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Abstract

Background: Coral reefs worldwide are being harmed through anthropogenic activities. Some coral reefs in
Thailand remain well-preserved, including the shallow coral reefs along Kra island, Nakhon Si Thammarat province.
Interestingly, the microbial community in this environment remains unknown. The present study identified
biodiversity of prokaryotes and eukaryotes of 0.22-30 um in sizes and their metabolic potentials in this coral reef
surface in summer and winter seasons, using 16S and 18S rRNA genes pyrosequencing.

Results: The marine microbial profiles in summer and winter seasons comprised mainly of bacteria, in phylum,
particular the Proteobacteria. Yet, different bacterial and eukaryotic structures existed between summer and winter
seasons, supported by low Lennon and Yue & Clayton theta similarity indices (8.48-10.43% for 16S rRNA, 0.32-7.81%
for 185 rRNA ). The topmost prokaryotic phylum for the summer was Proteobacteria (99.68%), while for the winter
Proteobacteria (62.49%) and Bacteroidetes (35.88%) were the most prevalent. Uncultured bacteria in phyla
Cyanobacteria, Planctomycetes, SAR406 and SBR1093 were absent in the summer. For eukaryotic profiles, species
belonging to animals predominated in the summer, correlating with high animal activities in the summer, whereas
dormancy and sporulation predominated in the winter. For the winter, eukaryotic plant species predominated and
several diverse species were detected. Moreover, comparison of our prokaryotic databases in summer and winter of
Kra reef surface against worldwide marine culture-independent prokaryotic databases indicated our databases to
most resemblance those of coastal Sichang island, Chonburi province, Thailand, and the 3 tropical GOS sites close
to Galapagos island (GS039, GS040 and GS045), in orderly.

Conclusions: The study investigated and obtained culture-independent databases for marine prokaryotes and
eukaryotes in summer and winter seasons of Kra reef surface. The data helped understand seasonal dynamics of
microbial structures and metabolic potentials of this tropical ecosystem, supporting the knowledge of the world
marine microbial biodiversity.
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Background

Previous studies reported different species and species
distribution patterns in different coastal and open ocean
environments, climates, distances from seashores, and
sea depths [1-4]. Dinsdale and colleagues [5] described
different prokaryotic and viral communities across 4 coral
atolls of the Northern Line Islands, influenced by oceano-
graphic conditions and human activities associated with
land-use and fishing. Human activities are considered a
major factor driving microbial structure changes [4,6-8].
Somboonna et al. [4] reported that two opposite coastal
niches of the non-vast Sichang island with different degrees
of manmade pollutions contained diverse microbial struc-
tures. Furthermore, seasonal variation affects the microbial
diversity. Studies described the repeatable seasonal dynamic
of the microbial structures in temperate coastal water of
N50.2518 W4.2089 with peak biodiversity in the winter sea-
son [9,10]. Yet, the seasonal dynamic of the microbial struc-
ture of the tropical coral reef remains unrevealed.

Coral reefs of tropical waters between 30°N and 30°S
are generally around shallow depth. This shallow-water
reef zone, known as reef surface, is affected by the surge
of water tides that further enhances the biodiversity.
Although coral reefs cover less than 1% of the Earth’s
surface, they are home to approximately 25% of marine
fish species [11-14]. Corals, coral animals and microbiota
have intricate relationship. For instances, coral animals
and microbiota could protect the corals from water
temperature rise, pollution, and also from specific patho-
gens by filling entry niches and/or producing antibiotics
[5,15,16]. Changing of microbial associates could help
the coral animals adapt to altering coral niches [15,17].
In contrast, coral bleaching causes change to the mi-
crobial community balance [18]. Thus, it is of import-
ance to understand these dramatically fruitful marine
microbial communities.

Currently, culture-independent method has been in
widespread use to obtain microbial databases for marine
and other various environmental resources [1,11,13].
This derived the global ocean sampling exploration
(GOS) project that was launched in 2003 by JC Venter
to gain understanding of microbial diversity for entire
marine environments, including coastal water, open ocean,
seafloor and seawater at different depths [1,3,4,19-21].
While no study for culture-independent microbial diver-
sity of any coral reef environment in Thai maritime has
been established, this study represents the first to use 16S
and 18S rRNA pyrosequencing with metagenomic DNA
to identify the summer and winter microbial structures
and their metabolic potentials representing Thailand’s
tropical reef surface of Kra island, helping to understand
our global marine biodiversity.

Being situated just above the equator makes Thailand a
tropical climate with great biodiversity of microbes and
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organisms. Kra island, or Ko Kra, is located in the Gulf
of Thailand at N8.39817 E100.73283, about 437 miles
(700 km) south of Bangkok and 34 miles (54 km) east of
Nakhon Si Thammarat province of Thailand (Figure 1).
The coral reefs around Kra island are still in well-preserved
condition due to the minimal anthropogenic impact,
meanwhile the world’s coral reefs have been dramatic-
ally degraded in the past few decades [14]. Kra island is
uninhabited as it has a small size of less than 0.1 square
miles and is remote from the mainland.

Results
General characteristics of Kra reef surface
Three independent water samples representing Kra island
reef surface were collected at N8.40116 E100.73232,
N8.39768 E100.73643 and N8.36135 E100.73524, during
midday in summer (May 2011) and winter (January 2012)
seasons of Thailand. All collected water samples were clean
and had no abnormal smell. On-site physical and chemical
property measurements of the collected water samples
expressed similar pH, salinity and temperature between the
two seasons, while dissolved oxygen was higher and sus-
pension solids were fewer in the winter (Table 1).
Following a two-step water filtration system to capture
marine microbes or particles of 0.22-30 microns in diame-
ters [4,22] and total nucleic acids extraction, the average
metagenomic DNA retrieved for the summer and the win-
ter samples were 0.22 and 0.19 nanogram per millilitre of
seawater, respectively.

Species compositions at domain and taxon levels
Libraries of summer and winter 16S and 18S rRNA genes
sequences were successfully constructed and sequenced:
66,600 total reads were classified into 14,189 reads for
summer 16S rRNAs, 42,659 for winter 16S rRNAs, 1,709
for summer 18S rRNAs, and 8,043 for winter 18S rRNAs.
The average number of reliable reads (having read length
of greater than or equal to 50 nucleotides) was 97.43% and
the average read length was 186 nucleotides. 96.23% of
the reliable reads could be identified by BLASTN
against NCBI [23], RDP [1,24] and Greengenes [25] for
16S rRNA genes; and NCBI [23], EMBL [26,27] and SILVA
[28] for 18S rRNA genes. Similarly, analysis by mg-RAST
(metagenomics - Rapid Annotation using Subsystems
Technology) [29,30] revealed high numbers of reliable
reads: 95.9% for summer and 99.2% for winter.
Comparing between Bacteria and Eukarya domains
using mg-RAST, Bacteria domain was more present than
Eukarya in both seasons, although the great proportion
of Eukaryota was found in the winter (Figure 2). Different
taxonomic compositions between the seasons were demon-
strated: summer mainly comprised taxons Proteobacteria,
unclassified (derived from bacteria), Actinobacteria,
Firmicutes, Mullusca, Cyanobacteria, Arthopoda, Nematoda,
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Figure 1 Satellite map of Kra island. The map was from Google Satellite Map, retrieved on 7 May 2013, from http://maps.google.com/. Red
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Brachiopoda, and Annelida, in orderly. The winter
mainly comprised of taxons Proteobacteria, Bacteroidetes,
Actinobacteria, unclassified (derived from eukaryotes),
Arthropoda, unclassified (derived from bacteria), Chordata,
Firmicutes, and Apicomplexa (Figure 3).

It is important to note that the varied pyrosequencing
depths between summer and winter 16S and 18S rRNA
datasets were normalized by random selection of equal
number of reads from both summer and winter seasons
for comparative analysis of microbial communities. 10,000
random reads of each 16S and 1,600 reads of each 18S
rRNA datasets were examined for distributions by taxons
(Additional file 1: Figure S1) and phyla (Additional file 2:
Table S1). These distribution patterns were similar to those
computed using the entire datasets (Figure 3 and Table 2).
The normalization analyses were independently performed
twice, and the results remained the same. Additionally,
rarefaction cures of the number of phyla on the Y-axis
against the number of random reads on the X-axis were

Table 1 General water properties

Seasons pH Salinity Temperature Dissolved Suspension

(ppt) (°C) oxygen (mg/L) solids (mg/L)
Summer 7.5 317 302 6.3 13.1
Winter 75 320 29.1 7.0 119

constructed for 16S and 18S rRNA datasets, and the
plateau curves showing relatively no new phyla at these
sequencing depths were observed for the 16S and 18S
rRNA data.

Prokaryotic diversity of summer and winter Kra reef surface
As an additional analysis to the mg-RAST analysis for
domain and taxon compositions, the 16S rRNA se-
quence profiles of summer and winter Kra prokaryotes
were species annotated by BLASTN [31] with E-value
threshold <107° against NCBI non-redundant [23],
RDP [24] and Greengenes [25] databases. With added
databases, most unclassified (derived from Bacteria) by
mg-RAST analysis became annotated. The summer
profile demonstrated an overwhelming proportion of
Proteobacteria (99.68%), whereas the winter profile
constituted the higher phyla diversity: Proteobacteria
(62.49%), Bacteroidetes (35.88%), and the greater propor-
tion of Actinobacteria (8.95-fold) and Firmicutes (4.73-fold)
than those in the summer (Table 2A). Prokaryotic phyla,
including Cyanobacteria, SAR406, Planctomycetes and
SBR1093, were only detected in the winter (Table 2A).
SAR406 (from Greengenes database) represents uncultured
bacteria that were previously discovered in Atlantic and
Pacific oceans. Its full-length 16S rRNA phylogeny
was not clustered with any bacterial phyla except was
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Figure 2 16S and 18S rRNA genes overview for domain compositions. “Other” denotes species not belong to Bacteria and Eukarya domains

Winter

a distant relative to genera Fibrobacter (the only genus
of phylum Fibrobacteres, capable of degrading plant fiber)
and Chlorobium (green sulfur bacteria of phylum Chlorobi)
[32]. SBR1093 (a relative of green sulfur bacteria Chlorobium
in Chlorobi; from Greengenes database) represents uncul-
tured bacteria which previous research found in wastewater
treatment plants with biological nutrient removal [33].
Within the same phyla, the summer and winter Kra
reef surface prokaryotic communities showed further
characteristic species compositions as determined by
low community structure relatedness Lennon (10.43%)
and Yue & Clayton (8.48%) theta similarity indices.
Species predominated in the summer were uncultured
Proteobacteria sp., Erwinia sp., Nautella italica, Vibrio
sp. and Vibrio splendidus; meanwhile species predomi-
nated in the winter were Pectobacterium carotovorum,
Pseudoalteromonas sp., marine bacterium, Sulfitobacter
sp., Croceibacter atlanticus and Flavobacteria bacterium

(Figure 4). Marine bacterium represents one taxon name
in Greengenes database, including isolates VS05_121 (from
South Pacific), B36 (North sea of the United Kingdom) and
KS-9-10-4 (South Korea), for instances.

Eukaryotic diversity of summer and winter Kra reef surface
As an additional analysis to the mg-RAST, the 18S
rRNA sequence profiles of summer and winter Kra
prokaryotes were also species annotated by BLASTN
[31] with E-value <107° against NCBI non-redundant [23],
EMBL [26,27] and SILVA [28] databases and many add-
itional unclassified (derived from Eukaryota) by mg-RAST
were defined. Table 2B demonstrated the fewer eukaryotic
phyla diversity in the summer than in the winter.

While fungal phyla were not abundant and thus did
not demonstrate much difference, the compositional
structures of the protist, plant and animal phyla were
greatly different between the seasons (Table 2B). Overall,

-
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Figure 3 16S and 18S rRNA genes overview for taxonomic compositions. Taxons with minor abundance were shown in corresponding
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Table 2 Percent compositions of free-living prokaryotic (A)
and eukaryotic (B) phyla in summer and winter seasons

A

Phyla Summer (%) Winter (%)
Proteobacteria 99.681 62.950
Actinobacteria 0.082 0.739
Bacteroidetes 0.208 36.146
Firmicutes 0.030 0.143
SAR406 - 0.005
Planctomycetes - 0.005
Cyanobacteria - 0.010
SBR1093 - 0.002
B

Phyla (Kingdom) Summer (%) Winter (%)
Ascomycota (Fungi) 0.924 1534
Basidiomycota (Fungi) 0.231 0.039
Glomeromycota (Fungi) 0.115 -
Neocallimastigomycota (Fungi) - 0.052
Zygomycota (Fungi) - 0.039
Apicomplexa (Protist) - 1403
Ciliophora (Protist) - 1.062
Dinophyta (Protist) 10.855 0354
Mycetozoa (Protist) - 0.184
Bacillariophyta (Plant) 1617 72473
Chlorophyta (Plant) 0.231 0.197
Cryptophyta (Plant) 0.346 0.118
Eustigmatophyceae (Plant) - 0.013
Haptophyta (Plant) - 0.118
Phaeophyceae (Plant) - 0354
Pinguiophyceae (Plant) - 0.262
Stramenopiles (Plant) - 14.825
Streptophyta (Plant) 0.115 0.105
Xanthophyceae (Plant) 0.115 0.669
Annelida (Animal) 15.589 0.184
Arthropoda (Animal) 6.236 0.079
Brachiopoda (Animal) 37.067 0.013
Chordata (Animal) 1.039 0.734
Cnidaria (Animal) - 0459
Gastrotricha (Animal) 0.231 -
Mollusca (Animal) 23.672 -
Placozoa (Animal) - 4.706
Platyhelminthes (Animal) 1.039 0.013
Porifera (Animal) - 0.013
Rotifera (Animal) 0.557 -

Each identified read was classified in its corresponding phylum. The proportional
percentage of each phylum was calculated by dividing the number of the
identified reads in a phylum with the total number of the identified reads.
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animals Brachiopoda, Mollusca and Annelida, and protists
Dinophyta, constituted 87.12% of the total phyla com-
positions in the summer. On the other hand, plants
Bacillariophyta and Stramenopiles constituted 87.30%
of all phyla in the winter. Indeed, several plant phyla
were missing in the summer (Table 2B).

Within the same phyla, the summer and winter Kra
reef surface eukaryotic communities showed further
characteristic species compositions as determined by
low Lennon (7.81%) and Yue & Clayton (0.32%) theta
similarity indices. These similarity indices were even
lower than those belonged the 16S rRNA profiles. Spe-
cies predominated in the summer were Dinophysis
acuminata (phylum Dinophyta, kingdom Protist), Myrina
sp. (Arthropoda, Animal), Glycymeris pedunculata
(Mollusca, Animal), Lingula anatina (Brachiopoda, Animal),
Ctenodrilidae sp. (Annelida, Animal) and Hyotissa numisma
(Mollusca, Animal). Species predominated in the win-
ter were Nanofrustulum shiloi (Bacillariophyta, Plant),
Climacosphenia moniligera (Bacillariophyta, Plant),
Corethron criophilum (Bacillariophyta, Plant), Corethron
hystrix (Bacillariophyta, Plant), Pirsonia diadema
(Stramenophiles, Plant), and Trichoplax sp. (Placozoa,
Animal), for examples (Figure 5).

Metabolic subsystem analysis of bacterial communities in
summer and winter Kra reef surface

A total of 28 metabolic subsystems were found in summer
and winter bacterial communities of Kra reef surface.
Figure 6a demonstrated quite similarities in the distri-
bution of these 28 subsystems between seasons, except
in the subsystem of dormancy and sporulation that
were more preponderated in the winter season. Overall, the
main bacterial metabolic subsystems entailed carbohydrates,
clustering-based subsystems, and amino acids and deriva-
tives, respectively. Analysis of the distributions of functional
groups within each subsystem showed that summer con-
tained higher functional groups in: aromatic amino acids
and derivatives (subsystem amino acids and derivatives);
polysaccharides (carbohydrates); catabolism of an unknown
compound, probably organic hydroperoxide resistance
related hypothetical protein, probably Ybbk-related
hypothetical membrane proteins, proteosome related,
Shiga toxin cluster (clustering-based subsystems); coenzyme
M (cofactors, vitamins, prosthetic groups, pigments);
anaerobic degradation of aromatic compounds (metabolism
of aromatic compounds); desiccation stress (stress response);
invasion and intracellular resistance, toxins and super-
antigens (virulence, diseases and defense). For the win-
ter the higher functional groups were: gram-positive cell
wall components (cell wall and capsule); DNA metabolism,
nucleotidyl-phosphate metabolic cluster, recombination
related cluster, recX and regulatory cluster, related to
Menaquinon-cytochrome C reductase, two related
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proteases (clustering-based subsystems); DNA uptake,
competence (DNA metabolism); spore DNA protection
(dormancy and sporulation); protein translocation across
cytoplasmic membrane (membrane transport); light-
harvesting complexes (photosynthesis); bacteriocins,
ribosomally synthesized antibacterial peptides (virulence,
diseases and defense) (Figure 6b).

Global comparative analyses of prokaryotic profiles
representing summer and winter Kra reef surface
against coastal Tha Wang and Tham Phang of Sichang
island, 73 GOS sites, and 4 Northern Line islands sites
Similarity between pairs of prokaryotic community struc-
tures were determined by theta similarity coefficients Yue
& Clayton (Thetayc) and Smith (Thetan), using mothur
[34,35]. These similarity coefficients were used for principle
coordinate analysis (PCoA) and un-weighted pair group
method with arithmetic mean clustering (UPGMA). Re-
sults indicated the prokaryotic communities between the
summer and winter Kra reef surface were most closely re-
lated, followed by coastal Tha Wang and Tham Phang of
Sichang island, GS039 (53.343333, W101.373889, sample
depth at 2 m, water depth at >4000 m, Open Ocean site,
Tropical South Pacific region from INTERNATIONAL),
GS040 (S4.498889, W105.070000, sample depth at 2.2 m,
water depth at >4000 m, Open Ocean site, Tropical South

Pacific region from INTERNATIONAL), GS045 (S9.017500,
W127.767222, sample depth at 1.7 m, water depth
at >4000 m, Open Ocean site, Tropical South Pacific
region from INTERNATIONAL, location of 400 miles
from F. Polynesia), respectively (Figure 7). Specifically, the
similarity coefficients revealed that the winter prokaryotic
community of the Kra reef surface was more closely
related to those of Tha Wang (Thetayc summer =
0.963739, Thetayc winter = 0.987038) and Tham Phang
(summer = 0.973696, winter = 0.98611) than the summer.
In contrast, the summer rather than the winter Kra reef
surface prokaryotic community was more closely related to
those of GS039 (summer = 1.000000, winter = 0.998852),
GS040 (summer = 1.000000, winter = 0.999934) and GS045
(summer = 1.000000, winter = 0.99961).

Figure 8 compared the prokaryotic phyla distributions
among Kra reef surface, Sichang island coast and the
three related GOS communities. The relatedness between
the winter Kra and the coastal Sichang prokaryotic
communities was associated by the great presentation
of Proteobacteria and Bacteroidetes, and the shared
presence of Cyanobacteria, Planctomycetes, SAR406 and
SBR1093. The relatedness between the summer Kra and
GS039, GS040 and GS045 prokaryotic communities in-
volved the rather restraint phyla distribution of simply
Proteobacteria and Bacteroidetes (Figure 8). Figure 8 also
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Figure 5 Frequency diagram of free-living small eukaryotic species in summer and winter seasons. Species and phyla are ordered
according to their relative genetic distances among one another. A percent relative abundance of each species is represented in color gradient.
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revealed the more diversified prokaryotic phyla in Thai
marine habitats: Tha Wang followed by Tham Phang,
winter Kra reef surface, summer Kra reef surface, GS045,
GS040 and GS039, respectively.

Discussion

To unravel the microbial biodiversity in the tropical reef
surface of Kra island, a home of fruitful corals, and sur-
rounding animals and plants, this present study was
conducted to obtain the prokaryotic and eukaryotic da-
tabases for the summer and winter seasons of this coral
reef surface. Free-living microorganisms and particles
of approximately 0.22-30 pm in diameter were captured,
their metagenomes were extracted, and high number
of reliable reads (97.43%) and respectable read length
(186 nt) were retrieved.

Total 16S and 18S rRNA gene analyses showed that
bacteria the major domain of lives in this marine habitat
(Figure 2), supporting the fact that bacteria are ubiqui-
tous on almost every environment [2,4]. Meanwhile, ar-
chaea was not found in this marine habitat, consistent
with current GOS analysis and previous literatures that
reported 0 to <1.0% archaea in typical marine microbial
community [2,9,17]. Current GOS reported 0% archaea
in estuary marine, 0.2% open-ocean, and 0.4% coastal
water (average 0.3% for entire GOS) [2]. Wegley et al.

[17] reported <1% archaea in coral fragments. As archaea
should be more present in contaminated and polluted
water environments [2,4], the absence of archaea might
in part highlight the cleanliness and non-polluted Kra
coral reef water, allowing bacteria to be overpopulated.

As previous studies found that not only local environ-
mental factors like sunlight, sea depth and substrate inclin-
ation but also seasons could exert a strong influence on the
structural and functional biodiversity of coral benthic com-
munities [36], our data demonstrated season could impact
different microbial population structures and functions.
The differences appeared since the domain and taxon
distribution patterns (Figures 2 and 3). The greater bac-
terial proportion in the summer (Figure 3) was perhaps
associated with its less abundant eukaryotes. The less
animal disturbance due to time of dormancy and sporu-
lation in the winter might support the growth of photo-
synthetic lives, and thus the biodiversity of eukaryotes
in the winter.

For bacteria, the study found Proteobacteria to be pre-
dominant in the summer, while not only Proteobacteria
but also Bacteroidetes were prevalent in the winter
(Table 2A). Changing pattern of bacterial phyla com-
position was consistent with recent findings by Gilbert
and colleagues [9,10], stating microbial communities
did change over time, between seasons, and between
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day and night. In addition, the greater bacterial diver-
sity in the winter (Figure 4) was consistent with these
6-year analyses of the bacterial structures, representing
the coastal Western English Channel [9] and the coastal
Plymouth in UK [10], that proved the bacterial diversity
was highest in winter and at night, and showed season as
one important factor for microbial diversity. Note these
studies used the same experimental methods as ours.
Furthermore, most bacterial phyla detected in the winter
Kra reef surface were also found on the coral fragments
from Bocas del Toro, Panama (N9.3306 W82.2494)
(Proteobacteria 68%, Firmicutes 10%, Cyanobacteria
7% and Actinobacteria 6%) [17]. Note this study was,

again, conducted using the same method as ours, and
the different bacterial compositions between this and
ours could be attributed to different marine geography
and sampling time.

The prevalence of Bacteriodetes (Table 2B) in the winter
Kra reef surface was not uncommon, as this phyla was
also found in various marine environments [4,37]. Spe-
cies in this phyla could serve marine lives pathogens and
opportunistic human pathogens, for examples, Croceibacter
atlanticus, Flavobacterium sp. and Psychroserpens sp.
(Figure 4). C. atlanticus in a family Flavobacteriaceae
was isolated from Bermuda Atlantic Ocean [38]. This
species and other Flavobacterium sp. could cause fish
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J

diseases and are opportunistic pathogens for humans due
to, for instance, their chorismate biosynthesis pathway [39].
Psychroserpens sp. is also in a family Flavobacteriaceae,
and was found strictly associated with some fish dis-
eases, such as amoebic gill disease [40]. Yet, bacterial
pathogens were also noticed in the summer. Vibrio sp.
(13.42% summer, 6.94% winter) and Pectobacterium
carotovorum (13.15% summer, 2.86% winter) could cause
diseases in marine animals and plants, respectively
(Figure 4) [5,41]. Vibrio sp. in undercooked seafood serves
as a frequent cause of foodborne diseases in humans [42].

Hence, summer and winter Kra reef surface contained spe-
cies that might be pathogenic to marine lives and humans.
Additionally, the findings of SAR406 and SBR1093,
which are relatives of green sulfur bacteria Chlorobium,
in the winter (Figure 4), though supported the diversity
peak in the winter, might pose a threat. The reason was
because Chlorobium could live in harsh-living conditions
and could out-compete the growth of other photosynthetic
microbes in restricted nutrient condition. Chlorobium is a
photolithotrophic oxidizer of sulfur, and could also produce
huge quantities of methane and hydrogen sulfide, causing
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global warming and acid rain [32]. In Thailand, Chlorobium
was previously reported in a human-polluted Tha Wang
coast of Sichang island [4]. Overall, the low Lennon and
Yue & Clayton theta similarity indices represented the
dynamic of bacterial compositions between summer and
winter seasons.

In support of the aforementioned results and previous
reports [9,10], the greatly diversified eukaryotic phyla
and species, except for fungi, were found in the winter
(Table 2B and Figure 5). Fungi were presented in a minor
portion in both seasons, although their function could in-
volve nutrient recycling like bacteria yet some could serve
pathogens to the marine lives in the food webs [17]. Be-
cause several fungal species are not independent-living, the
2-step filtration method that selected for ~0.22-30 um mi-
croorganisms or particles (extracellular DNAs) did not tar-
get these living-dependent fungi. However, the filtration
method is widely practiced among metagenomic scientists
[1,2,22], serving as an appropriate method for collection of
microbial-size organisms and particles in the seawater.

Plant species, mainly Climacosphenia moniligera from
phylum Bacillariophyta (0.12% summer vs. 30.70% winter:
Figure 5), were abundant in the winter. These unicellular
diatoms were found commonly along the corals, and
could function as producer to this food chain [17]. Thus,
the abundant plant species might infer the more product-
ive coral ecosystem during the winter. On the other hand,
the larger proportion of animal species in the summer

(Figure 5) could likely be extracellular DNA, as many
detected animals were of larger size than 30 pm. A sig-
nificant proportion of brachiopods Lingula anatina in
the summer (37.07% summer, 0.01% winter; Figure 5)
was questionable; perhaps marine animal activities
were so high in the summer that their extracellular
DNAs from larvae or any dead debris were detected
[4]. The explicit differences in the 18S rRNA gene profiles
between these seasons resulted in the very low Lennon
and Yue & Clayton theta similarity indices.

As coral microorganisms could help the coral animals
to adjust to altering niches [15-17], the metabolic potentials
for the summer and winter Kra reef surface bacterial
communities were revealed to better understand this coral
reef surface biodiversity pattern and its species-species
interactions. 28 metabolic subsystems were discovered.
Subsystems of carbohydrates, clustering-based subsystems,
and amino acids and derivatives, were highly presented in
both seasons, as these subsystems were important for any
ecosystem. Finding of the greater dormancy and sporula-
tion rate in the winter (Figure 6a) supported the general
knowledge of this season for animal dormancy and sporula-
tion. Functional groups of membrane transport and
photosynthesis that were higher in the winter (Figure 6b)
suggested the enriched food chain, supporting the diversity
peak. These changes in key subsystems (i.e. photosynthesis)
among seasons were consistent with previous studies by
Gilbert et al. [9] and our water property measurements
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showing the greater percent dissolved oxygen and lower
suspension solids in the winter (Table 1). Further, algae
could stimulate bacterial respiration, and were found
greater in the winter [43]. Consequently, changes in
bacterial patterns between seasons have intricate rela-
tionships with other marine lives, and affect the meta-
bolic potentials of the ecosystems potentially in a way
characteristic to individual seasons.

Finally, the prokaryotic profiles representing Kra reef
surface were compared to our Thai marine datasets,
coastal Tha Wang and Tham Phang of Sichang island,
73 GOS and 4 Northern Line Islands datasets. The
closer prokaryotic community structures between the
Kra reef surface and the Sichang island (Figure 7)
highlighted community relatedness due to oceanographic
position (tropical climate). The next close community
structures GS039, GS040 and GS045 were also probable,
since these three sites represent open ocean Tropical
South Pacific at coordinates S3.343333 W101.373889
(temperature 28.6°C), S4.498889 W105.070000 (27.8°C),
and S9.017500 W127.767222 (28.3°C), respectively (Figure 9)
[37]. These oceanographies shared relatively warm
temperature of above 25°C. The great prokaryotic diversity
of Sichang islands, and also the Kra reef surface although
with the less degree (Figure 8), highlighted the rich micro-
bial biodiversity in the Thai maritime zone.

The present study provided complete independent-living
prokaryotic and eukaryotic profiles of 0.22-30 pm of
summer and winter Kra reef surface. Still, time series
and rainy season analyses could be performed next to
understand the seasonal pattern of the Kra reef surface
community. Also, microbial communities of the corals
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and the coral sediments should be determined to gain
complete understanding of the coral reef ecosystem at
the Kra island.

Conclusions

Summer and winter showed differences in species rich-
ness and evenness in Kra reef surface prokaryotic and
small eukaryotic populations. The 16S and 18S rRNA
gene databases serve as the baseline for future studies of
coral reef microbes in Thai maritime, helping to elucidate
association of microbes in differing oceanography and
human impacts. Additionally, the data helped understand
how Kra reef surface microbial community and metabolic
potentials are associated with seasons and those of the
other marine ecosystems worldwide.

Methods

Reef surface water sampling

Reef surface water samples (<1 meter depth) around Kra
island coral reefs were collected into separated sterile
containers in May 2011 and in January 2012, between
11:00-14:00 hrs. Kra island is very small and comprises
three small islets (Kra Yai, Kra Klang and Kra Lek), so
simultaneously three independent water samples were
collected around these islets per time period to represent the
site. The sampling positions were at N8.40116 E100.73232,
N8.39768 E100.73643 and N8.36135 E100.73524, and more
than replicate samples were collected per sample position,
per time. Sample collection site and positions were selected
with support from Marine and Coastal Resources Center,
Lower Gulf of Thailand. This research area did not require
any permission or ethical approval to work on the coral
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Figure 9 Satellite map of GS039, GS040 and GS045. The map was taken from Google Satellite Map, on 21 May 2013.

Googleearth




Somboonna et al. BMC Genomics 2014, 15:607
http://www.biomedcentral.com/1471-2164/15/607

reef. General water characteristics measured on-site in-
cluded pH, salinity (parts per thousand: ppt), temperature,
dissolved oxygen and suspension solids. All samples were
transported on ice, stored in 4°C and were processed for
the next steps within 14 days.

Metagenomic extraction and DNA quality examination
The metagenomic DNA extraction was performed sep-
arately for each of the three oceanographic positions
representative to the Kra island. Each water sample
was poured through four-layered sterile cheesecloth to
remove debris and large-size organisms of >30 um [4].
Then, independent-living prokaryotes and eukaryotes
and particles of sizes >0.2 pm were captured using a
sterile 0.22-pm filter (Merck Millipore, Massachusetts,
USA). Total nucleic acids were extracted, and appeared
around 40 kb in size, according to Metagenomic DNA
Isolation Kit for Water (Epicentre, Wisconsin, USA) [22].
The extracted metagenomes were analyzed for quality and
concentration by agarose gel electrophoresis and Ajg/Azgg
nanodrop spectrophotometry.

Pre-tagged 16S and 18S rRNA sequence libraries
preparation and pyrosequeing

The 16S and 18S rRNA gene library constructions were
performed separately for each of the three oceanographic
positions representative to the Kra island. For broad-range
amplification of prokaryotic 16S rRNA and 18S rRNA
genes, universal prokaryotic 338 F and 803R primers
[4,44-46] and universal eukaryotic 1A and 516R primers
[4,47-49] were used. For sample labelling, 8-nt pyrotag
sequences were added to each primers [50]. The primer se-
quences were listed in Additional file 3: Table S2. For each
sample, a 50-ul PCR reaction comprised 1x EmeraldAmp®
GT PCR Master Mix (TaKaRa, Shiga, Japan), 0.3 uM of
each primer, and 100 ng of the metagenome. The PCR
conditions were 95°C for 4 min, and 30-35 cycles of 94°C
for 45 s, 50°C for 55 s and 72°C for 1 min 30 s, followed by
72°C for 10 min. PCR products of about 466 (16S rRNA)
and 560 (18S rRNA) nucleotides in length were excised
from agarose gels, and were purified using PureLink® Quick
Gel Extraction Kit (Invitrogen, New York, USA). To
minimize stochastic PCR biases, two PCRs were per-
formed per sample, and three samples were per season,
yielding 6 PCR products to be pooled for pyrosequencing
per sample period. 175 ng each of the pyrotagged summer
and winter 16S rRNA gene amplicons and 50 ng each of
the pyrotagged summer and winter 18S rRNA gene ampli-
cons were pyrosequenced on an eight-lane Roche picotiter
plate. In brief, the 454-sequencing adaptors were ligated
to all 16S and 18S rRNA fragments. The reaction was
purified by MinElute PCR Purification Kit (Qiagen), and
pyrosequencing was performed using the 454 GS FLX sys-
tem (Roche, Branford, CT) at the in-house facility of the
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National Center for Genetic Engineering and Biotechnology,
according to the recommendations of the supplier.

Sequence annotation and microbial composition analyses
Sequences were categorized based on their appended
pyrotag-sequences, and sequences of less than 50 nucleo-
tides were removed. Sequences corresponding to summer
and winter seasons were overviewed for domain and
taxonomic abundances using mg-RAST [29,30] with default
parameters. Species were annotated by BLASTN [31] with
E-value <107°, against 16S rRNA gene databases including
NCBI non-redundant [23], RDP [24] and Greengenes [25],
and for 18S rRNA genes the databases included NCBI non-
redundant [23], EMBL [26,27] and SILVA [28]. Evolutionary
distances and phylogenetic tree were computed with default
thresholds (E-value < 1078, similarity score > 80%). Species
(or phylum) percent relative abundance is the frequency of
reads in the species (or phylum) divided by the total num-
ber of the identified reads. Similarity indices of taxonomic
compositions between comparing communities were deter-
mined using Lennon and Yue & Clayton similarity indices
in mothur [31,51]. The data were also compared with those
of the 73 GOS (https://portal.camera.calit2.net/gridsphere/
gridsphere) [1,3] and 4 sites of Northern Line Islands
(Fanning, Kiritimati, Palmyra and Kingman) database [5],
using Yue & Clayton theta similarity coefficients (Thetayc)
and Smith theta similarity coefficient (Thetan) in mothur
[34,35]. The closer the similarity coefficient to 0.000
indicated the more similarity in community structures.
PCoA was plotted in three-dimensions using mothur
[35]. All 16S rRNA nucleotide sequences were aligned,
and an un-weighted pair group method with arithmetic
mean (UPGMA) clustering were constructed at distance
of 0.20 using mothur [35]. The results were manually
inspected to ensure properly sequence annotation, cluster-
ing, and phylogenetic tree relationship. Further, varied
sequencing depths were analyzed by (i) random selections
of equal number of reads between summer and winter,
and examination of their taxonomic and phyla distribution
patterns against those constructed by the entire datasets;
and (ii) rarefaction curve of number of phyla on Y-axis
against number of random reads on X-axis.

Bioinformatics for functional subsystem analyses

Each bacterial species comprises own sets of metabolic
and functional group potentials, and these information
were available from mg-RAST server [30,52]. The 16S
rRNA gene profiles were thereby characterized into
potential metabolic subsystems and functional groups
based on their BLASTN species annotation [29].

Availability of supporting data
All nucleic acid sequences in this study were deposited in
an open access repository named Sequence Read Archive
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(SRA) database of NCBI, accession number SRP041071
(http://trace.ncbi.nlm.nih.gov/Traces/sra/).

Additional files

Additional file 1: Figure S1. 165 and 18S rRNA genes overview for
taxonomic compositions of normalized sequencing depth. Each season
data comprised 10,000 and 1,600 random reads of 16S and 18S rRNA
sequences, respectively. Taxons with minor abundance were shown in
corresponding colors but were not presented in the circular diagram.

Additional file 2: Table S1. Percent compositions of prokaryotic (A)
and eukaryotic (B) phyla after pyrosequencing depths were normalized.
Each identified read was classified in its corresponding phylum. The
proportional percentage of each phylum was calculated by dividing the
number of the identified reads in a phylum with the total number of the
identified reads.

Additional file 3: Table S2. Pyrotagged 16S and 18S rRNA gene

primers. Italic sequence denotes 8-nt pyrotag sequence.
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