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Abstract

Background: Genome-wide association studies (GWAS) have successfully identified genes associated with complex
human diseases. Although much of the heritability remains unexplained, combining single nucleotide
polymorphism (SNP) genotypes from multiple studies for meta-analysis will increase the statistical power to identify
new disease-associated variants. Meta-analysis requires same allele definition (nomenclature) and genome build
among individual studies. Similarly, imputation, commonly-used prior to meta-analysis, requires the same
consistency. However, the genotypes from various GWAS are generated using different genotyping platforms, arrays
or SNP-calling approaches, resulting in use of different genome builds and allele definitions. Incorrect assumptions
of identical allele definition among combined GWAS lead to a large portion of discarded genotypes or incorrect
association findings. There is no published tool that predicts and converts among all major allele definitions.

Results: In this study, we have developed a tool, GACT, which stands for Genome build and Allele definition
Conversion Tool, that predicts and inter-converts between any of the common SNP allele definitions and between
the major genome builds. In addition, we assessed several factors that may affect imputation quality, and our results
indicated that inclusion of singletons in the reference had detrimental effects while ambiguous SNPs had no
measurable effect. Unexpectedly, exclusion of genotypes with missing rate > 0.001 (40% of study SNPs) showed

no significant decrease of imputation quality (even significantly higher when compared to the imputation with
singletons in the reference), especially for rare SNPs.

Conclusion: GACT is a new, powerful, and user-friendly tool with both command-line and interactive online
versions that can accurately predict, and convert between any of the common allele definitions and between
genome builds for genome-wide meta-analysis and imputation of genotypes from SNP-arrays or deep-sequencing,
particularly for data from the dbGaP and other public databases.

GACT software: www.uvm.edu/genomics/software/gact
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Background

Genome-wide association studies (GWASs) and next-
generation deep sequencing studies have successfully
identified genes associated with human diseases and traits,
yet they suggest that the identified variants cumulatively
explain a small percentage of the estimated inherited risk
to develop these diseases. Combining samples from mul-
tiple GWASs or deep sequencing datasets of the same
phenotype for large-scale meta-analyses will increase the
statistical power to identify new or rare associated variants
[1], particularly for complex traits where the disease vari-
ants may have moderate effect sizes, which may account
for some of the missing heritability [2]. However, the raw
single nucleotide polymorphism (SNP) genotype datasets
might have been generated using different genotyping or
sequencing platforms, array types [3] or SNP calling pro-
cedures, resulting in the use of different genome builds or
allele definitions (nomenclatures). Thus, combining mul-
tiple GWASs or deep sequencing studies (e.g. the 1000
Genomes Project [4]) requires conversions of inconsistent
allele definitions and genome builds between the datasets,
as demonstrated in a large number of NHGRI (www.
genome.gov) GWAS meta-analyses [1]. Likewise, imput-
ation, one of the commonly-used approaches to predict
the genotypes for un-assayed loci, requires the same
consistency between the study and reference datasets, for
example, imputation has been applied to almost half of
the GWASs [1] in the NHGRI GWAS Catalog.

Four common nomenclatures exist for reporting bialle-
lic SNPs, including: probe/target or A/B, Plus (+)/Minus
(=), TOP/BOT, and Forward/Reverse [5]. The genotype
data from different studies are often not consistent or
matched for genome builds or allele definitions, and thus,
genotype and build conversions are required if an investi-
gator combines multiple GWASs or imputes a reference
dataset (e.g., the 1000 Genome data) into a study GWAS.
For example, different genome builds, primarily build 36
(b36) and b37, and various allele definitions were adopted
in the 15,541 NHGRI GWAS Catalog datasets. The
solutions that disregard mismatched SNPs, i.e., direct
allele-flipping or removal of mismatches [6], will lead
to undesirable consequences. For example, allele-flip (i.e.,
from Al to A2 and vice versa) ignores the allele frequen-
cies of study population and may make the downstream
analyses of the flipped SNPs irrelevant to the sample
population; and genotype removal may significantly lower
the SNP density of relevant regions. Thus, the build of the
human genome that was used to call the study SNPs (or
true-genotypes) and the allele definition have to be deter-
mined and converted where necessary prior to imputation
and meta-analysis.

To our knowledge, there is no available tool that
simultaneously predicts and converts human genome
builds and allele definitions. The existing tools either
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convert between selected allele definitions alone (such as
GenGen (www.openbioinformatics.org/gengen) where the
Plus (+)/Minus (-) definition is not included) or between
genome builds alone (such as the UCSC Genome Browser
LiftOver (genome.ucsc.edu/cgi-bin/hgLiftOver)). In this
study, we have developed a new and powerful genotype
conversion tool, GACT, which stands for Genome build
and Allele definition Conversion Tool, to aid in imput-
ation, meta-analysis or both (Figure 1). GACT (Figure 2)
directly inter-converts among any of the four allele defini-
tions and between the b36 and b37 genome builds. Since
investigators who use datasets from existing GWAS re-
positories, such as the dbGaP, may not immediately know
what allele definitions were used to call the SNPs, we built
an artificial neural network (ANN) within GACT to pre-
dict the allele definitions. For next-generation sequencing
(NGS) projects, since the sequence reads are aligned and
mapped to the human reference genome, which is often
in the Plus (+)/Minus (-) definition, the SNP genotypes
will be of the same one definition. GACT can convert and
match the SNP data from genotyping arrays to NGS data
(SNP calls) for data merge and meta-analyses. Our ex-
ample conversions from A/B definition b36 to Plus/Minus
definition b37 consistently yielded high matches with the
phased 1000 Genomes genotypes (Table 1), demonstrating
the accuracy of our tool for converting the genome builds
and allele definitions. GACT can be used as a powerful
command line application as well as a user-friendly inter-
active web tool.

Imputation is often desirable before combining multiple
genotype datasets from different recourses for meta-
analysis. Our imputation analysis revealed higher quality
for imputed SNPs when GACT was used, compared to
when mismatched SNPs were excluded (Additional file 1:
Table S1). While GACT aims to convert between allele
definitions and maximize the number of correctly matched
alleles to a reference, there are many other factors that can
affect imputation quality. Hence, we measured the effects
of selected variant types (such as singletons (i.e. SNPs with
only one copy of the minor allele among all samples),
monomorphic SNPs, and ambiguous SNPs) and GWAS
quality control procedures (such as genotype missing rate)
on imputation quality. We found that the exclusion of
singletons and monomorphic SNPs from the reference
improved imputation quality of rare SNPs with minor
allele frequency (MAF)<0.005 (the mean quality score
increased from 0.52 to 0.57, which was the highest increase
across all MAF ranges) but had no effect on SNPs with
MAF > 0.005 (the mean score remained 0.91). The ambigu-
ous SNPs had no measurable effect on imputation, while
imputation quality decreased as the genotype missing
thresholds became more conservative. Surprisingly, for
imputed common SNPs (MAF > 0.1), the decrease in im-
putation quality started to emerge under very stringent
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Figure 1 Study design and GACT functionality. The left side of the figure indicates that microarray data can be used to call SNPs in any of the
four listed SNP definitions. Often, when genotypes are obtained from public repositories (e.g. dbGaP), allele definitions may not be immediately
known to investigators. GACT will predict allele definition and genome build, and convert to any new definitions or builds. Since the SNP
definition in the NGS data is determined during alignment to the human reference genome (Plus is a commonly-used definition), the SNP alleles
from genotyping microarrays can be converted and matched to those from NGS. After GACT's conversion, imputation, meta-analysis and (or)
other analyses may be carried out using the commonly-used tools such as GWAMA, METAL, PLINK, and IMPUTE2.
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genotype missing thresholds (0.004-0.001, instead of the
commonly-used 0.05); by comparison, the imputation of
relatively rare SNPs (MAF <0.1) was even more robust,
the decrease was not significant until the missing threshold
reached a more stringent threshold of 0.0005 (correspond-
ing to removal of 61.4% of the genotypes). Moreover, the
physical locations of the SNPs that were excluded under
these missing thresholds were distributed uniformly across
the chromosomes. Our analyses provide novel insight into
imputation insensitivity to genotype missingness, particu-
larly for rare SNPs.

Implementation

Subjects and genotype data

A cohort of 3,096 subjects of Ashkenazi Jewish ethnicity
were genotyped using the Illumina Human Omni 1
Quad arrays. The GWAS genotype data were obtained
through the NIH dbGaP [phs0004438].

GACT pipeline

GACT was designed for matching allele definitions be-
tween the study GWAS and reference data before imput-
ation or merging multiple genome-wide genotype datasets
before meta-analysis, where the genotypes were generated
from SNP-arrays or deep-sequencing platforms (Figure 1).
Figure 2 shows the study design and GACT pipeline,
which can be directly connected to other commonly-used
methods, including genotype phasing of GWAS (or deep
sequencing) data, imputation, data merging, and meta-
analysis (Figure 1). The proper execution in command line
of GACT requires PLINK [7], GenGen, and the genotyp-
ing array annotation files in the same directory, which can
be downloaded from our website. The command line
follows this syntax (example): ./gact b36 b37 ab plus olqd
map._file_name. The arguments represent the current gen-
ome build (b36), desired genome build (b37), current allele
definition (ab), desired allele definition (plus), annotation
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Figure 2 GACT pipeline. The flow diagram shows the major procedures in the GACT design. The bottom left panel shows the prediction model
of allele definitions based on the distribution of each definition (Figure 2). The bottom right panel shows the allele conversion pathway among
the four allele definitions. The input file to be uploaded is a PLINK format map file. This pipeline is implemented in both command-line and

web interface.

Table 1 Genotype mismatches between the GWAS and 1000 genomes datasets

Study GWAS 1000 genomes Types Incorrect conversions Correct conversion
Fwd-plus Top-plus Plus-plus

T/C T FLIP 0 0 0

T/C A/G CSF 5,048 9875 301

T/C G/A FLIP & CSF 8,556 27,648 1,840

T/A Al AMBIG 432 432 432

*/x /= NAR 3,344 3,344 3,344
Matches (%) 62,793 (783) (81.7)" 38,875 (48.5) 74,256 (92.6) (96.7)

FLIP: switch both alleles with one another (from A1 to A2 and vice versa).

CSF: complimentary strand flip.

AMBIG: ambiguous SNPs in study GWAS.

NAR: not available in the reference.

*/*: any genotype.

—/—: missing genotype.

Fwd: Forward/Reverse.

Top: TOP/BOT.

Plus: Plus (+)/Minus (-).

¥, percentages of matched genotypes after excluding the NAR genotype counts.

Both the “GWAS" (the 3,096 Ashkenazi Jewish samples) and “1000 Genome” columns show the example alleles in the A1/A2 order. The “Type” column indicates
the changes required to match the study SNP to the reference. The last three columns refer to numbers of genotype mismatches on chromosome 1 (80,173 SNPs
in total). The “Fwd-Plus” and “Top-Plus” columns show the numbers of genotype mismatches between the “Fwd” and “Top” definitions of our GWAS data (we first
generated two versions of the same GWAS data: “Fwd” and “Top”) and the “Plus” definition of the 1000 Genome data, respectively, while the “Plus” column refers
to the numbers after we converted the GWAS data to “Plus” using GACT. The last row shows the numbers (percentages) of correct genotype matches (e.g., “T/C"
and “T/C") between the GWAS and 1000 Genome data, where the (%) and (%) represent the percentages measured by including and excluding the SNPs (NAR)
unique to our GWAS data, respectively. Similar ratios were observed in other chromosomes.
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file of SNP genotyping array (01qd = Human Omni 1 Quad
Duo), and input map file name, respectively. The input file
should be in the same format as the PLINK binary map file,
containing chromosome location and reference alleles of
each SNP. The web version accesses the same command
line options on the server-end after user uploads the input
file, a PLINK format map file, and chooses the preferred
options on the web interface. Moreover, the web tool allows
the user to view in real time a log of every step in the con-
version process. The command line has no pre-defined
limit on the input file size while the web tool has a limit of
40 megabytes (MB), which is sufficient for most SNP arrays
(e.g., the entire map file of the Illumina Human Omni 1
Quad array is < 30 MB).

To build the allele definition prediction model, the
1000 Genomes data (2,046,145 SNPs on chromosome 1),
dbSNP data (51,864 SNPs on chromosome 1), and our
GWAS data (964,554 SNPs on chromosome 1) were
used to extract the allele properties of the Plus (+)/Minus
(=), Forward/Reverse, and TOP/BOT definitions, respect-
ively (our findings were consistent across all chromo-
somes). The three genotypes (CT, TC, and GA, Figure 3)
that showed the largest amount of differential enrichment
among the allele definitions were used as the inputs for a
feed-forward, back propagation, ANN with 3 input neu-
rons, 2 hidden layers, and 1 output neuron. This ANN
was trained using 10 random samples of various sizes
(from 1,000 to 2,000,000 SNPs) from each of the three
genotype sources. The ai4r ruby gem (aidr.org) was used
to implement the ANN. Similarly, the coordinates of
selected common SNPs in both b36 and b37 datasets
were used as the references to predict genome builds.
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We assessed the quality of implementing our tool to the
GWAS data by counting the number of allele matches
between the study data and 1000 Genomes Project data
using SHAPEIT [8]. GACT was written using a set of
Python, Ruby, Hypertext Preprocessor (PHP), and bash
scripts. More details and frequently asked questions are
available on our website.

Imputation quality assessment

The GWAS genotype data of the 3,096 Ashkenazi Jewish
samples was in b36 genome build and A/B allele defin-
ition. GACT was used to convert the allele definition and
genome build to the b37 and PLUS allele to keep them
consistent with the 1000 Genomes panel. The genotype
match rates between the study and reference datasets and
imputation quality scores were used as primary measure-
ments to assess conversion quality of GACT. After con-
verting the genome builds and allele definitions in the
map files using GACT, we recoded all the genotypes of
the GWAS data using PLINK. The genotype phasing and
imputation were carried out using SHAPEIT and Impute2
[9], respectively. The latest phased 1000 Genomes ge-
notypes of the European population (Phase 1 integrated
release version 3) were used as the imputation reference.
Imputation quality was assessed using the Impute2 infor-
mation scores of the reference SNPs. The scores (equiva-
lent to the r-squared metric reported by MaCH [10] and
BEAGLE [11]) vary between 0 and 1, where values closer
to 1 represent imputation with high certainty. The mean
and standard deviation of these scores were used as mea-
sures of overall imputation quality of SNPs at specific
MATF ranges. To compare the imputation quality between
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Figure 3 Frequencies and distributions of all possible genotypes of biallelic SNPs. The data were generated for the Plus/Minus, Forward/
Reverse, A/B, and TOP/BOT definitions based on the 1000 Genomes, dbSNP, and our GWAS datasets for the last two, respectively. The prediction
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different MAFs, we used the Welch two sample t-test. All
the statistical analyses and graphs were generated using
the latest version of R (version 3.0.2), and the imputations
were conducted using the multi-core cluster at the
Vermont Advanced Computing Center.

Results

GACT prediction of genome build and allele definition
We measured the frequencies of all 16 possible genotype
patterns under three allele definitions, including Plus
(+)/Minus (-), Forward/Reverse, and TOP/BOT (the A/B
or probe/target definition is differently coded). The distri-
butions (Figure 3) were clearly distinguishable, and thus
used to predict all the four designations. We observed the
enrichment of two patterns A/G and G/A, two patterns
A/G and C/T, and four patterns A/G, G/A, C/T and T/C
for TOP/BOT, Forward/Reverse, and Plus/Minus, respect-
ively. The prediction model matches relative ratios of the
input genotypes to the expected ratios in each definition
by measuring the proportions of CT, TC and GA alleles
present. These three values acted as the input neurons
into a multilayer perceptron that classified the input map
file into one of the four SNP definitions (Additional file 2:
Figure S1). Thus, for users who have no knowledge about
the allele definitions and (or) genome build, GACT will
first notify the user of the predicted definition and build of
the input SNPs prior to actual conversion. The prediction
module is particularly useful when the datasets are
obtained from public genotype repositories, such as
the dbGaP.

GACT conversion of genome build and allele definition
GACT has been demonstrated to identify and clean all
the convertible allele mismatches. Table 1 shows the
amounts of genotypes that should be discarded if we
incorrectly assumed versus correctly converted the allele
definitions between our GWAS data and the 1000 Gen-
ome data (Plus/Minus) during imputation. For instance,
if we incorrectly converted our GWAS genotypes to the
“Forward/Reverse” or “TOP/BOT” definition, and im-
puted with the 1000 Genome data, we had to discard
21.7% and 51.5% of the genotypes, respectively, due to
mismatch. By comparison, if we correctly converted our
genotypes to “Plus/Minus” by using GACT, only 7%
needed to be discarded across all the chromosomes
(Table 1). Moreover, since 3,344 SNPs existed in our data
but not in the reference, when only the SNPs that existed
in both datasets were used in the calculation, the
discarded genotypes only accounted for 3.3%, which was
significantly lower than commonly-observed mismatch
rates in the literature. The reasons for the 3.3% mis-
matches are described in the discussion.

As expected, the imputation quality decreased when
the mismatch rate increased (Additional file 1: Table S1),
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which was primarily due to the decrease of SNP density
in the study data. Figure 4 clearly shows evidence of a
significant increase in the SNP density (P=3.2 x 10™'**
based on 2-sided paired t-test) of the study data across
the entire chromosome. Likewise, the imputation quality
(information scores) consistently increased by 1% across
all MAFs after we converted the genome build and allele
definition of our GWAS data from the Forward/Reverse
definition (to the Plus/Minus definition) using GACT
(Additional file 1: Table S1). However, it should be noted
that the improvement would be much higher if we con-
verted the TOP/BOT definition (to the Plus/Minus defin-
ition) since without conversions (Table 1) the mismatch
rate between the TOP/BOT and Plus/Minus definitions
was larger than that between the Forward/Reverse and
Plus/Minus definitions.

Imputation quality

We measured the effects of multiple SNP types and
GWAS quality control procedures on imputation quality
(i.e., using the information scores). The results (Table 2)
showed that the imputation quality increased from 0.52
to 0.57 for the variants with 0.001 < MAF < 0.005 when
both the monomorphic variants and singletons were
removed from the reference panel, however, no significant
change was observed for more common variants with
MAF > 0.005. When both of the ambiguous and singleton
SNPs were removed from the study data (prior to phasing
and imputation), the imputation quality showed no
significant changes, which was consistent with previ-
ous studies [12].

Our results further showed that there was no noticeable
effect on the imputation quality when the SNPs with geno-
type missing rate >0.01 (667 SNPs) or 0.03 (939 SNPs)
were excluded, regardless of the decrease of SNP density,
when compared to the commonly-used genotype missing
rate threshold of 0.05. This might be partially due to the
fact that the assayed SNPs were of high quality, indicated
by low genotype missing rates. For instance, the mean
genotype missing rate was < 0.005 across all the SNPs with
0.001 < MAF < 0.5 on chromosome 1 (Additional file 3:
Figure S2 and Additional file 4: Figure S3). We repeated
the imputation procedures under new missing rate thresh-
olds and measured their effects on imputation quality
(Figure 5). The new thresholds included 0.004, 0.002,
0.001, and 0.0005, corresponding to the removals of
10,279 (13.8%), 17,785 (23.8%), 29,307 (39.3%), and
45,856 (61.4%) SNPs, respectively. Table 2 and Figure 5
show the comparisons of imputation quality measure-
ments at the four missing thresholds across six different
MAF ranges. As the missing threshold became more
conservative (i.e. < 0.05), we observed a decrease in im-
putation quality where the higher MAFs exhibited more
sensitivity to less stringent thresholds. For instance, the
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Figure 4 Comparison of SNP density plots before (“Top” allele definition; black line) and after (“Plus” allele definition; red line) GACT
conversion. The SNP density was measured per 500,000 bp window. It is clear that the SNP count (or density) increase after GACT converts all
the mismatched loci, e.g., from 61.05 (median) to 117 SNPs per window. Moreover, it is evident that the increase is not biased with regard to
physical location, which indicates that the allele definition mismatches are uniformly distributed across the chromosome. The dotted horizontal
lines represent the median of values of each line matched by color. The median, instead of mean, was used since the former was less vulnerable
to outliers (e.g. zero counts in the centromere region). The “Forward/Reverse” allele definition showed a similar distribution of mismatches with
the 1000 Genomes, however, only the “TOP” definition is shown due to its higher level of mismatches (51.5% mismatches in “TOP” versus 21.7%

mismatch in “Forward”). Other chromosomes showed similar patterns, and thus only the results of chromosome 1 are shown.

decrease emerged for the most common SNP group
(0.1 < MAF<0.5) at the missing threshold of 0.004,
for the SNP group with 0.05<MAF<0.5 at the
threshold of 0.002, and for the group containing rare
SNPs (0.001 < MAF <0.5) at the threshold of 0.0005.
Surprisingly, we found that imputation of the rarest SNPs
into genotyped genome regions tolerated very low SNP
density (up to 39.3% lower when the missing threshold
was 0.001) as long as the genotypes were of high
quality (ie. low missing rate). Moreover, exclusion of
the SNPs with missing rate>0.001 did not worsen
imputation compared to the scenario where singletons
were included in the reference (missing threshold = 0.05),
particularly for SNPs with 0.001 < MAF < 0.005 (Additional
file 5: Figure S4). Importantly, the locations of excluded
SNPs (under the most conservative threshold) were distrib-
uted uniformly across the chromosome (Figure 6), indicat-
ing that the changes in imputation quality are very likely
due to global, rather than local, changes in the SNP density
of the genotype scaffold.

Discussion

Both genome builds and allele definitions should be
well-matched before combing or imputing one genotype
data with another. In this study, we have developed a
new, powerful, and user-friendly tool that can predict,

and convert the genome builds and allele definitions sim-
ultaneously between multiple GWAS or deep sequencing
genotype datasets for meta-analyses, imputations or both.
Our GWAS data demonstrated the accuracy of predic-
tions and performance of conversions. Our further impu-
tations showed that the inclusion of singletons in the
reference panel significantly decreased imputation quality.
However, the exclusion of SNPs with missing rate > 0.001
led to comparably high imputation quality with the
commonly-used threshold of 0.05 for rare SNPs (Table 2
and Figure 5 and Additional file 6: Figure S5), which im-
plied that approximately 600,000 well-typed SNPs were
likely to be sulfficient for high quality genome-wide imput-
ation of rare SNPs in our GWAS data.

GACT pipeline

GACT achieved as low as 3.3% discarded genotypes
(Table 1), which was significantly lower than commonly-
observed mismatch rates. It should be noted that we
always observe genotype mismatches in real datasets,
particularly when one dataset is from microarray-based
study and the other is from deep-sequencing-based
study, like the case in Table 1. This is likely to be attrib-
uted to various factors, such as different experimental pro-
tocols, genotyping error rates, and disease statuses of
research subjects. Interestingly, the genotype mismatch



Table 2 Quality scores of the imputed (I) and study (S) SNPs for each MAF category

0L9'SL 10T SAWOUID DG I PUE LIeAOINS

Datasets .001-.005 .005-.01 .01-.05 .05-.1 1-3 3-5

GWAS 1KG | S | S | S | S | S |

All All 520 (222) 854 (.249) 727 (222) 902 (.184) 853 (.173) 945 (131) 939 (.118) 971 (.089) 965 (.086) 981 (.060) 975 (071) 981 (.

All NoSin 584 (.289) 854 (239) 738 (227) 906 (.181) 855 (1174) 945 (132) 939 (118) 970 (092) 966 (.086) .982 (.060) 975 (071) 98

All NoSM 571 (275) 859 (.245) 730 (222) 901 (.186) 854 (172) 945 (131) 939 (118) 971 (089) 965 (.086) 981 (.060) 975 (071) 98
NoSin NoSM 571 (275) 858 (.245) 730 (222) 903 (.184) 854 (172) 945 (131) 939 (.118) 971 (.089) 965 (.086) 981 (.060) 975 (071) 98
NoAm NoSM 572 (274) 855 (.245) 731 (222) 900 (.185) 854 (172) 944 (131) 940 (117) 971 (091) 966 (.085) 981 (.060) 975 (071) 981

3per NoSM 570 (274) 859 (.245) 730 (222) 901 (.187) 853 (173) 944 (131) 939 (118) 970 (.0971) 965 (.086) 981 (061) 974 (073) 981

Tper NoSM 568 (.274) 851 (251) 726 (223) 899 (.186) 851 (174) 942 (.134) 937 (.120) 969 (.094) 964 (.088) 980 (.064) 973 (074) 979 (.
0.4per NoSM 563 (273) 841 (.258) 722 (223) 897 (.190) 848 (175) 938 (.140) 934 (121) 966 (.099) 962 (.090) 978 (.067) 971 (076) 977
0.2per NoSM 557 (272) 830 (263) 715 (224) 884 (197) 843 (177) 933 (144) 930 (.126) 962 (.104) 958 (.092) 975 (070) 968 (.079) 974
0.1per NoSM 542 (.269) 810 (.270) .700 (.225) 872 (207) 830 (.180) 922 (152) 921 (129) 954 (.110) 949 (.100) 967 (.080) .960 (.087) 966
0.05per NoSM 507 (258) 756 (.293) 662 (222) 824 (231) 793 (189) 891 (169) 893 (.138) 930 (.130) 923 (114) 941 (102) 934 (.100) 943

019/S L/¥9LT-1 L1 L/WOY [RAUSIPIWIOIG MMM//:d1Yy

MAF: minor allele frequency.

NoSin: no singletons.

NoAm: no ambiguous.

NoSM: no singletons or monomorphs.

0.05-3per: after removing SNPs with genotype missing rate higher than 0.05-3%.

The quality (information) scores were generated using IMPUTE2. The mean/average and standard deviation are shown outside and inside the brackets, respectively. We observed a high correlation between the
imputed and study (true) genotypes, which incremented from low to high MAF ranges.

Z1 jo g abeg



Sulovari and Li BMC Genomics 2014, 15:610
http://www.biomedcentral.com/1471-2164/15/610

Page 9 of 12

e
~ A
P PNTPA AT M ALNISLIM A frsh wh of ! AV v.,;‘ef*.,»w»g,l '«,,»/(r.«r,,.{,»,mz,é‘\/v‘"w..w"‘vvu‘\-«.',r‘o\:"r-
o L e
o’_ | ity
o
2
T 2 | . -
S o Line Missing Percent Mean
o color threshold missing imputation quality
.S ~ (%) (MAF: 0.05|0.1]0.5)
E © — 0.05 0.8 0.84|0.94|0.97
3 0.004 13.8 0.85]0.94|0.97
E S 0.002 238 0.840.93| 0.96
0.001 39.3 0.83]0.92| 0.95
pias _— 0.0005 61.4 0.8010.90 | 0.93
o
T T T T T T
0 0.1 0.2 0.3 0.4 0.5

MAF of imputed SNPs

Figure 5 Comparison of imputation quality of imputed SNPs. The quality score columns list three SNP minor allele frequency (MAF)

categories: very rare (0.001 < MAF < 0.05), rare (0.05 < MAF <0.1), and common (0.1 < MAF < 0.5). The results under the missing thresholds of 0.03
and 0.01 showed the similar patterns to those under the threshold of 0.05,
sample t-test between the missing rate of 0.05 (black line) and the other thresholds.

and thus are not shown. Bold indicates P < 0.05 in the Welch two

J

rates between different platforms are not significantly
higher than those within same platforms. For instance, a
recent study [13] showed 0.6-1.6% genotype mismatch
rate within two deep-sequencing studies (Li et al’s data and
the 1000 Genomes); by comparison, the 3.3% mismatch
rate between two different platforms/samples is reasonably
low. All these results demonstrated that it is required to

correctly convert allele definitions prior to imputation or
meta-analysis.

Table 3 shows the comparisons GACT with some of
the existing tools that also include genome build and
(or) allele definition conversion functions, including
GWAMA [14], GenGen, METAL [15], and PLINK. The
strengths of our tool include that it 1) can be easily
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Figure 6 Distribution of SNP missing genotypes. The green histograms represent the numbers of remaining SNPs after removing the SNPs
with missing rate > 0.05% while the plain histograms represent the total numbers of SNPs (on chromosome 1). The red circles represent the
fractions of SNPs that passed the threshold. It is clear that the range of the fractions is narrow (i.e. 0.3-0.5).
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Table 3 Comparisons of tools for genome build and allele definition conversions
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Complementary functionality GenGen GWAMA METAL PLINK GACT
Allele definition prediction No No No No Yes
Uninformed strand/allele flip' No Yes Yes Yes No
Informed allele conversion? Yes® No No No Yes
Automatic allele conversion Yes® No No No* Yes
Genome build prediction No No No No Yes
Genome build conversion No No No Yes® Yes
Command line Yes Yes Yes Yes Yes
Interactive web interface No No No No Yes

Uninformed” refers to flipping without SNP allele annotation knowledge.

24Informed” refers to use of the original SNP definition and microarray-specific annotation information.

3GenGen converts between Top, Forward, A/B and 1/2 allele definitions; by comparison, GACT converts between Top, Forward, A/B and Plus definitions while the
Plus definition is used by the 1000 Genomes Project and most next-generation sequencing studies.

“PLINK can strand- or allele-flip but it cannot directly convert from one allele definition to another, unless the user manually extracts information from the
microarray annotation file; by comparison, GACT automatically converts between genome builds and allele definitions.

connected to other commonly-used GWAS approaches
(Figure 1); 2) can convert between any of the four
commonly-used SNP allele definitions; 3) provides both
the powerful command-line software and user-friendly
web interface, where the latter can be easily used by
biologists (no informatics training required except access
to the internet); 4) can accurately predict allele defini-
tions (and genome builds), which is particularly useful
for investigators who use GWAS data from the dbGaP
or other publicly available database; and 5) is computation-
ally efficient, e.g., a typical conversion can be completed in
a few seconds. In addition, the microarray-specific SNP
definition information is used in GACT to flip the alleles
and strands. Because it can convert data prior to asso-
ciation testing, meta-analysis and imputation, GACT com-
plements existing tools and ensures allele definition and
genome build consistency before using any of these tools.
The limitation of our tool is that currently, the supported
microarrays (primarily Illumina platforms) and genome-
builds of the web version of GACT are not exhaustive (the
command-line version has no such limitation; users can
convert between any platforms and arrays using the
command-line version of GACT). However, we will
actively include conversions of other existing allele
definitions, e.g., numerical alleles. We will provide contin-
ued scientific and technical support, and expand the list of
arrays, genome builds, and new modules as new technolo-
gies and platforms become available.

Imputation after GACT Conversion

Imputation before combining GWAS datasets is desirable
because of 1) increased power for identifying disease-
associated variants, e.g. by more than 10% as suggested
previously [16]; 2) higher SNP coverage for fine-mapping
disease genes; 3) additional rare SNPs and applicabil-
ity to other variants such as copy number variations

or classical leukocyte antigen alleles [6]; and 4) cost-
and time-efficiency compared with the molecular geno-
typing or sequencing experiments. Various studies have
been carried out to evaluate or identify the factors that
might affect imputation quality [12,17], including ambigu-
ous, monomorphic, and singleton SNPs. Phasing of single-
tons is known to be challenging, and imputation becomes
faster with no burden in the downstream association tests
when singletons are removed from the reference. We
found that, additionally, the removal of either ambiguous
or monomorphic SNPs alone from the study data prior to
phasing and imputation had no detectable effect on
imputation. However, the exclusion of monomorphic and
singleton SNPs from the reference increased imputation
quality, which is in accordance with previous studies
[12,17]. We further found that SNPs with very low MAF
(0.001-0.005) showed the most significant increase of the
imputation quality compared with the other MAF ranges
(Table 2). This finding is important, particularly, for the
rare variants, which are of increasing interest in the
genetic studies of complex diseases and traits.
Balancing between genotype quality and genome cover-
age is important for imputation. The genotype missing
thresholds of 0.05 to 0.02 [17] are generally recommended
for quality controls in GWAS. However, no published
studies have explicitly evaluated the effects of more
conservative missing thresholds (than the commonly-used
values) on imputation quality. Our assessments might
provide a new perspective on the selection of genotype
missing thresholds in imputation. Based on our GWAS
data, an approximate number of 600 thousand well-typed
SNPs are likely to be sufficient for high quality genome-
wide imputation of rare SNPs (high quality assayed SNPs
may compensate for low true-genotype density). However,
further analyses are warranted to replicate the findings in
additional arrays. It should be noted that only the data on
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chromosome 1 were used for most of the analyses based
on our observation of similar genotype missing patterns or
comparable results across all the chromosomes (Additional
file 6: Figure S5 and Additional file 7: Figure S6).

Conclusion

Ignorance of inconsistent allele definitions and genome
builds or incorrect conversions lead to incorrect genetic
association “findings”. In this study, we developed a com-
prehensive tool, GACT, with both powerful command-
line and user-friendly web interface versions to predict,
and convert both genome builds and allele definitions be-
tween multiple GWAS (or deep sequencing) genotype
data, which is required for all imputations and genome-
wide meta-analyses. GACT will facilitate and ease a broad
use of the GWAS data from the dbGaP and other publicly
available genotype repositories for large-scale secondary
analyses and multi-laboratory collaborations in the genetic
association studies of human diseases.

Availability and requirements

Project name: GACT: Genome build and Allele defin-
ition Conversion Tool

Project homepage: www.uvm.edu/genomics/software/
gact

Operating system(s): Linux, UNIX (for command version)
and Windows (for interactive web version)

Programming language: Python, Ruby, Hypertext Pre-
processor (PHP), and Bash scripts

License: GPL-3

Availability: GACT (both command-line and web ver-
sions), including source code, documentation, and exam-
ples, is freely available for non-commercial use with no
restrictions at www.uvm.edu/genomics/software/gact and
asulovar.w3.uvm.edu/gact.

Additional files

Additional file 1: Table S1. Comparison of imputation quality before
and after genotype conversion using GACT.

Additional file 2: Figure S1. The feed-forward backpropagation neural
network. The 3 input neurons correspond to the proportion of CT, TC
and GA. The number in black next to each edge represents the weight of
that edge. The numbers in blue represent the activation threshold for
each hidden node, as defined by the activation function of the neural
network, after training. There were three such networks in GACT, where
each was trained to make an independent prediction on the likelihood
that the input map file was using one of the three allele definitions: Plus
(using the 1000 Genomes), Forward (using dbSNP) and Top (using our
GWAS data). The artificial neural network that generated the largest
likelihood determined the final allele definition. The A/B definition, which
can be distinguished directly, was not included in the network.

Additional file 3: Figure S2. Imputation quality and genotype missing
rate across allele frequencies. The missing frequency measurement is the
average of missing genotype rates for all the SNPs at a given MAF. The
numbers of the SNPs that were excluded were 45,856, 29,307, 17,785,
10,279, 4,667, and 939 (out of 74,638) when the genotype missing rate
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thresholds were set at 0.0005, 0.001, 0.002, 0.004, 0.01, and 0.03,
respectively. The red curve shows the information (quality) scores of the
imputed genotypes across the full allele frequency range (0-1). The
green histogram shows the genotype missing rate distribution across the
full range of MAFs (0-0.5) under the missing genotype threshold of 0.05.
The MAF scale (0-0.5) was adopted, instead of a full scale (0-1), based on
our autocorrelation analyses of the imputation quality curves which
showed that the head-10% and tail-10% were significantly correlated
(Additional file 3: Figure S2). Other chromosome showed the similar
patterns, and thus only the results of chromosome 1 are shown.

Additional file 4: Figure S3. Autocorrelation plots of mean imputation
scores. This figure corresponds to the full range of allele frequencies that
is shown in Additional file 2: Figure S1 (red line). The Lag axis represents
the shift of the data points, one number at a time at a rate of 0.001,
while the ACF axis represents an adjusted correlation factor between the
“shifted” data and the original data. The histograms outside of the dotted
blue lines represent the regions with higher correlation than expected by
chance alone (at confidence level > 95%). Moreover, this autocorrelation
plot indicated that the regions of allele frequency < 0.1 and > 0.9 were
significantly correlated at the confidence level of > 0.95. Based on this
result we combined both the upper and lower halves to generate MAFs
(0-0.5), instead of the full range of allele frequencies (0-1).

Additional file 5: Figure S4. Changes of imputation quality across
different genotype missing thresholds. When singleton and
monomorphic sites were excluded from the reference, the highest
imputation quality was achieved compared to other scenarios. When the
entire reference was used, the imputation quality was particularly low for
very rare SNPs (0.001 < MAF < 0.005; red line). The less rare and common
SNPs (MAF > 0.005, i.e,, green, blue, orange, yellow, and black lines) were
not influenced as much by the removal of singletons and monomorphs
in reference panel. Moreover, for very rare SNPs the exclusion of as many as
39.3% of the SNPs (i.e, “0.1per_NoSM" in the figure) led to a smaller decrease
of imputation quality than inclusion of singletons and monomorphic SNPs
in reference panel. NoSin: no reference singletons; NoAm: no reference
ambiguous SNPs; NoSM: no reference singletons or monomorphs; *per: after
removing study SNPs with genotype missing rate higher than *%.

Additional file 6: Figure S5. Imputation quality versus missing
threshold across 21 autosomes. The green histograms represent
genotype missing levels for SNPs that are measured using MAFs from
0.001 to 0.5 while the red curves represent imputation qualities for SNPs
that are measured using the full allele frequency from 0.001 to 1.

Additional file 7: Figure S6. Pearson correlations of mean imputation
quality scores between the MAF windows of 0-0.1 and 0.9-1.0. The plots
show that the head 10% of the imputation curves is correlated with its tail
10% for all chromosomes, suggesting it is necessary to convert the allele
frequencies of imputed SNPs from the range of 0.001-1 to range of 0.001-0.5.
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