but we are more interested at those genes with higher
mutation scores. We ranked all the genes collected from
driver pathway collaboration in each subtype according
to their ranking score, and output Top 10 of them in
ranking score descending order: Basal-like (TP53* NFI*
LAMAS, ITGAV, NFKB2, PRKAA2, CACNAIB, LAMAI,
IL2RB, PTEN), HER2+ (TP53% CAPN2, ITGAV, ERBB3,
PTEN? ITPR3, ILK, TLR4* COLS5A3, DUSP4), Luminal-
A (PTEN* PIK3CA* CDKNIB, LIFR* KIT% TP53%
COLSA3, ITGA6, ITGAV, TLR4*), Luminal-B (PTEN?
TP53% PIK3CA* TLR4% KIT* LIFR*, ACACA, LAMAS,
ITPR3, VWF). There are 24 unique genes in the 4 different
groups, 8 of them have overlap with genes in COSMIC or
OMIM, marked with *, the remaining 16 of them also re-
flect potential relations to cancer, like LAMAS is impli-
cated in a wide variety of biological processes including
cell adhesion, differentiation, migration, signaling, neurite
outgrowth and metastasis; overexpression of ILK is impli-
cated in tumor growth and metastasis, which makes it an
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attractive target for cancer therapeutics [62]; amplification
of ERBB3 and/or overexpression of its protein have been
reported in numerous cancers, including prostate, bladder,
and breast [63,64].

Comparison with other methods

For the mutational enriched pathways identified in step
1, we validated our results with other sources of mu-
tated genes such as COSMIC and Cancer Cell Line
Encyclopedia (CCLE) [65], and also did a comparison
with Driver Genes and Pathways (DrGaP) [16], as de-
tailed in Additional file 1.

Although a number of methods have been developed
to identify driver pathways in cancer, including Mutual
Exclusivity Modules (MEMo) [9], Mutational Signifi-
cance in Cancer (MuSiC) [12], NetBox [15], Pathway
Recognition Algorithm using Data Integration on Gen-
omic Models (PARADIGM) [17], De novo Driver Ex-
clusivity (Dendrix) [8], Mutated Driver Pathway Finder
(MDPFinder) [14], HOTNET [13], DriverNet [6], Driver
Genes and Pathways (DrGaP) [16], Multiple Pathway De
novo Driver Exclusivity (Multi-Dendrix) [10], none of
above focus on the collaborations among pathways on
individual samples. Here we compared our method
against one of them Multi-Dendrix [10], as both MUD-
PAC and Multi-Dendrix aim at determining driver path-
way groups on the basis that mutations in several
pathways, not in a single one, are generally required in
cancer.

Multi-Dendrix recovers pathways from mutual exclu-
sivity pattern of genes without any prior information
about their interactions, while MUDPAC focuses on
KEGG pathways to take account of the topological influ-
ence on our discoveries. The main drawback of Multi-
Dendrix is that it can only find optimal solutions with
limited number (2—4) of very small pathways (3—5 genes
only) [10]. MUDPAC on the other hand, can select
driver pathways with flexible size (2 for Basal-like sub-
type and 16 for HER2+ subtype). Again, although Multi-
Dendrix identifies multiple driver pathways by maximizing
the sum of sample coverage of each driver pathway, it
does not require these pathways to be mutated in the
same set of samples. MUDPAC to the opposite, tries to
discover a collaborative pattern so that all pathways in-
volved are disrupted in the same sample set. The path-
ways identified by MUDPAC represent functional
disruptions among majority people (not individual
one) of a given cancer and therefore provide more reli-
able insights about the mechanisms of corresponding
tumorigenesis. The novel pathways identified by the
collaborative pattern for each of the 4 subtypes com-
plement our current picture of the emergence and pro-
gression of breast cancer, and may furthermore
provide feasible, practical and customized therapies in
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clinical practice in the perspective of patient diagnose
and personalized medicine.

For the 4 pathways that were found in BRCA by
Multi-Dendrix, 2 of them also showed up in our results
(PI3K-Akt signaling, MAPK signaling), the other two
(p53 signaling, cell cycle) were selected as significantly
mutated pathways in our Step 1 but filtered out in Step
2, as we found that the mutational contributions of these
two pathways are dominated by 7P53. For example, both
p53 signaling and cell cycle are in the Top 60 signifi-
cantly enriched pathways in the Basal-like subtype, but
the MCRs of these two pathways are 80% and 81% re-
spectively, comparable to and slightly less than the single
gene mutation rate of TP53 (82%). Cell cycle pathway is
also enriched in HER2+ subtype whose MCR (72%) can’t
meet the required 5% difference to the single gene muta-
tion rate of TP53 (72%).

We also compared the sample coverage of driver path-
ways for both methods. The highest and lowest sample
coverage for Multi-Dendrix are 61% and 36% respect-
ively, but 88% and 36% respectively for MUDPAC.

Finally, Multi-Dendrix is not designed to discover
subtype-specific pathways while MUDPAC is aimed to
identify subtype-specific collaborative set of pathways
because it is built based on the hypothesis that differ-
ent cancers are resulted from the different systematic
failure of cellular functions. As clearly shown in Figure 2
and Table 1, the collaborative sets of pathways are very
distinguishable despite the overlapping of individual
pathways. As detailed in the section of each subtypes,
most of them well represent the characteristics and
mechanism of the corresponding subtype and provide
new insights in the development of personalized medi-
cine therapy.

Discussion

MUDPAC identifies representative driver pathways for
all 4 subtypes of breast cancer using TCGA data sets.
The number of driver pathways in Basal-like, HER2+,
Luminal-A and Luminal-B are 2, 16, 6 and 15 respect-
ively. The common pathway for all subtypes is PI3K-Akt
signaling. Some subtype-specific pathways are also found
such as estrogen signaling pathway in both luminal sub-
types and ErbB signaling pathway in both HER2+ and
Luminal-B. Driver collaborative pathways in Basal-like
are all associated with TP53; ERBB2 related pathways
and some TP53 related pathways tend to be active in
HER2+ tumors. In addition, HER2+ shares most of its
characters with Luminal-B, not only the number and
pattern of MCR of driver pathway collaborations, but
also the involved pathways. Furthermore, HER2+ is the
subtype that has the largest number of enriched path-
ways in organismal systems (total of 8). PIK3CA related
pathways seem to play more important roles to drive the
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disease in luminal subtypes because most of these path-
ways appear in the corresponding driver pathway set.
The distinction between Luminal-A and Luminal-B is
that Luminal-B seems involving more pathways in the
category of signal transduction, endocrine system, as
well as immune system.

The distributions of mutated genes within driver
pathways, as well as their corresponding mutational
frequencies, are also interesting. Figure 3 indicates
that although the PI3K pathway is perturbed in all four
subtypes, the way it is being perturbed can be very dif-
ferent, which may then lead to the different disruption
of the same function. On the other hand, Figure 4 il-
lustrates that it is very often that different genes in the
same pathway are mutated in different samples, which
not only explains why mutational gene signatures from
different studies usually can’t agree each other but also
indicates the urgent needs for personal therapies.

Several factors may impact our results, including sin-
gle gene dominance, high mutation frequency and our
limited knowledge of pathways. Some of them have been
addressed in the current methods while others may need
further development.

The single gene dominance points to the case where
one gene has high mutation frequency in several differ-
ent pathways, such as TP53 and PIK3CA in our study.
We take two steps to address this problem. First, the en-
richment analysis filters out those pathways where only
one or two genes have mutations; second, we require
the MCR must be higher than the single gene mutation
rate in any driver pathway by some threshold. By doing
this, we still find that there are influences of single
genes penetrating through collaborative pathways in
each subtype, like pathways in Basal-like are all TP53 re-
lated, pathways in Luminal-A and Luminal-B are all
PI3K related, while pathways in HER2+ are a mixture of
these two genes. Although the influences of these two
genes in breast cancer have been well established [5],
not all pathways related to these two genes show up in
our results. Take PIK3CA and Luminal-A subtype as ex-
amples, there are totally 30 pathways including PIK3CA
as input of our algorithm, 13 of them were selected as
Top 60 in the first step of our method, which filtered
out some pathways that are not highly enriched in mu-
tations, and only 6 out of these 13 survived after Step 2,
which adopted a more strict criteria to unearth the cor-
relations among selected pathways. This indicates that
our 2-step framework works efficiently to locate sets of
distinguishable pathways for each subtype that are
highly correlated with each other in the maximum num-
ber of samples. The collaborative pathway patterns for
each subtype without considering single gene effects
can be seen in Additional file 2, in which we simply ap-
plied greedy algorithm to select pathway with highest



Liu and Hu BMC Genomics 2014, 15:605
http://www.biomedcentral.com/1471-2164/15/605

MCR each time, without requiring MCR 5% higher than
single gene mutation rate and the significance of se-
lected pathways.

Our method may fail if there are individual genes
whose mutational rates are very high for a given can-
cer (e.g., ovarian cancer), because the statistical signifi-
cance of pathway collaboration in our current method
will be difficult to achieve. As a result, very few path-
ways may be identified as the set of driver pathways.
The Basal-like subtype, the subtype of breast cancer
that is most similar to ovarian cancer, may be im-
pacted by both single gene dominance and high muta-
tion frequency. There are a total of 7 pathways that
consist of P53 in KEGG pathway database (excluding
disease related pathways) as our input, 5 of them
showed up in the Top 60 of Step 1 for this subtype,
only 2 of them were considered as collaborative path-
ways in Step 2. The other 3 (“Wnt signaling”, “Cell
cycle”, “p53 signaling”) are also important and related
to cancer; and the reason they are not selected is that
they are dominated by single gene effects with MCRs
equal or lower than the mutation rate of TP53. In
addition, they are not significantly correlated with 2
identified pathways.

Another limitation of MUDPAC is that present ana-
lysis is based on prior knowledge of known pathways
in KEGG only. This is far from accurate if taking into
account the incompleteness of human pathways or
missing topology information. We need to make the
definitions of this method feasible to a more general
network. It could be possible to expand the pathway
data set using other data sources, like Functional Link-
age Network (FLN) [66] or Human Reference Network
(HRN) [67].

One potential improvement of MUDPAC is to include
inherited mutations when performing mutational path-
way enrichment analysis. It is well known that for most
sporadic cancers, somatic mutations are accumulated
and restricted to an individual cell of the body through a
human being’s lifespan. However, cancer also has herit-
able components. Inherited mutations in BRCAI1/BRCA2
for example, increase the risk of breast and ovarian can-
cer [68]. If heritable mutations are included in Step 1,
the number of mutated pathways could be increased or
the significance of existing enriched pathways could be
strengthened. Furthermore in Step 2, the MCR of path-
way groups could be possibly heightened, which may
provide a more complete and ameliorated view of the
mechanism of cancer.

It will also be useful to meliorate MUDPAC by in-
tegrating a larger panel of driving alterations beside
the mutations, both genetic and epigenetic, such as
somatic copy number alteration (SCNA), methylation
and transcription factor (TF) etc. Identifying the

Page 11 of 16

oncogene and tumor suppressor gene targets of driver
SCNAs and elucidate the functional roles of SCNAs
have been considered important in cancer diagnostics
and therapeutics. It is well recognized that the known
oncogenes as well as novel ones involved in the sig-
nificantly altered regions would enable researchers to
identify new causes and molecular pathways that may
one day be targeted to treat cancer [69]. It is also dis-
covered that tumor suppressor genes are often sub-
jected to silencing through cancer-specific promoter
DNA methylation [70], and identification of driver and
passenger DNA methylation in cancer may provide
new insight about the process of carcinogenesis
[71,72]. Alterations of numerous transcription factors
(TF), on the other hand, were shown to be causatively
involved in various cancers in human [73], and identi-
fication of their roles will be useful in determining a
more “holistic” picture of tumorigenesis and cancer
treatment [74]. Overall, a flexible framework will be
useful for MUDPAC to allow the different combin-
ation of these driving forces upon the availability of
the corresponding data.

Conclusions

MUDPAC identifies collaborative driver pathways in
cancer using a two-step approach: mutational pathway
enrichment analysis followed by greedy search for the
collaborative driver pathways. The enrichment analysis
examines whether a given pathway shows statistically
significant differences between non-synonymous mu-
tation group and synonymous mutation group while
the greedy search identifies the pathway group from
the top enriched pathways that achieves a Maximal
Coverage Rate (MCR) in a sufficient number of tumor
samples. In comparison to the previous approaches,
MUDPAC discovers driver pathways not only by their
enrichment of mutated genes but also their invariant
presence among majority of samples that has been
ignored previously. Using four subtypes of breast can-
cers as examples, our results reasserted that collabora-
tive pathways rather than individual pathway are
much more effective in discovering and interpreting
the biological correlations for the complicated diseases
[75,76]. The varied distributions of mutations across
the different genes in the majority of resulted driver
pathways, on the other hand, also indicate the urgent
needs for personalized cancer therapy.

Methods

MUDPAC requires two input data sets: mutation data
in mutation annotation format (.maf), and pathway
data with topology information. The .maf file was
downloaded from TCGA on March, 2013. The sample
subtype information was obtained from supplementary
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table of [5], where PAMS50 is used to stratify subtypes
based on mRNA data. There are total 29,900 mutations
in 498 samples after removing samples that do not fall
into four subtypes. Tissue sampling is carried out by
the TCGA project and no further tissue sampling is
performed in this study. 269 pathways were down-
loaded from KEGG database [77] on Jun. of 2013, and
200 of them are used in this study after excluding 3
global metabolic pathways and 66 human disease
pathways.

Mutational pathway enrichment analysis

Step 1: Construct mutation matrix

Given n genes G = {g;, g ..., &}, m samples S = {s;, s,,
vees Sypy MUSIC [12] is used to calculate the total num-
ber of bases for each gene g; having available alignment
data. MuSiC is a comprehensive mutational analysis
pipeline that establishes correlations among mutation
sites, genes and pathways. It uses Broad Institute’s ana-
lysis infrastructure Firehose to count bases with suffi-
cient coverage of each gene from the given wiggle tract
format file. Wiggle files contain dense, continuous data
such as GC percent, probability scores, and transcrip-
tome data, and were downloaded from http://gdac.
broadinstitute.org on Aug 2012. The thresholds for
sufficient coverage are at least 8 fold read depth in nor-
mal tissue, and at least 14 fold read depth in cancer
tissue.

The functional impact score MA, is calculated using
MutationAssessor [78] for each somatic mutation k
in a TCGA data set. A simple scoring rule similar
to [79] is developed to assess the impacts of other
types of mutations because MutationAssessor can only
identify non-synonymous mutations or missense poly-
morphisms: the highest score that can be calculated
using MutationAssessor is assigned to all indels,
nonsense mutations and splice site mutations, under
the assumption that these variants are at least as
disruptive to protein function as the most disruptive
non-synonymous mutation; the lowest score from
MutationAssessor is allocated to synonymous mutations,
based on the assumption that they are no more disruptive
to protein function than the least disruptive non-
synonymous mutations; the average score of all mis-
sense mutations is assigned to other missense mutations
that can’t be calculated using MutationAssessor. The sco-
ring scheme can be summarized below:
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A matrix M of size 2n*m is formed with a pair of rows
for each gene. The elements of alternating rows contain
mutation scores based on synonymous and non-
synonymous mutations, which we define M;; * (the wild
card, * = non-synonymous/synonymous mutations (NSY/
SY)) for gene i in sample j as the number of mutated
bases, weighted by the functional impact score of this
mutation, divided by the total number of bases that have
sufficient read depth.

Step 2: Calculate gene Mutation Factor (MF)

The mutation factor MF; for gene i is defined as differ-
ence between the synonymous and non-synonymous
mutation impacts, averaged across all samples, multi-
plied by a gene-specific weighting factor. The weighting
factor is the ratio of the number of non-synonymous
(N; nsy) to synonymous (N; sy) mutations for gene i.

i NSY
m N; sy

j=1

m m
M nsy = jleij,sy N
MF; = *

Step 3: Calculate gene Interaction Factor (IF)

The interaction factor (IF) for a gene g; which is to be
ranked, is designed to take account of the mutation
landscape in its functional neighborhood [19]. In par-
ticular we incorporate the following.

(i) The shortest distance d;; between g; and g;, where j
runs over all genes in the KEGG pathway that contains
gene i. It takes account of the influence that a mutation in
one gene has on others in terms of the functional distance
between them [80] under the assumption that genes lo-
cated closer to each other in a functional network tend to
take less time to spread mutational information from one
to the other.

(ii) C;; measures the covered samples by g; and gj, which
is defined as the fraction of samples in which only one of
the genes, either g; or g, is non-synonymously mutated.

(iii) ME; measures the mutual exclusivity of g; and g;
which is defined as the number of samples in which only
one of the genes is non-synonymously mutated, divided
by the number of samples in which at least one of the
genes is non-synonymously mutated [14].

We define the IF of a gene i as the average mutational
influence that this gene imposes on the rest of the genes in
the pathway [19]. Smaller IF; means the pairwise mutational
relation dominated by gene i exhibits a relatively neutral

MA, for mutations that can be calculated by MutationAssessor

max of MA, for Indels nonsense splice site
min of MA, for synonymous mutations

ave of MA, for missense mutations that can not be calculated by MutationAssessor
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effect to the pathway [81]. Conversely, if IF; is high, gene i
could aggregately perturb the pathway by a strong connec-
tion to others. IF; only counts genes that with interaction to
gene i higher than a threshold of o, which is used to control
the sensitivity and selectivity of the IF and is set as 0.005 in
our following experiment.

The log of the interaction factor IF; for gene i in path-

between

. ' . . dy
way k is defined as the interaction f; = T ME;
gene i and gene j, averaged over all genes in the

pathway.
1
LoglIF) = -1 > f,.j@(fi, + lna)
Where

1f,<-1 n
®<fij —+ lna) = { ij;l> —7::;: andN = Zj:l,jzi@(fij + lmz)

© is a function that compares if f; satisfy a pre-defined
threshold «, which is used to control the contribution of

gi to f;/

Step 4: Compute gene ranking list by integrating MF and IF
The ranking score for each gene is computed by com-
bining the mutation and interaction factors for that
gene.

score = (eMF)HF

Since MF can be either positive or negative and 0 < [F <
1, exponential function is applied to make sure the ran-
king score increases as MF and IF increases.

Step 5: Impute score for genes that are not in pathway

For a given pathway, the scores of those genes outside
the pathway are imputed using information from genes
inside the pathway since their topology information is
not available. In practice, the imputations are performed
after the scores of all genes from all pathways are com-
puted, i.e., a background distribution is generated by
parameterizing from the mean and standard deviation of
all gene scores from all pathways instead of individual
pathways. Scores for the genes outside a pathway are
then calculated by drawing random samples from the
background distribution.

Under the consideration that not all genes within a
pathway can pass ®, MUDPAC measures the possibility
of passing event for genes inside the pathway and applies
this possibility to the genes outside the pathway while
performing imputation, i.e., imputation will be only car-
ried out when a passing event happens. The aim of this
is to keep the same percentage of genes inside a pathway
and outside a pathway in order to maintain the distribu-
tion of their IF scores. Imputations of IF scores for genes
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outside a pathway are important for fair ranking to avoid
artificial bias toward genes inside a pathway.

Step 6: Calculate statistical significance of each pathway
The statistical significance of each pathway is calculated
by Weighted Kolmogorov—Smirnov (WKS) test. The cu-
mulative distribution function (CDFs) of genes that are
in a pathway P, and that are not in P; at position i in
the rank can be written as:

CDF(Py, i) = z\% DG
k

J<i,9;€Pk

and

’ 1
CDF(Not Py,i) = stigjﬂ’k Nnot py

|| 1+IF

where N; = Z and Ny,; pr is the

Nl
j=1.g JjePk
number of all genes not belonging to P;. The maximum
deviation (MD) of CDF(Py,i) and CDF(Not Pyi) is calcu-
lated after n permutations of mutation status shuffling
and the P-value of pathway Py is the percentage of itera-
tions that have higher maximum deviations than the ori-
ginal data. In our experiments, # is set to 5000.

Step 7: Perform the multiple testing

After P-values for all pathways are computed, FDR is
calculated to correct for multiple testing with FDR =
P*m/k, where m is the total number of pathways and & is
the rank of the pathway under consideration.

Collaborative driver pathway identification

To access the biological relevance of the identified can-
didate driver pathways, a greedy algorithm is developed
to identify sets of cooperative pathways by examining if
the co-occurrence patterns of pathways are conserved in
the majority of cancer samples, with the requirement
that the Maximal Coverage Rate (MCR) of driver path-
ways is higher than the maximum mutation rate of any
single genes in a given pathway. We use the Top 60
pathways identified in Step 1, and rank each by its cover-
age rate, i.e. by the number of samples in which it has at
least one non-synonymous mutation. We then walk
down the ranking list, starting with the pathway of high-
est coverage rate, add one more pathway in each step to
achieve the MCR with existing collaborative pathways
and satisfy the two criteria detailed below. The algorithm
terminates when there are no pathways satisfying above
constrains can be added.

Two more criteria are considered when selecting a
new pathway into the collaborative set. First, the newly
selected pathway along with all pathways already in col-
laborative pathway set, should have a MCR higher than
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the highest mutation rate of genes in this particular
pathway by a given threshold, which is set to be 5% in
this study (more discussion can be found in Additional
file 1). The choice of 5% is based on the comprehensive
tests to balance the sensitivity and selectivity. This par-
ameter remains adjustable for future applications. Sec-
ond, permutation is used to test whether MCR of this
newly selected pathway is significantly higher than a
background MCR where all mutations across all samples
in this newly selected pathway are randomly redistribu-
ted across different samples while the total number of
mutations remains unchanged. The background MCR is
obtained by calculating the percentage of samples with
at least one randomly assigned mutation in this newly
selected pathway, and at least one mutation in each of
previously selected pathways. The permutation is carried
out 5000 times for the selection of each new pathway.
The P-value is computed as the percentage of times
when the background MCRs are greater than or equal to
the observed MCR of the selected pathway. Pathway can
be selected only if it satisfies a P-value threshold of 0.01.
If the pathway with the highest MCR does not satisfy
these two criteria, the pathway with second highest
MCR will be examined, so on and so forth.

Availability of supporting data

The data sets supporting the results of this article and
source codes of MUDPAC are available at http://www.
visantnet.org/misi/ MUDPAC.zip.

Additional files

Additional file 1: Supplementary methods and supplementary
figures. The .doc file contains the description of supplementary methods
to explain how 5% threshold is selected in Step 2, a table of top 5 genes
in all the driver pathways of each subtype, validation results with COSMIC
mutated genes, validation results with cell line mutated genes,
comparison with other method (DrGaP) for mutational pathway
enrichment analysis. It also contains supplementary figures: KEGG 2D
color plots of all driver pathways for each subtype.

Additional file 2: Supplementary tables. This xIs file contains details
of selected pathway and pathway collaboration for each subtype.
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