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Abstract

Background: Lipid polymers in plant cell walls, such as cutin and suberin, build recalcitrant hydrophobic protective
barriers. Their degradation is of foremost importance for both plant pathogenic and saprophytic fungi. Regardless of
numerous reports on fungal degradation of emulsified fatty acids or cutin, and on fungi–plant interactions, the
pathways involved in the degradation and utilisation of suberin remain largely overlooked. As a structural component
of the plant cell wall, suberin isolation, in general, uses harsh depolymerisation methods that destroy its
macromolecular structure. We recently overcame this limitation isolating suberin macromolecules in a near-native state.

Results: Suberin macromolecules were used here to analyse the pathways involved in suberin degradation and
utilisation by Aspergillus nidulans. Whole-genome profiling data revealed the complex degrading enzymatic machinery
used by this saprophytic fungus. Initial suberin modification involved ester hydrolysis and ω-hydroxy fatty acid oxidation
that released long chain fatty acids. These fatty acids were processed through peroxisomal β-oxidation, leading to
up-regulation of genes encoding the major enzymes of these pathways (e.g. faaB and aoxA). The obtained
transcriptome data was further complemented by secretome, microscopic and spectroscopic analyses.

Conclusions: Data support that during fungal growth on suberin, cutinase 1 and some lipases (e.g. AN8046) acted as
the major suberin degrading enzymes (regulated by FarA and possibly by some unknown regulatory elements).
Suberin also induced the onset of sexual development and the boost of secondary metabolism.
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Background
Plant lipid polymers, particularly cutin and suberin, are
the third most abundant of the plant polymers [1], yet the
least understood since the underlying polyester structure
remains partially unresolved. High recalcitrance is an in-
herent property of their molecular structure and hallmark
monomers are often identified in soils [2,3]. Filamentous
fungi are key recyclers and compose nearly 75% of the
soil microbial biomass [4] but their role in the turnover
(biodegradation) of plant polyesters remains largely
overlooked [5]. Suberin is a structural component of the
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secondary cell walls in specialised tissues, namely in the
phellem of tree barks and subterranean organs [5,6] and in
the endodermis of roots [7]. Cutin, together with waxes
(viz. cuticle), covers the cell walls in the epidermis of aerial
tissues [8,9]. Biosynthesis of either suberin or cutin is
developmentally regulated and triggered as response to
infection or wounding, among other challenges [8-13].
These lipid hydrophobic barriers constrain apoplastic
water and solute translocation, physically strengthen the
cell wall and, might also play roles in plant–pathogen
interactions [14,15].
In general, both suberin and cutin contain fatty acids

(FAs), ω-hydroxy FAs and glycerol but suberin also con-
tains high levels of α,ω-dicarboxylic acids, ferulic acid and
fatty alcohols and its saturated aliphatics have longer chain
lengths than in cutin (>C20 and C16-18, respectively)
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(Figure 1a) [5,10]. These composing monomers are linked
essentially through acylglycerol or linear aliphatic ester
bonds, building a three-dimensional network [16,17]. Fun-
gal degradation of plant polyesters has been reported to
involve the activity of carboxylesterases, namely cutinases
[18-20]. Despite high complexity and redundancy, it is well
established that FAs can be used by filamentous fungi via
β-oxidation leading to the production of acetyl-CoA
[21,22]. Downstream pathways, such as the glyoxylate and
the tricarboxylic acid cycles and gluconeogenesis, enable
the fungus to use FAs as sole carbon and energy sources.
In plants, suberin is ingrained between a primary and

a tertiary cell wall and cross-linked to the other cell wall
Figure 1 Schematic view of suberin (a), showing the linear aliphatic e
dashed circles, respectively) and the ATR-FTIR spectra of isolated sub
the last (d) time points of incubation with Aspergillus nidulans. Major
2921 cm-1 (1), 2851 cm-1 (2) and 1737 cm-1 (3). The remaining peaks are sim
[1158 cm-1 (7) and 1635 cm-1 (4)], lignin [1511 cm-1 (5) and 1424 cm-1 (6)] o
polymers, hence its extraction usually destroys its chem-
ical skeleton [5]. This is still a major obstacle [5] and has
restrained most biodegradation studies to the use of cutin
films [23-25] and/or mixtures of nearly non-esterified su-
berin or cutin samples [26-28]. However, near-native su-
berin can be efficiently extracted from cork (outer bark of
Quercus suber L.) through selective hydrolysis of acylglyc-
erol ester bonds but leaving most linear aliphatic ester
bonds intact [29-32] (Figure 1). In the present contribu-
tion we demonstrate that suberin macromolecules could
be used as sole carbon source by Aspergillus nidulans.
During fungal growth, synergetic action of cutinases,
lipases and long chain fatty alcohol modifying enzymes
ster bonds and the acylglycerol ester bonds (continuous and
erin (a), namely untreated (b) and recovered at the first (c) and
peaks, which can be almost exclusively assigned to suberin, are at
ultaneously assigned to the fungal cell wall and either to suberin
r to polysaccharides and lignin [1034 cm-1 (8)].
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released suberin long chain fatty acids (LCFAs) that were
metabolised via peroxisomal β-oxidation. Other major al-
terations included the onset of sexual development and
the boost of secondary metabolism.

Methods
Chemicals
If not otherwise stated chemicals were of the highest analyt-
ical grade and purchased from Sigma Aldrich (USA). Su-
berin was extracted from cork using cholinium hexanoate
as previous described [30], afterwards freeze dried and kept
at -20°C until used. The same process was used to recover
the residual suberin upon fungal incubation. All suberin
samples were analysed using attenuated total reflectance
Fourier transform infrared spectroscopy (ATR-FTIR) as
previously described [30,32]. The selected ATR-FTIR spec-
tra should be regarded as representative (ten replicates).

Culture conditions
Fungal cultures with a density of A. nidulans (FGSC A4)
conidia of 105 per mL (5 mL six-well plates, minimal
media [33] containing 1% w/v glucose) were grown for
two days (27°C, dark, 90 rpm) for the establishment of a
mycelia mat against the bottom of the wells (control).
Afterwards, old media were replaced by minimal media
containing 0.1% w/v of suberin as sole carbon source, and
cultures were grown, in the same conditions, for add-
itional two, four, six or fifteen days. At each time point
mycelia and the corresponding media filtrate were recov-
ered and preserved at -80°C [33]. Additional control cul-
tures were prepared containing 0.1% w/v of C16 glyceryl
tripalmitate or C8 octyl octanoate (contain acylglycerol
ester and linear ester bonds, respectively) instead of su-
berin. Controls were processed as described above.

Microscopic analyses
Scanning Electron Microscopy (SEM) analysis of lyophi-
lised fungal mycelia were performed using an analytical
field emission gun scanning electron microscope (FEG-
SEM: JEOL 7001 F with Oxford light elements EDS de-
tector) operated at 5-10 kV. After the LIVE/DEAD assay
[34] (evaluates culture viability) and the safranin staining
(detects the extracellular matrix typical of fungal biofilm
[35]), mycelia were evaluated using a DM5500 B micro-
scope (Leica) under fluorescent (49 DAPI and N21 filter
sets) or white light, respectively. 10x and 63x magnification
objectives were used, respectively and images were cap-
tured with a DFC420 C camera (Leica). In all tests the se-
lected micrographs should be regarded as representative.

Secretome analyses
Extracellular protein was recovered from the culture fil-
trates using denaturing precipitation conditions [33].
25 μg of protein (bovine serum albumin equivalents
accordingly to the Bradford protocol) were loaded in a
precast gel (Criterion™ XT precast 1D gel 4-12% Bis-
Tris) and allow to migrate for 1 cm. The gel was stained
with Instant Blue (Gentaur BVBA), sliced into 5 bands;
(each cut into 1-2 mm cubes), first reduced, alkylated
and de-stained, then digested by trypsin (Promega). The
peptides were first desalted and finally fractionated by
reverse phase separation in an Ultimate 3000 NanoLC
System coupled to a LTQ-OrbiTrap Elite MS that was op-
erated in data-dependent mode, automatically switching
between MS and MS2, using XCalibur software. Data was
processed in Mascot using Proteome Discoverer by
searching against the SwissProt Fungi (released on January
21st, 2013) and NCBI databases. Protein identification was
done using a set of pre-defined filters and a minimum
confidence of 95%. Full details in Additional file 1. Glycerol
in the culture media filtrates (40 times concentrated, dupli-
cates) was analysed by chromatography as reported before
[36]. Quantification detection limits were 0.01 g · L−1. The
additional control cultures (see above) were also analysed.

RNA isolation and cRNA preparation
Total RNA was isolated from fungal mycelia (grounded
to powder using mortar and pestle in liquid nitrogen)
using the RNeasy Plant Mini Kit (QIAGEN) and further
purified by ethanol precipitation [37]. Quantification and
purity of RNA were determined on a NanoDrop 1000
Spectrophotometer (Thermo Scientific) and RNA integrity
analysed using an Agilent 2100 Bioanalyser with a RNA
6000 Nano Assay (Agilent Technologies). Fragmented and
biotinylated cRNA was obtained by following GeneChip 3’
IVT Express Kit protocols. Briefly, 100 ng of total RNA
were used for the synthesis of cDNA, which was further
in vitro transcribed into labelled cRNA. After purification
and fragmentation, the size distribution of the cRNA and
fragmented cRNA were assessed in an Agilent 2100 Bioa-
nalyzer with a RNA 6000 Nano Assay.

Microarray processing
The custom array FungiANC (Affymetrix) contains a total
of 20,012 transcripts from the genetic information of
A. nidulans and Neurospora crassa available at the Broad
Institute database (http://www.broadinstitute.org) and is
based on a Perfect Match-only (PM) design with 11 mi-
cron feature size. Each transcript is represented by 11
probes (25-mer each). See full details in Additional file 2.
The array processing was performed accordingly to Affy-
metrix GeneChip protocols (biological triplicates). A total
of 200 μl of the hybridisation mixture containing 10 μg of
fragmented cRNA was hybridised on arrays for 16 hours
at 45°C. Standard post hybridisation washes and double-
stain protocols (FS450_0001) were used on an Affymetrix
GeneChip Fluidics Station 450, in conjunction with the
GeneChip Hybridisation Wash and Stain Kit (Affymetrix).

http://www.broadinstitute.org
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Arrays were scanned on an Affymetrix GeneChip Scanner
3000 7G. Array quality parameters were analysed by Ex-
pression Console Software (Affymetrix) for Robust Multi-
array Averaging summarised data and confirmed to be in
the recommended range. The data discussed in this publi-
cation have been deposited in NCBI’s Gene Expression
Omnibus [38] and are accessible through GEO Series ac-
cession number GSE54427 (http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE54427).

Microarray data analysis
DNA-Chip Analyzer (dChip) 2010 (http://www.dchip.org)
was used applying a probeset mask file considering only
the A. nidulans probes (9675 transcripts). The normalised
CEL intensities of the 12 arrays (Invariant Set Normalisa-
tion Method [39,40]), were used to obtain model-based
gene expression indices based on a Perfect Match-only
model [39,40]. dChip Log2 expression data were imported
into R v2.13.0. Differentially expressed genes (analysis was
carried out with Bioconductor LIMMA package, www.bio-
conductor.org), included only the probe sets with adjusted
p-value ≤0.01 and fold-change (FC) ≥2. See full details in
Additional file 1.

Quantitative real-time PCR analysis (qRT-PCR)
Based on the sequences of A. nidulans genes (Aspergillus
Genome Database, http://www.aspergillusgenome.org/),
all oligonucleotide pairs were designed using the Gene-
Fisher2 web tool (http://bibiserv.techfak.uni-bielefeld.de/
genefisher2) and produced by Thermo Fisher Scientific
(see Additional file 1 for the list of the oligonucleotides
used in this study). The qRT-PCR analysis was per-
formed in a CFX96 Thermal Cycler (Bio-Rad), using the
SsoFast EvaGreen Supermix (Bio-Rad), 250 nM of each
oligonucleotide and the cDNA template equivalent to
1 ng of total RNA, at a final volume of 10 μl per well, in
three technical and three biological replicates. The PCR
conditions were: enzyme activation at 95°C for 30 s;
40 cycles of denaturation at 95°C for 10 s and annealing/
extension at 59°C for 15 s; and melting curve obtained
from 65°C to 95°C, consisting of 0.5°C increments for
5 s. Data analyses were performed using the CFX Man-
ager software (Bio-Rad). The expression of each gene was
taken as the relative expression in pair-wise comparisons
of consecutive time points. The expression of all target
genes was normalised by the expression of the 60S riboso-
mal protein L33-A gene, AN2980, selected as internal
control due to its constant levels in all time points.

Functional annotation
Annotations for all the genes represented on the FungiANC
genome array were obtained from the Broad Institute data-
base (www.broadinstitute.org) and the Aspergillus Genome
Database (AspGD, www.aspgd.org). See full details in
Additional file 2. The differentially expressed genes for each
biological condition were classified using the FungiFun
web annotation tool [41] and the Functional Catalogue
(FunCat). The significant hits (p-value ≤0.05) were defined
using the identities present on the chip as the background.

Results & discussion
Aspergillus nidulans transcriptome on suberin - enrich-
ment analysis
Pair-wise comparisons were used to identify differentially
expressed genes (adjusted p-value < 0.01 and |FC| > 2) be-
tween the control (grown on glucose) and during growth on
suberin for two, four or six days (hereafter defined as first,
mid and last time points, respectively) Additional file 2.
Within the differentially expressed genes (4198 constituting
nearly half of the transcripts in the microarray), 32% (1357
genes) can be specifically associated with the switch of the
substrate (control vs first time point) and were enriched in
functional categories associated with the metabolism of al-
kanes, alkenes, alkanals and alkanols (MIPS 01.20.05.03)
and the oxidation of fatty acids (MIPS 2.25), as well as cel-
lular sensing and response to external stimulus (MIPS
33.11) and cell type differentiation (MIPS 43), among
others (Figure 2b, Additional file 3). Pair-wise comparison
of consecutive time points, henceforward systematically
used, showed that among the enriched functional categor-
ies at the mid time point some were associated with in-
creased nutrient starvation response (MIPS 32.01.11) and
alterations in fatty acid metabolism (MIPS 01.06.05), along
with major alterations in cell cycle (MIPS 10) and cell fate
(MIPS 40) Additional file 3. In addition, those enriched at
the last time point revealed e.g. an increased stress re-
sponse (MIPS 32.01) and development of ascospores
(MIPS 43.01.03.09). In particular, the degradation/modifi-
cation of exogenous ester compounds (MIPS 32.10.09)
can be associated with cleavage of ester bonds in suberin.
The intensity of the major peak assigned to ester bonds
(1737 cm-1 which can be exclusively assigned to the C =O
stretch of ester groups) in the ATR-FTIR spectra of
suberin decreased significantly after fungal incubation
(Figure 1b).

Autolysis and primary metabolism
Autolysis occurred after switching from glucose to su-
berin media. Major up-regulation of pepJ (AN7962,
Table 1) and up-regulation of prtA (AN5558) resulted in
accumulation of the encoded proteins in the secretome
(Table 2). Both proteases play a role in the degradation of
empty hyphae during starvation [42,43]. Out of the 25
protein species identified in the secretome, ten are in-
volved in cell wall remodelling events typical of autolysis
and show, in general, high consistency with the transcrip-
tome data (Table 2). Several other cell wall remodelling
genes related with autolysis were up-regulated along

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54427
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE54427
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http://bibiserv.techfak.uni-bielefeld.de/genefisher2
http://bibiserv.techfak.uni-bielefeld.de/genefisher2
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http://www.aspgd.org


Figure 2 Number of differentially expressed genes during Aspergillus nidulans growth on suberin in pair-wise comparisons of consecutive
times (a), discriminating the up- (↑) and the down- (↓) regulated genes, and Venn diagram highlighting the number of genes that were
responsive only at the first time point on suberin when compared with the control (b).

Martins et al. BMC Genomics 2014, 15:613 Page 5 of 19
http://www.biomedcentral.com/1471-2164/15/613
cultivation: AN9042, mutA (AN7349), AN7613, AN2690
and AN8392, chiB (AN4871) [44,45], engA (AN0472) [46]
and nagA (AN1502) [44] (Table 1 and Additional file 2).
Glucuronan lyase A gene (AN0012) has been reported to
be up-regulated in A. nidulans during starvation [47] but
here its expression level at the first time point was exceed-
ingly higher (Table 1). The encoded protein specifically
breaks β-1,4-glucuronans, which are rarely found in the
cell walls of Aspergilli [48] and absent in those of cork [6].
Hence, the functional role of AN0012 remains largely un-
clear. Few genes related with apoptosis (AN7500 and
AN5712) [49,50] or autophagy (AN2876 and AN5174)
[51] were responsive along the incubation, suggesting that
they played only a minor role during the fungus growth
on suberin Additional file 2. As typically reported in
A. nidulans after imposition of severe carbon starvation
conditions, several putative major facilitator superfamily
(MFS) transporter genes (AN9232, AN8084, AN6778,
AN8502) [47,52] underwent major up-regulation (Table 1).
The last two genes belong to uncharacterised secondary
metabolite clusters [53], thus probably coding for specific
transmembrane transporters. Some other MFS genes
(AN5860, mstE and AN4180) and one auxin efflux carrier
superfamily gene (AN8018) were amongst those showing
major down-regulation (Table 1). mstE is induced in the
presence of several repressing carbon sources and is
dependent on the function of CreA (AN6195) [54]. Up-
regulation of creA, the carbon catabolite repressor A [55],
at the first time point (Table 3) might be explained by a
self-repression mechanism [56,57]. Gluconeogenesis acti-
vation might have occurred as suggested by the up-
regulation of the pathway transcription activator (acuM,
AN6293) and of phosphoenolpyruvate carboxykinase gene
(acuF, AN1918) which, together with the fructose 1,6-
bisphosphatase gene (acuG, AN5604, not differentially
expressed in the suberin media), regulate this pathway
[58] (Table 4, Additional file 2). The 4-aminobutyrate
(GABA) shunt is inactive during gluconeogenesis [59],
likely coordinated with major down-regulation of puta-
tive glutamate decarboxylase gene (AN7278) at the first
time point (Table 1). Major up-regulation of the fer-
mentation transcription activator alcR (AN8978,
Table 1) at the last time point occurred but the aldehyde
dehydrogenase gene (AN0554) [60] was not differen-
tially expressed Additional file 2.
The transcriptional regulation of the assimilatory nitrate

system in A. nidulans differs in high availability or limiting
glucose conditions [61]. AreA is the major nitrogen



Table 1 List of the differentially expressed genes showing the highest fold changes (FCs) in pair-wise comparison of consecutive time points during Aspergillus
nidulans growth on suberin

First time point of suberin incubation (between the
control and second day of incubation on suberin)

Mid time point of suberin incubation (between the
second and fourth days of incubation on suberin)

Last time point of suberin incubation (between
the fourth and sixth days of incubation on suberin)

FC Gene # Description FC Gene # Description FC Gene # Description

Up-regulated

358.7 AN6000 Asperthecin polyketide synthase (aptA) 31.8 AN7369 GMC oxidoreductase 23.5 AN9230 Monooxygenase associated
with secondary metabolism

305.8 AN5309 Putative cutinase 1 (cut1) 22.0 AN10030 Putative alkaline serine protease 9.6 AN6778 MFS transporter

278.8 AN7962 Metalloproteinase (pepJ) 22.7 AN9224 Monooxygenase 8.6 AN10026 Oxidoreductase

252.5 AN9042 Mutanase 21.7 AN9493 Putative acetyltransferase (ngn12) 7.0 AN11202 Putative DMATS-type
aromatic prenyltransferase

107.4 AN0012 Glucuronan lyase A 20.1 AN9227 Dioxygenase associated
with secondary metabolism

6.6 AN8392 Melibiase subfamily

91.6 AN7812 Putative sterigmatocystin
biosynthesis protein (stcN)

19.4 AN5348 Fatty acyl-CoA reductase 6.6 AN8106 Dioxygenase associated
with secondary metabolism

90.1 AN7349 Mutanase (mutA) 18.7 AN7613 Putative chitinase 6.4 AN8473 RNA polimerase II transcription factor

58.5 AN2623 Acyl-CoA:6-aminopenicillanic-
acid-acyltransferase (aatA)

5.8 AN8978 Regulatory protein (alcR)

46.7 AN11013 Probable sterigmatocystin biosynthesis
P450 monooxygenase (stcL)

16.4 AN2690 Putative β-1,3-glucanase 5.5 AN8084 MFS transporter

35.0 AN3931 Meiotic expression up-regulated
protein 14 (pilB)

5.0 AN8520 protein required for terrequinone
A biosynthesis (tdiE)

33.4 AN6835 NADPH-cytochrome P450 reductase 16.2 AN9232 MFS transporter 5.0 AN3369 Zn2-Cys6 transcription factor (clrB)

32.8 AN7811 Putative sterigmatocystin
biosynthesis protein (stcO)

16.6 AN9234 Oxidoreductase associated
with secondary metabolism

4.9 AN6747 C2H2 type zinc finger transcription factor

33 < FC < 87 Predicted proteins and poorly
characterised genes

17 < FC < 147 Predicted proteins and poorly
characterised genes

4 < FC < 8 Predicted proteins and
poorly characterised genes

AN1532, AN8995, AN6476, AN9301, AN7235, AN2330,
AN4825, AN2913, AN0461, AN8656, AN1666,

AN0488, AN1952

AN6020, AN4970, AN7958, AN7957, AN5292, AN5319, AN8037, AN1155,
AN2400, AN2710, AN7655, AN8162, AN9235, AN11163, AN1946

AN7419, AN7092, AN2779, AN3881, AN7091, AN7395,
AN8955, AN2658, AN2859, AN1719, AN2376, AN5422

Down-regulated

-39.5 AN0399 Nitrate transporter (nrtB) -18.6 AN7824 Probable sterigmatocystin biosynthesis
P450 monooxygenase (stcB)

-13.1 AN2583 Glyceraldehyde 3-phosphate dehydrogenase

-35.9 AN1008 Nitrate transporter (crnA) -18.1 AN8356 Alcohol dehydrogenase -9.8 AN1666 Nucleolar GTP-binding protein 2

-35.4 AN1006 Nitrate reductase (niaD) -14.1 AN7804 Putative sterigmatocystin
biosynthesis monooxygenase (stcW)

-8.6 AN2861 Putative F-box protein

-26.1 AN7539 Hydrophobin -12.6 AN7818 Probable sterigmatocystin biosynthesis
P450 monooxygenase (stcF)

-6.3 AN5228 NADH:flavin oxidoreductase/NADH oxidase

-24.4 AN7392 Choline transporter Hnm1 -11.8 AN7807 Putative sterigmatocystin biosynthesis
protein (stcT)
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Table 1 List of the differentially expressed genes showing the highest fold changes (FCs) in pair-wise comparison of consecutive time points during Aspergillus
nidulans growth on suberin (Continued)

-11.5 AN7815 Fatty acid synthase subunit α -5.6 AN4180 MFS transporter

-11.4 AN5860 MFS monosaccharide transporter (mstE)

-24.1 AN2859 Dihydrodipicolinate synthetase -11.2 AN7825 Putative sterigmatocystin biosynthesis
polyketide synthase (stcA)

-5.6 AN10619 Glutamate decarboxylase

-11.2 AN4135 Stearoyl-CoA desaturase (sdeB)

-23.9 AN4131 Na+/H+ antiporter -11.1 AN7814 Fatty acid synthase subunit β -5.5 AN7169 Flavohemoprotein (fhbA)

-23.8 AN7278 Glutamate decarboxylase -10.8 AN7806 Versicolorin reductase

-21.7 AN4119 MFS multidrug transporter -10.6 AN3763 Siderochrome-iron transporter -5.5 AN3264 MFS multidrug transporter

-19.0 AN3776 MFS transporter -10.0 AN7811 Putative sterigmatocystin biosynthesis
protein (stcO)

-61 < FC < -18 Predicted proteins and poorly
characterised genes

-28 < FC < -10 Predicted protein and poorly characterised genes -16 < FC < -5 Predicted protein and poorly
characterised genes

AN2595, AN7214, AN5305, AN8081, AN6946, AN4108, AN7378,
AN9220, AN6128, AN8981, AN3333, AN6930, AN4128, AN6932,

AN8670

AN7397, AN3251, AN8544, AN6661, AN7817, AN8314,
AN2722, AN0169, AN7812, AN7809, AN7915, AN11013

AN2571, AN9310, AN7949, AN5489, AN0421, AN0461,
AN9102, AN9378, AN7960, AN3305, AN0728, AN0247,

AN0288, AN8974, AN0838, AN8544, AN3314
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Table 2 List of the extracellular protein species identified in the secretome of Aspergillus nidulans at the last time
point of growth on suberin

Gene
number

Description MW
[kDa]

calc. pI SignalPa SwissProt NCBI Microarray data*

Total
peptides

Cov (%) Total
peptides

Cov (%) Firstc Midc Lastc

Plant Polymer Degrading Enzymes

AN5309 Cutinase (Cut1) 22.4 7.3 Y 3 12.21 2 9.09 305.8 -3 1.5

AN8046 Triacylglycerol lipase 31.3 4.6 Y -b -b 7 47.28 10.4 -1.6 2.7

AN3613 β-1,4-xylanase (XlnA) 24.1 6.3 Y 4 36 4 36 6.5 -2.2 -1.1

AN7401 β-1,4-endoxylanase (XlnE) 37.7 5.5 Y -b -b 3 11.83 -1.3 -1.4 1

AN1818 β-1,4-xylanase C (XlnC) 35.4 5.2 Y 5 20.49 -b -b 1.2 -1.2 -1.3

AN8477 β -1,4-xylosidase 60.3 5.4 N -b -b 4 9.71 1.6 1.1 1.1

AN2828 β-glucosidase L (BglL) 77.8 4.8 Y 14 21.71 12 22.52 -1.2 -1.3 2.4

Fungal Development

AN0472 β-1,3-endoglucanase A (EngA) 97.8 5.7 Y -b -b 6 8.49 5.8 1.1 1.2

AN7950 β-1,3-endoglucosidase (EglC) 46.7 4.6 Y 10 28.39 10 28.39 -d -d -d

AN4825 β-1,3-glucosidase 96.5 5.5 Y -b -b 11 17 42.5 1.1 1.2

AN2395 β-glucuronidase 68.5 4.8 Y -b -b 14 28.06 7.4 -1.4 1.2

AN4871 Chitinase B (ChiB) 44.2 5.6 Y -b -b 34 80.65 12.7 1.4 1.1

AN2017 α-glucosidase (AgdA) 109.6 5.2 Y -b -b 6 8.17 -1.5 -1.9 2.3

AN8445 Aminopeptidase Y 53.7 6.8 Y -b -b 6 19.68 1.8 -1.5 1.6

AN2366 Serine protease 25.4 4.4 Y -b -b 3 17.27 -d -d -d

AN5558 Alkaline serine protease (PrtA) 42.2 5.3 Y 8 32.75 7 32.75 5.4 1.3 1.1

AN7962 Metalloproteinase (PepJ) 37.4 5.1 N 6 18.36 6 18.36 278.8 1.8 1.2

AN4245 Ceramidase 80 5 Y -b -b 7 14.8 1.6 1.5 1.8

AN9339 Catalase B (CatB) 79.1 5.1 Y 23 35.6 20 34.54 -2.4 1.8 1

Miscellaneous

AN3351 Uncharacterised 63.2 5.1 Y -b -b 5 12.91 1.6 -1.4 -1.1

AN3246 Uncharacterised 22.3 6.4 N -b -b 4 29.8 2 -1.3 2

AN6273 Allergenic Asp F13 16.3 4.8 Y -b -b 3 32.91 -1 -1.5 -1.4

AN5879 Phosphatidylglycerol/phosphatidylinositol
transfer protein

18.3 5 Y 9 53.25 9 53.25 1 1 -1

AN8979 Alcohol dehydrogenase I (AlcA) 36.9 6 N 5 25.57 5 25.57 -15.1 -8.8 1

AN8043 Uncharacterised 16.9 4.8 N -b -b 3 26.42 -4 -2 -1
aSignalP was used to predict secretion signals [67,68] and bnot found in the database search. Corresponding microarray data are shown for comparison. *Values
highlighted in bold have |FC| > 2 and p-value < 0.01 in the microarray data; cFold changes (FCs) in pair-wise comparison of consecutive time points; dnot
represented in the chip.
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regulatory protein, however, under glucose limiting condi-
tions, the nitrogen status-sensing regulator AreB controls
the expression of the nitrate catabolic genes [61,62]. Major
down-regulation of nitrate reductase niaD (AN1006) and
of nitrate transporters (AN1008, AN0399) (Table 1) was
consistent with the down-regulation of nitrite reductase
niiA (AN1007) and the up-regulation of areB (AN6221)
Additional file 2. At the last time point, the inducible nitric
oxide-detoxifying flavohaemoglobin gene (AN7169, fhbA)
showed major down-regulation (Table 1). This gene is co-
regulated with niaD and niiA, yet its expression is AreA-
independent [63,64].
Development and secondary metabolism
During growth on suberin the mycelia mat surrounded
the water-insoluble substrate, disrupting the fungal bio-
film formed in the control, i.e. loss of hyphae alignment
and disruption of the extracellular polysaccharide matrix
(Figure 3). The expression levels of some A. nidulans ortho-
logs of A. fumigatus genes coding in important pathways of
biofilm formation were consistent with the loss of biofilm
morphology [65], including major down-regulation of
hydrophobin gene (AN7539) (Table 1).
Sexual development in A. nidulans was induced during

growth on suberin, similar to that observed before on



Table 3 qRT-PCR analysis of a selected set of genes coding putative lipid hydrolysing enzymes or major regulatory proteins

Carbon source Gene Encoded protein qRT-PCR Microarray*

Firstd Midd Lastd Firstd Midd Lastd

Suberin AN6195 CreA 8.3 -2.3 -1.9 4.3 -1.4 -1.6

AN1052 VeA 2.5 -1.0 -1.0 2.6 -1.3 1.0

AN7050 FarA 2.3 -1.7 1.3 2.8 -1.7 1.3

AN5309 Cut1 119.9 -3.1 1.8 305.8 -3.0 1.5

AN7541 Cut2 -1.5 -1.0 1.5 -1.3 -1.1 1.1

AN7180 Cutinase 1.2 1.1 1.9 1.3 -1.2 -1.1

AN5267 FaeC 3.2 -2.1 1.7 3.0 -2.4 1.1

AN2697 Putative lipasea -1.8 1.4 1.8 1.6 -1.7 -1.1

AN5777 Putative lipase 2.9 1.0 1.7 2.9 -1.2 1.6

AN8046 Putative lipase 4.1 -1.1 2.3 10.4 -1.6 2.7

AN8900 Putative lipaseb -1.8 1.7 1.5 1.6 1.6 -1.1

AN4748 Uncharacterised proteinc 31.8 -1.8 -3.8 24.6 -1.7 -4.5

Glyceryl tripalmitate AN5309 Cut1 1.4 36.4 -7.8

AN7541 Cut2 2.7 -3.8 -1.3

AN7050 FarA 3.7 -1.7 -1.7

AN8046 Putative lipase 8.2 2.3 -19.4

Octyl octanoate AN5309 Cut1 3.3 14.0 -1.6

AN7541 Cut2 4.1 -1.2 -3.0

AN7050 FarA 2.7 -1.3 -1.4

AN8046 Putative lipase 2.8 5.8 -11.7

Values represent the relative expression of selected genes in pair-wise comparisons of consecutive time points. The expression of each gene was normalised by
the expression of the 60S ribosomal protein L33-A gene (AN2980).
*Values highlighted in bold have |FC| > 2 and p-value < 0.01 in the microarray data; acontains feruloyl esterase and tannase domains, high homology with feruloyl
esterase B in N. crassa; borthologue of A. niger An09g02270, which encodes a triacylglycerol lipase; corthologue of S. cerevisiae NOP6, which is necessary for
rRNA-binding protein required for 40S ribosomal subunit biogenesis.dFold changes (FCs) in pair-wise comparison of consecutive time points. Corresponding
microarray data are shown for comparison.
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FAs [22]: Hülle cells and few ascospores were detected
at the first and last time points, respectively; whereas
cleistothecia and numerous ascospores were observed
only after fifteen days of cultivation (Figure 4). The
breach of cleistothecia might explain the few ascospores
detected at the last time point. In agreement, mutA
(mutanase associated with the use of glucose reserves
during the formation of Hülle cells [66]) and AN10030
(alkaline serine protease involved in the biosynthesis of
the ascopore cell wall [67,68]) underwent major up-
regulation at first and mid time points, respectively.
In addition, MAT1 (AN2755) and MAT2 (AN4734)
genes, which encode the transcription factors considered
the master switchers of sexual development in A. nidulans
[69,70], were up-regulated at the first time point Additional
file 2. The expression profile of the vast majority of genes
associated with sexual development in A. nidulans, includ-
ing steA (AN2290), was consistent with the onset of sexual
development [71]. The few exceptions included genes sig-
nalling response to nitrogen/carbon limitation [61], namely
down- and up-regulation of sexual development activators
(csnB, AN4783 and noxA, AN5457) and repressors (silG,
AN0709; cpcA, AN3675 and rosA, AN5170), respectively
Additional file 2.
The expression of genes regulating fungal growth and

development is known to be coordinated with those coding
in the biosynthesis of asperthecin, penicillin and sterigma-
tocystin [72]. Moreover, exogenous addition of mannans
to the growth media (oligosaccharides that might be re-
leased during autolysis) increases penicillin production
in Penicillium sp. [73]. In fact, genes in asperthecin
(AN6000, aptA), penicillin (AN2623) and sterigmato-
cystin (AN7812, AN11013 and AN7811) clusters were
amongst those more profoundly affected at the first
time point (Table 1). Analyses of the expression levels
of the other in-cluster genes confirmed these findings,
e.g. up-regulation of genes in sterigmatocystin cluster
included the aflR regulator (AN7820) [74], the polyke-
tide synthase (AN7825) and the fatty acid synthase
genes (AN7814 and AN7815) Additional file 2. At the
mid time point, sterigmatocystin biosynthesis probably
decreased, since genes encoding the synthase (AN7825)
and some auxiliary enzymes (AN7804, AN7806,
AN7811, AN7818 and AN7824) become major down-



Table 4 List of Aspergillus nidulans differentially expressed genes (pair-wise comparison of consecutive time points),
putatively involved in suberin degradation

Gene
number

Description (gene name) Microarray data* Sub-cellular locationa Number of predicted
binding sites for farAFirstd Midd Lastd

Lipid Hydrolysis & Transport

Cutinases

AN5309 Cutinase 1 (cut 1) 305.8 -3.0 1.5 Extracellular 4b, 4c

AN7180 Cutinase 1.3 -1.2 -1.1 Extracellular 2b, 2c

AN7541 Cutinase (cut2) -1.3 -1.1 1.1 Extracellular 3b, 3c

AN10346 Cutinase 1.5 -1.4 -1.3 Extracellular 2b

Other extracellular esterases

AN1799 Triacylglycerol lipase 22.3 -1.9 1.6 Extracellular 1b

AN2602 Lipase/esterase 16.9 -2.0 -3.3 Extracellular 0b

AN8046 Putative triacylglycerol lipase 10.4 -1.6 2.7 Extracellular 0b

AN6773 Putative triacylglycerol lipase 5.1 13.1 -1.4 Extracellular 1b

AN4573 Hydrolase (ester bonds) 3.5 2.2 3.2 Extracellular 0b

AN5777 Triacylglycerol lipase 2.9 1.2 1.6 Extracellular 0b

AN6464 Hydrolase (ester bonds) 2.3 -1.5 1.0 Extracellular 1b

AN7158 Hydrolase (ester bonds) -2.2 -1.1 -1.1 Extracellular 0b

AN5321 Triacylglycerol lipase -1.5 2.8 1.1 Extracellular 2b

AN1433 Triacylglycerol lipase -6.1 -1.9 1.8 Extracellular 1b

AN3037 Carboxylesterase -7.2 1.3 2.4 Extracellular 1b

AN1792 Hydrolase (ester bonds) -15.9 -1.4 2.3 Extracellular 1b

Transporters

AN6581 ABC drug exporter (atrF) 12.0 -1.3 -4.1 Membrane 1b

AN8813 ABC transporter 8.6 -2.2 1.2 Membrane 2b

AN2300 ABC multidrug transporter (atrD) 5.1 -1.1 -1.7 Membrane 0b

AN6369 ABC transporter 4.8 -1.6 -1.2 Membrane 0b

AN0771 ABC transporter 4.7 -1.3 -1.9 Membrane 0b

AN8892 ABC multidrug transporter 3.6 -3.5 -1.3 Membrane 1b

AN8489 ABC multidrug transporter 2.1 -1.3 1.2 Membrane 0b

Other genes

AN0623 Long chain fatty alcohol oxidase 1.7 13.7 -1.2 Unknown 2b

AN6795 Putative hydrophobic surface binding protein A 9.2 -2.5 1.1 Extracellular 1b

Fatty Acids β-Oxidation

Transport to the peroxisome/mitochondria

AN6279 Carnitine acetyltransferase (acuJ) 3.0 -1.6 -1.3 Peroxisome/mitochondria 2b, 2c

AN5356 Carnitine/acyl-carnitine carrier (acuH) 2.0 -2.6 -1.0 Mitochondria 1b, 1c

AN0257 Peroxisomal ATP carrier protein (antA) 4.2 -1.4 -1.2 Peroxisome 3b, 3c

β-oxidation cycle

AN5646 Acetyl-CoA acyltransferase 4.6 -1.7 -1.5 Peroxisome 1b, 1c

AN5698 Acetyl-CoA acyltransferase -1.2 -2.2 1.3 Mitochondria 0b

AN1699 Acyl-CoA dehydrogenase 8.9 -1.1 -1.6 Peroxisome 3b, 3c

AN7320 Acyl-CoA dehydrogenase 2.4 -2.1 1.4 Peroxisome 1b

AN9162 Acyl-CoA dehydrogenase -2.0 -1.1 1.4 Mitochondria 0b

AN6761 Acyl-CoA dehydrogenase -2.8 1.4 1.2 Mitochondria 0b
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Table 4 List of Aspergillus nidulans differentially expressed genes (pair-wise comparison of consecutive time points),
putatively involved in suberin degradation (Continued)

AN2762 Acyl-CoA dehydrogenase -2.2 -1.5 1.7 Mitochondria 1b

AN12335 Acyl-CoA dehydrogenase (acdA) -2.7 1.6 1.2 Peroxisome 1b, 1c

AN0824 Acyl-CoA dehydrogenase (scdA) 2.1 -1.4 1.1 Mitochondria 3b, 3c

AN8280 Acyl-CoA synthetase (faaB) 7.9 -2.6 -1.4 Peroxisome 2b, 2c

AN5192 Acyl-CoA synthetase (fatA) 3.0 -2.8 1.1 Peroxisome 2b

AN4397 Acyl-CoA synthetase (fatD) 1.2 -2.3 -1.6 Peroxisome 1b

AN10512 β-ketoacyl-CoA thiolase (mthA) 1.9 -2.2 -1.8 Mitochondria 1b

AN6752 Long chain fatty acyl-CoA oxidase (aoxA) 5.7 -1.4 -1.4 Peroxisome 3b, 3c

AN2999 NADP-isocitrate dehydrogenase (idpA) 3.5 -1.5 -1.4 Peroxisome/mitochondria 1b

AN4688 Isovaleryl-CoA dehydrogenase (ivdA) 1.1 -1.5 3.0 Mitochondria 0b

Gluconeogenesis

AN6293 Transcription activator (acuM) 2.1 -1.6 1.6 Cytosol 2b

AN1918 Phosphoenolpyruvate carboxykinase (acuF) 6.8 -3.8 -1.2 Cytosol 1b

AN5604 Fructose 1,6-bisphosphatase (acuG) 1.9 -1.8 1.0 Cytosol 2b

Glyoxylate cycle

AN5634 Isocitrate lyase (acuD) 2.9 -2.2 -1.7 Peroxisome 1b,1c

AN6653 Malate synthase (acuE) -1.2 1.2 -1.2 Peroxisome 2b,2c

Regulatory genes

AN7050 Zn2-Cys6 transcription factor (farA) 2.8 -1.7 1.3 Nucleus 0b

AN1425 Zn2-Cys6 transcription factor (farB) 4.2 -1.8 1.0 Nucleus 1b

AN1303 Zn2-Cys6 transcription factor (scfA) -2.0 -2.8 -1.1 Nucleus 0b

AN0689 Zn2-Cys6 transcription factor (facB) 5.4 -2.4 -1.4 Nucleus 0b

*values highlighted in bold have |FC| > 2 and p-value < 0.01 in the microarray data; a) Sub-cellular location was attained using Pedant Database (http://pedant.gsf.de).
bthe number of predicted binding sites for farA was manually searched according to the conserved sequence 5’-CCTCGG or its reverse complement sequence
(5’-CCGAGG) within 1 Kb of the upstream region of the start codon of listed genes; cnumber of predicted binding sites as previous reported [22]. dFold changes (FCs) in
pair-wise comparison of consecutive time points.
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regulated (Table 1). Suberin also induced major alterations
in numerous genes coding in uncharacterised clusters
(AN9234, AN9227, AN9230, AN11202, AN8106 and
AN8520). Overall, 65 secondary metabolite gene clusters,
out of the 71 estimated by now in this fungus [53], were
responsive but only in a few clusters the synthase gene
was largely affected. Supplementation of the growth media
with suberoylanilide hydroxamic acid induced several sec-
ondary metabolite synthases in A. niger [75] and potato
suberin augmented the diversity of the secondary metabo-
lites biosynthesised by Streptomyces sp. [76].
Twelve genes involved in the control of development

and carbon metabolism, as well as in suberin degradation,
were selected to validate the microarray data by qRT-PCR
(Table 3). The tested genes included four genes which pu-
tatively encode lipid hydrolysing enzymes (AN7541,
AN7180, AN2697 and AN8900) that showed FC ≤ 2 in the
microarray. All the analysed genes, with the exception of
AN2697, showed a profile of expression along the cultiva-
tion similar to that of the microarray data.
Degradation of suberin: lipid hydrolysis
Several genes encoding polyester hydrolysing enzymes
were induced during the fungus growth on suberin
(Table 4). Data made apparent that Cut1 played the
major role in suberin initial degradation: the encoding
gene (AN5309) was extensively up-regulated (Table 1)
and the enzyme was present in the secretome (Table 2).
Cut1 hydrolyses aliphatic polyesters [77] and potato su-
berin [18,19,26]. FarA and FarB are major transcription
activators of genes involved in FAs utilisation [22]. Dele-
tion of farA (AN7050) eliminates induction of a number
of genes by both small chain fatty acids (SCFAs) and
LCFAs, while deletion of farB (AN1425) eliminates
SCFAs induction [22]. As expected, farA and farB were
both up-regulated at the first time point (Table 4). The
down-regulation of scfA on suberin (Table 4, AN1303,
which encodes a similar transcription factor and its dele-
tion leads to farB deleted mutant phenotype [22]) might
be explained by its repression under nitrogen limiting con-
ditions [64]. With the exception of cut1, the expression

http://pedant.gsf.de


Figure 3 Microscopic analysis of Aspergillus nidulans mycelia in controls (top panels) or on suberin (bottom panels) at the first time
point, showing the red safranin stain (scale bar: 137 μm) (a), the hyphal morphology (detected by SEM, scale bar: 10 μm) (b), and the
total (c) and the dead (d) hyphae, shown in blue (calcofluor white stain) and red (propidium iodide stain) (scale bar: 1000 μm). Only
the controls showed the typical features of fungal biofilms, namely the extracellular matrix stained with safranin and the hyphal alignment. Total
and dead hyphae were alike in controls and on suberin.
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levels of the other three cutinase genes were kept at basal
levels (AN10346) or underwent minor alterations (cut2 -
AN7541 and AN7180) (Tables 3 and 4). FarA regulation
of A. nidulans cutinase genes might be similar to that re-
ported in Fusarium solani [26]. In the pathogenic fungus,
cut1 is strongly induced by cutin monomers under the
regulation of CTF1α - which has 70% similarity with FarA
and the same binding motif, CCTCGG - but cut2 and
cut3 are expressed at basal levels. Similar regulation was
noticed in media containing octyl octanoate or glyceryl tri-
palmitate as sole carbon sources (Table 3). In the suberin
media major up-regulation of cut1 occurred at an earlier
time point probably because it contains ca. 4 wt% of sol-
uble “cutin-like” monomers [30,78]. Glycerol could not be
detected in the suberin culture filtrates likely because 80-
90% of the acylglycerol bonds in suberin were hydrolysed
during its extraction (Figure 1a) [31]. In agreement, glycerol
catabolic genes [79], namely glycerol kinase (AN5589, glcA)
and FAD-dependent glycerol 3-phosphate dehydrogenase
(AN1396) were not differentially expressed. When glyceryl
tripalmitate was used as sole carbon source, glycerol was
detected, namely 0.063 ± 0.003 and 0.0201 ± 0.0018 g⋅L-1 at
the first and the last time point, respectively.
Only Cut1 and AN8046, putative lipid hydrolysing en-

zymes, could be detected in the secretome (Table 2). Gene
expression data corroborate the hypothesis that farA regu-
lates cut1 and AN8046 during A. nidulans utilisation
of suberin (Table 4), as well as octyl octanoate or glyceryl
tripalmitate (Table 3) as sole carbon sources. The farA
ortholog gene of A. oryzae regulates not only cutL (cuti-
nase gene) but also the putative lipid hydrolysing enzyme
genes mdlB (ortholog of AN8046) and tglA (70% homology
with AN10346) [80]. It also regulates hsbA (ortholog
of AN6795) that encodes hydrophobic surface binding
protein probably involved in the recruitment of CutL to
the FAs surface. AN6795 was also stimulated by suberin
(Table 4). In addition, during Fusarium oxysporum growth
on wheat oil, the transcription factor ctf1 regulates both
cut1 and lip1 [81], which is amongst the lipase genes more
strongly induced [82] (n.b. Lip1 shows high homology to
AN8046 protein).
Several other putative lipase genes, namely AN2602,

AN6464, AN5777, AN4573, AN1799, AN6773, in addition
to AN2697 and AN8900 (FC < 2, Table 3) were also stimu-
lated by suberin (Table 4). Their regulation was variable,
except AN4573 (increased along the incubation) and
AN6773 (increased at first and mid time points). The lat-
ter, as well as AN1799 and AN5321, have been associated
with unresolved secondary metabolite gene clusters in
A. nidulans [53] and likely are not involved in suberin
degradation.
Eleven genes encoding ABC transporters carrying trans-

membrane domains were up-regulated at the first time
point. ABC transporters are generally assumed to be in-
volved in multidrug resistance, yet more recent studies
have shown their physiological significance e.g. in oxidative
stress response, pathogenicity and excretion of sidero-
phore peptide breakdown products [83]. A role in penicil-
lin secretion was proposed for the A. nidulans AtrD
transporter, which belongs to the subfamily ABC-C [84].
atrD (AN2300) up-regulation at the first time point agrees
with major up-regulation of penicillin synthase gene



Figure 4 SEM images of Aspergillus nidulans during growth on suberin. Hülle cells were detected at the first time point (a, b), few
ascospores were detected at the last time point (c, d), and numerous ascospores (f) and cleistothecia (e) were detected after fifteen days.
Untreated suberin (control) is also shown (g, h). Scale bar: 10 μm.
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(Table 1). Up-regulation of numerous ABC-G transporter
genes (AN6581, AN8813, AN6369, AN0771, AN8892 and
AN8489) might imply a possible involvement in the trans-
membrane transport of suberin hydrolysed monomers.
The function of this subfamily of transporters remains
largely unknown with putative roles in e.g. excretion
of hydrophobic and/or lipid molecules [85]. In addition,
suberin possibly stimulated the formation of eisosomes
playing a role in the endocytosis of lipid cargos [86], as
suggested by the major up-regulation of pilB (AN3931)
(Table 1).
Hydrolysed suberin LC fatty alcohols (Figure 1a) need

further modification before entering FAs β-oxidation
pathways. ω-Hydroxy fatty acid oxidation was probably
mediated by NADPH-cytochrome P450 reductase fusion
enzyme (AN6835), as well as by LC fatty alcohol oxidase
(AN0623). Both encoding genes were up-regulated dur-
ing growth on suberin (Tables 1 and 4). The first enzyme
might catalyse the oxidation of the LC fatty alcohols to
carboxylic acids and of mid-chain saturation functional-
ities to vic-diols [87,88]. LC fatty alcohol oxidases have
been shown to catalyse the oxidation of ω-hydroxy fatty
alcohols in Candida cloacae [89] and the encoding genes
display usually a peroxisomal targeting sequence, not-
withstanding their cellular localisation in A. nidulans re-
mains unknown. Due to different substrate specificities
and/or cellular compartmentalisation, possibly AN6835
and AN0623 enzymes have acted sequentially during
A. nidulans growth on suberin. The hypothesis that LC
fatty alcohols undergo modification by LC fatty alcohol
oxidase in the peroxisome merits further analysis.

Degradation of suberin: β-oxidation
Current understanding of FAs utilisation in A. nidulans
indicates significant complexity and redundancy in
β-oxidation pathways [21,22,90]. FAs are activated by
FA-CoA synthetases to their acyl-CoA derivates, which
are processed by FA-CoA oxidases or dehydrogenases.
Each round of β-oxidation produces a chain-shortened
fatty-acyl-CoA (which undergoes further rounds) and an
acetyl-CoA, which is channelled into the tricarboxylic acid
or glyoxylate cycles. In addition, β-oxidation substrates are
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actively transported across the mitochondria and/or the
peroxisome membrane by carnitine shuttles, ADP/ATP
carriers or ABC transporter proteins. Suberin stimulated
two peroxisomal FA-CoA synthetase genes, namely faaB
(AN8280) and fatA (AN5192) (Table 4) but none of the
well characterised mitochondrial ones (e.g. facA (AN5626)
and pcsA (AN5833), Additional file 2). It seems that
hydrolysed suberin monomers were essentially processed
via peroxisomal β-oxidation pathways (Table 4) and that,
as previously suggested, FaaB is the major peroxisomal
FA-CoA synthetase, while the remaining ones (FatA-D
(AN5192, AN5877, AN6649, AN4397), FaaA (AN6114)
and AN4659) display high functional redundancy [91]. Ac-
tivation of peroxisomal β-oxidation agrees with the up-
regulation of antA, a peroxisomal ATP carrier (AN0257)
and of acuJ, a mitochondrial/peroxisomal carnitine acetyl-
transferase (AN6279) (Table 4). Uncharacterised trans-
porters for the peroxisomal translocation of activated
LCFAs have been suggested [22]; justifying the basal ex-
pression levels of pxa1 and pxa2 (AN10078 and AN1014,
ABC transporter proteins).
Suberin stimulated the expression of aoxA (AN6752) but

not aoxB (AN6765), both encoding peroxisomal fatty-acyl-
CoA oxidases (Table 4) but AoxA plays the major role
during growth on LCFAs [92]. Deletion of aoxA leads to
growth impairment on LCFAs but not on SCFAs or very
long chain fatty acids (VLCFAs) [21]. aoxA stimulation is
consistent with the observation that suberin hydrolysis re-
leases three times more LCFAs than VLCFAs [30,78]. Only
three peroxisomal fatty-acyl-CoA dehydrogenase genes
(out of seven) were responsive at the first time point,
namely acdA (AN12335), AN1699 and AN7320 genes
(Table 4). Deletion of either acdA or AN7320 has not led to
any growth impairment on FAs, suggesting that the
encoded enzymes display high redundancy [92]. Botrytis
cinerea BC1G_13535 gene, which displays 78% of homology
with AN1699, was amongst the highest up-regulated genes
coding in FAs β-oxidation during Lactuca sativa infection
[93]. The hypothesis that this fatty-acyl-CoA dehydrogenase
plays a major role in A. nidulans degradation of plant FAs
calls for its functional characterisation.
LCFAs β-oxidation is shuttled between the peroxisomes

and the mitochondria, typically when the produced chain-
shortened fatty-acyl-CoA is a butyryl-CoA (C4) [92]. At
the first time point, most mitochondrial fatty-acyl-CoA
dehydrogenase genes were down-regulated (AN2762,
AN6761 and AN9162), except scdA (AN0824) [22]
that was up-regulated. The remaining mitochondrial
β-oxidation genes, in general, decreased at the mid and/or
last time points, including the well characterised mthA, a
β-ketoacyl-CoA thiolase gene (AN10512), as well as acuH,
a mitochondrial carnitine/acyl-carnitine carrier (AN5356)
(Table 4). The only exception was ivdA, an isovaleryl-CoA
dehydrogenase gene (AN4688) that was up-regulated,
together with mccB (AN4687), at the last time point
(Table 4). This might imply that the fungus started using
leucine as a catabolic source; both genes are clustered with
mccA (AN4690) in the leucine catabolic pathway [94].
The glyoxylate bypass is absolutely required for growth

on carbon sources that produce acetyl-CoA and is
dependent on isocitrate lyase (AcuD) and malate synthase
(AcuE) activities. Transcription of acuD (AN5634) and
acuE (AN6653) is regulated by FA and acetate induction
via the FacB activator, but facB (AN0689) mutations do
not prevent growth on FAs [22]. Up-regulation of farA
and farB (FA-induced) and of facB (acetate-induced) led
to up-regulation of acuD but not of acuE (Table 4). Previ-
ous studies have demonstrated that the imposition of sev-
eral stresses might lead to both fluctuating mRNA and
irregular protein expression levels in A. nidulans [95].

Degradation of phenolic suberin
Release of ferulic acid during fungal growth on potato
suberin has been suggested to involve the activity of fer-
uloyl esterases (Fae) [5], notwithstanding a direct proof
is still lacking. Ferulic acid release probably justifies the
up-regulation of faeC (AN5267) (Table 3). Ferulic acid
degradation might involve the activity of 2,3-dihydroxy-
benzoate carboxylyase [96], of which the encoding gene
dhbD (AN6723) was up-regulated at the first time point
(Additional file 2). Several downstream products have
been reported in different fungal strains, however the as-
sociated enzymes remain largely unknown [96]. Neverthe-
less, final degradation of the formed aromatics might
involve the homogentisate, benzoate or the salicylate path-
ways [97], and several genes coding in these pathways
were found to be up-regulated (e.g. AN10950, hmgA
(AN1897), hpdA (AN1899), maiA (AN1895), Additional
file 2) in the suberin media.

Degradation of other cell wall constituents
Several polysaccharides degrading enzymes were identi-
fied in the A. nidulans secretome on suberin at the last
time point (Table 2, Additional file 4), in general, agree-
ing with the transcriptome data (Additional file 2). They
included the β-glucosidase BglL (AN2828) and the xyla-
nase XlnA (AN3613), of which the encoding genes were
found up-regulated at the last and the first time points,
respectively. The other β-glucosidase genes were up-
regulated at the first (bglM, AN7396) and mid time
points (eglB (AN5214) and AN3046) and could not be
detected in the secretome. xlnR (AN7610), which en-
codes the xylanolytic/cellulolytic transcriptional activa-
tor, was up-regulated at the last time point (consistent
with creA decrease [98]), notwithstanding the up-
regulation of the xlnA and xlnB (AN9365) at the earlier
time points. The additional polysaccharide degrading en-
zymes detected in the secretome were not consistent
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with the transcriptome data (Table 2), including XlnC
(AN1818) and XlnE (AN7401). Probably the up-
regulation of their corresponding genes occurred at an
intermediate time point. The poor correlation between
transcriptomic and proteomic data has been previously
reported [95,99], often related to mechanisms associated
with mRNA turnover and/or efficiency of translation
[100] or to transcription on demand of certain mRNA
pools [101], among other reasons, including experimen-
tal noise [102]. Protein species grouped in the miscellan-
eous category (six, of which half have a predicted
intracellular localisation) might be associated with cell
lysis, as highlighted by the presence of alcohol dehydro-
genase I (alcA, AN8979) (Table 2).

Conclusions
Previous studies on A. nidulans colonisation of cork re-
vealed that suberin remained unaltered [103] probably
because the outermost lignin-enriched cell wall layers
hampered its degradation. Here we have shown that
Figure 5 Schematic view of putative suberin degradation and utilisat
and intermediates are omitted and only the proteins of which the encodin
represented. Uncertainties in the cellular compartmentalisation or activity o
A. nidulans was able to utilise suberin macromolecules
as sole carbon source (Figure 1b) and that the fungus
also underwent sexual development (Figure 4) and
boosted secondary metabolism (Table 1). We propose
the suberin degradation and utilisation pathway in
A. nidulans, as depicted schematically in Figure 5.
Amongst the up-regulated genes encoding lipid hydrolys-
ing enzymes only two were detected in the secretome,
namely Cut1 and AN8046 (Tables 2, 3 and 4). In particular,
out of the four cutinase genes, only cut1 expression pattern
was correlated to that of farA, similar to that described in
plant pathogenic fungi [22,81]. ω-Hydroxy fatty acid oxida-
tion reactions (mediated by either NADPH-cytochrome
P450 reductase or LC fatty alcohol oxidase, Tables 1 and 4),
are likely involved in the modification of suberin LC fatty
alcohols, even if their cellular compartmentalisation re-
mains uncertain. The hydrolysed suberin monomers were
essentially composed of LCFAs, hence activated to their
corresponding acyl-CoA derivatives probably by FaaB;
the major peroxisomal fatty acyl-CoA synthetase in this
ion pathways in Aspergillus nidulans. For sake of clarity, some steps
g genes were up-regulated in the first and the mid time points are
f the enzyme are indicated by question marks.
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fungus [92]. Despite high functional redundancy of add-
itional peroxisomal FA-CoA synthetase genes, fatA
showed the highest up-regulation on suberin. Up-
regulation of aoxA also occurred, agreeing with the idea
that the encoded fatty-acyl-CoA oxidase plays a major
role during growth on LCFAs [21]. In addition, among
the peroxisomal fatty-acyl-CoA dehydrogenase genes up-
regulated here, AN1699 underwent the highest up-
regulation (Table 4), similar to that reported for its B.
cinerea ortholog during plant infection [93]. The core
binding sequence for FarA, typically overrepresented in
the promoter region of genes required for growth on FAs,
is not present in all related genes up-regulated during A.
nidulans growth on suberin (Table 3). Some unknown
regulatory elements are certainly yet to be discovered, fur-
ther emphasised by the down-regulation of some lipid
hydrolysing genes carrying the FarA recognition site.

Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article (and its additional files).
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