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Abstract

Background: A convergence of high-throughput sequencing and computational power is transforming biology
into information science. Despite these technological advances, converting bits and bytes of sequence information
into meaningful insights remains a challenging enterprise. Biological systems operate on multiple hierarchical levels
from genomes to biomes. Holistic understanding of biological systems requires agile software tools that permit
comparative analyses across multiple information levels (DNA, RNA, protein, and metabolites) to identify emergent
properties, diagnose system states, or predict responses to environmental change.

Results: Here we adopt the MetaPathways annotation and analysis pipeline and Pathway Tools to construct
environmental pathway/genome databases (ePGDBs) that describe microbial community metabolism using MetaCyc, a
highly curated database of metabolic pathways and components covering all domains of life. We evaluate Pathway Tools’
performance on three datasets with different complexity and coding potential, including simulated metagenomes, a
symbiotic system, and the Hawaii Ocean Time-series. We define accuracy and sensitivity relationships between read
length, coverage and pathway recovery and evaluate the impact of taxonomic pruning on ePGDB construction and
interpretation. Resulting ePGDBs provide interactive metabolic maps, predict emergent metabolic pathways associated
with biosynthesis and energy production and differentiate between genomic potential and phenotypic expression
across defined environmental gradients.

Conclusions: This multi-tiered analysis provides the user community with specific operating guidelines, performance
metrics and prediction hazards for more reliable ePGDB construction and interpretation. Moreover, it demonstrates the
power of Pathway Tools in predicting metabolic interactions in natural and engineered ecosystems.
Background
Community interactions between uncultivated microor-
ganisms give rise to dynamic metabolic networks integral
to ecosystem function and global scale biogeochemical
cycles [1]. Metagenomics bridges the “cultivation gap”
through plurality or single-cell sequencing by providing
direct and quantitative insight into microbial community
structure and function [2,3]. Although, new technologies
are rapidly expanding our capacity to chart microbial
sequence space, persistent computational and analytical
bottlenecks impede comparative analyses across multiple
information levels (DNA, RNA, protein and metabolites)
[4,5]. This in turn limits our ability to convert the genetic
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potential and phenotypic expression of microbial com-
munities into predictive insights and technological or
therapeutic innovations.
Functional genes operate within the structure of meta-

bolic pathways and reactions that define metabolic
networks. Despite this fact, few metagenomic studies
use pathway-centric approaches to predict microbial
community interaction networks based on known
biochemical rules. Recently, algorithms for pathway
prediction and metabolic flux have been developed for
environmental sequence information including the Human
Microbiome Project Unified Metabolic Analysis Network
(HUMAnN) and Predicted Relative Metabolic Turnover
(PRMT). HUMAnN uses an integer optimization
algorithm that conservatively computes a parsimonious
minimum set of reactions along KEGG pathways based on
pathway presence, absence or completion [6,7]. PRMT
infers metabolic flux based on normalized enzyme activity
counts mapped to KEGG pathways across multiple meta-
genomes [8]. Because KEGG pathways are coarse and do
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not discriminate between pathway variants, both modes of
analysis have limited metabolic resolution [9]. Moreover,
neither HUMAnN nor PRMT provides a coherent
structure for exploring and interpreting predicted KEGG
pathways.
One alternative to HUMAnN and PRMT is Pathway

Tools, a production-quality software environment sup-
porting metabolic inference and flux balance analysis
based on the MetaCyc database of metabolic pathways
and enzymes representing all domains of life [10-13].
Unlike KEGG or SEED subsystems, MetaCyc emphasizes
smaller, evolutionarily conserved or co-regulated units of
metabolism and contains the largest collection (over 2000)
of experimentally validated metabolic pathways. Extensively
commented pathway descriptions, literature citations, and
enzyme properties combined within a pathway/genome
database (PGDB) provide a coherent structure for explor-
ing and interpreting predicted pathways. Although initially
conceived for cellular organisms, recent development of
the MetaPathways pipeline extends the PGDB concept to
environmental sequence information enabling pathway-
centric insights into microbial community structure and
function [14,15].
Here we provide essential guidelines for generating

and interpreting ePGDBs inspired by the multi-tiered
structure of BioCyc [16] (Figure 1). We begin with genome
and metagenome simulations to assess performance on
datasets manifesting different read length, coverage and
taxonomic diversity and we develop a weighted taxonomic
distance to evaluate concordance between pathways
predicted using environmental sequence information
and reference pathways in the MetayCyc database. Given
these metrics, we demonstrate Pathway Tools’ power to
predict emergent metabolism in simulated metagenomes
and a previously characterized symbiotic system [17].
Finally, we generate ePGDBs using coupled metagenomic
and metatranscriptomic datasets from the Hawaii Ocean
Time-series (HOT) to compare and contrast genetic
potential and phenotypic expression along defined
environmental gradients in the ocean [18-20].

Results and discussion
Performance considerations
Environmental pathway/genome database (ePGDB) con-
struction commences with the MetaPathways automated
annotation pipeline using environmental sequence informa-
tion as input (Materials and Methods). Resulting annota-
tions are used by the PathoLogic algorithm implemented
in Pathway Tools to predict metabolic pathways based on
multiple criteria including proportion of pathways found,
pathway specific enzymatic reactions, and purported
taxon-specific pathway distributions. PathoLogic is known
to perform well when compared to machine learning
methods using the genomes of cellular organisms as input
[21]. We previously reported PathoLogic’s performance
on combined and incomplete genomes using two simu-
lated metagenomes (Sim1 and Sim2) derived from 10
BioCyc tier-2 PGDBs manifesting different coverage and
taxonomic diversity using MetaSim [14,22]. Simulations
on increasing proportions of the total component genome
length (Gm) showed that the performance of pathway
recovery based on multiple metrics (F-measure, Matthews
Correlation Coefficient, etc.) increased with sequence
coverage and sample diversity nearing an asymptote at
higher coverage (Figure 2a). This suggests that pathway
prediction follows a collector’s curve in which common
core pathways accumulate in the early part of the curve
followed by less common accessory pathways near the
asymptote.
To better constrain pathway recovery and performance

in relation to ePGDB construction we compared results
of MetaSim experiments using the Esherichia coli K12
substr. MG1655 genome (basis of the EcoCyc database),
Sim1 and Sim2, and a subsampled 25 m metagenome
from HOT [19] (Additional file 1: Materials and Methods,
Tables S1-S4 and Figure S1). Simulations were performed
at progressively larger Gm coverage. Consistent with
previous observations for Sim1 and Sim2, all experi-
ments showed that pathway recovery percentage and
performance sensitivity increased with sequence cover-
age and sample diversity nearing an asymptote at higher
coverage (Figure 2a-b). The absolute values of these pat-
terns were sensitive to read length and likely reflected
limits imposed by open reading frame prediction and
BLAST/LAST-based annotation. In contrast, performance
specificity was high (>85%) regardless of read length,
coverage, or taxonomic diversity (Figure 2b). The rate of
pathway recovery increased proportionally with increas-
ing sample diversity at lower coverage values, as seen in
the reduction of pathway recovery percentage between
Sim1, Sim2 and E. coli for long read (~700 bp) and be-
tween HOT, Sim1/2 and E. coli for short read (~160 bp)
datasets. Additional performance metrics can be found
in Additional file 1: Tables S5–S8. Because PathoLogic
performance improves with increasing read length,
coverage and sample diversity, sequencing platform selec-
tion and use of assembled versus unassembled sequence in-
formation should be considered when generating ePGDBs.
When constructing PGDBs for individual genomes

PathoLogic uses a process called taxonomic pruning to
constrain pathway predictions within a specified taxonomic
lineage by taking advantage of the curated ‘taxonomic-
range’ associated with a given pathway. For example, if a
pathway is found only in plants, it will be difficult to predict
this pathway in the genome of a bacterial isolate when
using taxonomic pruning. Such a process is intended to
reduce false positive predictions in individual genomes
[12]; However, microbial communities are composed of
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Figure 1 A multi-tiered approach to ePGDB validation. (a) In the absence of highly curated and validated datasets, we took inspiration from
the curation-tiered structure of available pathway/genome databases within the BioCyc family. (b/c) Through in silico simulated sequencing
experiments on the E. coli K12 genome and two simulated metagenomes, we evaluated the performance of the PathoLogic algorithm under
changing sequence coverage and taxonomic distributions. (d) We reanalyzed the genomes of Candidatus Moranella endobia and Candidatus
Tremblaya princeps, two symbiotic taxa with reduced genomes, sharing a number of essential amino acid pathways. (e) Finally, we predicted
pathways from a previously analyzed paired metagenomic and metatranscriptomic dataset from the Hawaii Ocean Time-series to validate on
previously identified pathways and metabolic functions.
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diverse and largely uncultivated lineages whose combined
metabolic potential and phenotypic expression must be
considered both within and between individuals. Thus the
taxonomic origin of environmental sequence information
is more difficult to ascertain with the same degree of
certainty as individual microbial genomes sourced from
isolates or single-cells. Indeed, the true taxonomic range
of many pathways remains to be constrained given the
limited number of isolate genomes and the proclivity for
horizontal gene transfer within microbial communities.
In order to evaluate the impact of taxonomic pruning

on pathway recovery from environmental sequence in-
formation we constructed ePGDBs enabling or disabling
taxon-specific pathway distributions (Additional file 1:
Table S9). We ran PathoLogic on Sim1/2 and 25 m HOT
datasets with the ‘Unclassified sequences’ pruning thresh-
old and without pruning. With taxonomic pruning enabled,
long read and short read Sim1 ePGDBs exhibited a reduc-
tion of 56% (206 compared to 604) and 61% (194 compared
to 499) predicted pathways, respectively. Interestingly, the
subsampled 25 m HOT dataset exhibited a 28% reduction
(425 compared to 593) in pathway recovery with and with-
out pruning suggesting that increased sample complexity
can partially offset taxon specific sensitivity losses. In all
cases, the pathways predicted with taxonomic pruning were
a subset of pathways predicted without taxonomic pruning.
Given these observations we posit that strict taxonomic
pruning is inappropriate for ePGDB construction while rec-
ognizing potential prediction hazards associated with path-
ways predicted outside of their expected taxonomic range.
To evaluate concordance between pathways predicted

using environmental sequence information and reference
pathways in the MetaCyc database we developed a weighted
taxonomic distance (WTD) algorithm. The WTD algorithm
measures the taxonomic distance between predicted coding
DNA sequences (CDS), e.g., BLAST hits from the RefSeq
database, and expected taxonomic range for each predicted
pathway using the NCBI Taxonomy Database. The NCBI
Taxonomy Database is hierarchically structured, and a path
between the lowest common ancestor (LCA) of observed
CDS annotations and each member of the expected
taxonomic range in a pathway can be charted [23],
where each path length represents some measure of
taxonomic distance e.g. root, cellular organism, domain,
phylum/division, class, order, family, genus, species. Steps
on the path near the root of the hierarchy define greater



Gm

P
at

hw
ay

 R
ec

ov
er

y 
F

ra
ct

io
n

0.2

0.4

0.6

0.8

Long Read (~700 bp)

0.2 0.4 0.6 0.8 1.0

Short Read (~160 bp)

0.2 0.4 0.6 0.8 1.0

HOT (25m)

K12

Sim1

Sim2

Sensitivity

Precision

b

a

Long Read (~700 bp) Short Read (~160 bp)

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Gm

P
er

fo
rm

an
ce

1.0

Figure 2 Analysis on in silico simulated sequencing experiments across different levels of coverage, sequencing lengths, and taxonomic
distributions. (a) Predicted pathway recovery as a fraction of the total pathways predicted from the full genomes. (b) Sensitivity (circles) and precision
(triangles) of predicted pathways of the in silico experiments using the pathways predicted on the full genomes as the gold standard.
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evolutionary distances than those near the tips. Thus the
WTD algorithm weights steps on the connecting path by
a factor of 1

2d
, where d is the depth position of a particular

taxon in the hierarchy (Additional file 1: Supplementary
Note 2). To distinguish between paths descending from
the expected taxonomic range and those falling outside
the expected taxonomic range, paths descending from an
expected taxonomic range have a non-negative distance
and paths outside this range have a negative distance. The
WTD algorithm gives preference to non-negative dis-
tances within expected taxonomic range(s), returning the
minimum distance if found. Otherwise the maximum
negative distance (i.e., closest to zero) is returned.
When the WTD algorithm was applied to HOT data-
sets, the taxonomic distribution of predicted pathways
generally aligned with the expected taxonomic ranges
of MetaCyc Pathways (Additional file 1: Figure S2).
Predicted pathways were classified into four categories
of taxonomic disagreement based on their WTD:
“None” if the WTD was positive, and “Low”, “Medium”,
and “High” if less than or equal to zero, based on distance
quartiles. A pathway had “Low” taxonomic disagreement
if in the upper two quartiles of negative distances (i.e.,
those closest to zero), “Medium” if in the second quartile,
and “High” if in the bottom (i.e., most negative) quartile.
Pathways with expected taxonomic ranges affiliated with
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bacteria and archaea dominated the “None”, “Low”, and
“Medium” disagreement classes, while pathways with
expected taxonomic ranges affiliated with eukaryotes
including “animals”, “fungi”, and “plants” comprised the
majority of the “High” disagreement class (Additional
file 1: Figure S3). While not excluded from downstream
analysis, pathways with distances in the “High” disagree-
ment class are more likely to represent false positives
and should be interpreted with care.
Distributed metabolic pathways
Public good dynamics play an integral role in shaping
microbial interactions through distributed networks of
metabolite exchange [24]. Such networks promote
increased fitness and resilience and may explain the
underlying difficulty in cultivating most environmental
microorganisms [25-27]. Because ePGDBs are constructed
from environmental sequence information, predicted
pathways are represented by multiple donor genotypes
providing different levels of sequence coverage for each
reaction. By comparing pathway recovery for individual
reference genomes to pathway recovery for combinations
of reference genomes, it becomes formally possible to use
Pathway Tools to identify distributed metabolic pathways
that emerge between multiple interacting partners. To
test this hypothesis, we selected four Tier-2 reference
genomes used in simulation experiments and constructed
ePGDBs using all possible pair-wise genome combinations
(Additional file 1: Table S10). Thirty distributed pathways
were identified in pair-wise genome combinations that
were not predicted in PGDBs for individual cellular or-
ganisms using set-difference analysis (Additional file 1:
Table S11). Common and unique reactions associated
with distributed pathways could be identified as com-
posite glyphs in the Pathway Tools genome browser
(Additional file 1: Figure S4).
To provide a real world example of distributed meta-

bolic pathway prediction we selected a symbiotic system
with known nutritional provisioning requirements. The
reduced genomes of Candidatus Moranella endobia and
Candidatus Tremblaya princeps (GenBank NC-015735
and NC-015736), bacterial endosymbionts of the mealy-
bug Planococcus citri have been previously described by
McCutcheon and colleagues to distribute biosynthetic
pathways for essential amino acids in a process known
as “inter-pathway complementarity.” Environmental PGDB
construction using the combined Moranella and Trem-
blaya genomes recovered 43 out of 44 reactions and all 9
distributed amino acid biosynthesis pathways previously
reported (Figure 3 and Additional file 1: Figure S5). Given
these results, combinatorial ePGDB construction has
enormous potential to predict distributed metabolic
pathways within defined microbial assemblages e.g.,
co-cultures or more complex microbial communities in
natural and engineered ecosystems.

Comparative community metabolism
To evaluate Pathway Tools’ performance on complex
microbial communities at different information levels we
compared and contrasted coupled metagenome (DNA)
and metatranscriptome (RNA) datasets from 25, 75,
110 m (sunlit or euphotic) and 500 m (dark) ocean
depth intervals from HOT [19]. A total of 1026 unique
pathways from approximately 1.2 billion base pairs of
environmental sequence information were recovered
spanning defined environmental gradients including
luminosity, salinity, pressure, and oxygen concentra-
tion (Additional file 1: Table S12). Of these pathways,
840 met minimal quality control (QC) standards
(Materials and Methods) and were used for subsequent
set-difference analysis (Figure 4a).
More than 600 pathways were shared in common be-

tween the sunlit and dark ocean based on combined DNA
and RNA datasets consistent with a conserved metabolic
core (Figure 4b). A total of 14 unique pathways were
predicted exclusively in sunlit samples with 20 pathways
predicted at the intersection of 25, 75 and 110 m depth
intervals (Figure 4b). More than 100 unique pathways
were predicted for the 500 m compliment consistent with
increased metabolic potential and niche-specialization with
increasing depth (Figure 4b). Interestingly, the normalized
proportion of genetic potential (DNA) versus expressed
metabolic pathways (DNA/RNA) increased linearly be-
tween 25, 75 and 110 m depth intervals (0.4, 0.7 and 1.2,
respectively) before plateauing at 500 m (1.2) (Figure 4c). It
remains to be determined if this trend reflects an asymp-
tote or an inflection point in pathway expression co-
varying as a function of metabolic status, environmental
conditions or sample coverage and QC.
A total of 30 pathways were identified exclusively in

RNA datasets including 11 pathway variants (Figure 4c
and Additional file 1: Figure S6). Expressed cholesterol
degradation and tetrahydrobiopterin biosynthesis I were
common to all depth intervals. Unique expressed photo-
respiration and glycolate degradation III pathways were
recovered at 25 and 75 m, while ammonia oxidation III,
methane oxidation to methanol II, and arginine bio-
synthesis III were unique to 500 m (Additional file 1:
Figure S6). More than 590 pathways were identified
exclusively in DNA datasets, while 495 were shared in
common between DNA and RNA datasets (Figure 4d).
With respect to functional classes, unique Degradation,
Biosynthesis and Energy-Metabolism pathways increased
as a function of depth in DNA datasets (Additional file 1:
Figure S7a). Within unique degradation classes a
progression from amino acids to aromatic-compounds
and secondary metabolites was observed between
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25, 75, 110 and 500 m depth intervals. A similar
progression was observed for a subset of Biosynthetic
classes including polyamines, lipids, and cofactors and
for Energy-Metabolism including C1-compounds and
fermentation (Additional file 1: Figure S7b).
An evaluation of the 72 most abundant pathways re-

covered from the combined datasets indicated that 53
were both present and expressed at 25, 75, 110, and 500 m
depth intervals. Moreover, several of the most abundant
pathways including ammonium transport, Rubisco shunt,
NADH to cytochrome electron transfer, pyruvate fermen-
tation, denitrification, Calvin-Benson-Bassham cycle, cyst-
eine biosynthesis I and arginine biosynthesis III exhibited
depth-dependent trends in gene expression (Additional
file 1: Figure S8). A number of abundant pathways com-
mon to 25, 75, 110, and 500 m depth intervals in the
DNA datasets were exclusively expressed in sunlit or dark
ocean waters (Figure 5). In sunlit waters these included
photosynthesis light reactions, hydrogen production VIII,
flavonoid biosynthesis, cofactors including heme, vitamin
B-complex (thiamin, adenosylcobalamin), and glutathione
for oxidative stress (Figure 5). Below the euphotic zone,
the 500 m depth interval exclusively expressed path-
ways for ribitol, rhamnose, guanosine nucleotide, 2-
methylcitrate, and threonine degradation as well as
pathways for cofactor biosynthesis including phospho-
pantothenate, menaquinol-8 (vitamin K), and coenzyme
M and several carbohydrate and amino acid biosynthetic
pathways including CMP-N-acetylneuraminate I, ADP-L-
glycero-beta-D-manno-heptose and glycine biosynthesis
IV (Figure 5).
Consistent with previous reports, sunlit waters expressed

many photosynthesis-related pathways including aerobic
electron transfer, hydrogen production, and cofactors
including ubiquinol, heme, vitamin B-complex (nicotinate,
thiamine, cobalamin, tetrahydrofolate), chlorophyll a, and
retinol biosynthesis [19,20] (Additional file 1: Figures S9
and S10). In addition to photosynthesis, 25 and 75 m
depth intervals (upper euphotic) sets included pathways
associated with degradation of plant metabolites including
phytate, glucuronate, mannitol, chitin, xylose, arabinose,
gallate, and quinolate. Other pathways of interest identi-
fied in sunlit waters included organophosphate, urea, and
aminobutyrate degradation, as well as pathways for
conversion of the plant hormone indole-3 acetic acid
and mercury detoxification. Below the euphotic zone,
the 500 m depth interval expressed unique pathways for
intra-aerobic nitrite reduction, dissimilatory nitrate
reduction, the reductive monocarboxylic acid cycle,
ammonia oxidation, and methane oxidation to methanol I
(Additional file 1: Figure S11). Thus, comparative ePGDB
analysis using the combined DNA and RNA datasets
differentiated between genomic potential and pheno-
typic expression across defined environmental gradients
in the ocean and revealed known and novel patterns of
functional specialization with potential implications for
nutrient and energy flow within sunlit and dark ocean
waters.
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Pathway prediction hazards
While the construction of ePGDBs promotes pathway-
centric analysis of environmental sequence information,
prediction hazards need to be considered for optimal
interpretive power. One common hazard is the ‘multiple
mapping problem,’ arising when an enzyme catalyzes
conserved or promiscuous reaction steps across mul-
tiple pathways or enzyme commission (EC) numbers
representing classes with non-specific substrate activity.
For example EC 3.2.1.21 represents a non-specific enzyme
class for beta-D-glucosides, allowing for spurious prediction
of specific carbohydrate degradation pathways. Moreover,
PathoLogic has a preference for EC numbers over product
descriptions that can further exacerbate false discovery
associated with non-specific enzyme classes. Hazards
manifesting themselves within pathway variants sharing
a number of common or reversible reaction steps have
previously been described by Caspi and colleagues in
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Figure 5 Comparison of predicted genomic and transcriptomic pathways with unique expression in the ‘sunlit’ and ‘dark’ HOT samples.
Sunlit metabolism was indicative of photosynthesis and aerobic metabolism including photosynthesis light reactions and hydrogen production. Dark
metabolism had significantly more degradation pathways.
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the context of PGDB construction for cellular organ-
isms [28]. For example, the tricarboxylic acid cycle
(TCA) cycle has at least eight pathway variants associated
with different taxonomic groups and several incomplete
or reversible forms that share multiple reactions steps.
Pathologic has difficulty differentiating between TCA
cycle variants when reversible pathway components are
present even when a diagnostic step such as ATP-citrate
lyase for the reductive TCA cycle is missing from the
input data. A similar problem occurs when a regulatory
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protein is used to provide evidence that a pathway exists
even when catalytic pathway components are missing
from the input. Given that we constructed ePGDBs
without taxonomic pruning and that PathoLogic uses
automated annotations from multiple taxonomic groups
when predicting pathways from environmental sequence
information, taxon specific pathways such as plant hor-
mone biosynthesis or innate immunity can be predicted
even when organisms known to encode such pathways are
absent from the dataset. As described in the performance
considerations section, WTD can be used to discern dif-
ferences between the predicted and expected taxonomic
range of pathways pointing to potential hazards prior to
interpretation. Indeed, the extent to which these predicted
pathways reflect previously unrecognized variants or
prediction artifacts remains to be determined. More-
over, this hazard has the potential to confound distrib-
uted metabolic pathway identification when sequence
coverage is low or microbial community composition is
extremely uneven. Some examples of these hazards
from the HOT analysis are provided in Additional file 1:
Table S13.
The identification of dissimilatory nitrate reduction

(denitrification), intra-aerobic nitrite reduction and am-
monia oxidation in the combined 500 m HOT DNA and
RNA datasets provides a real world example of hazard
navigation. Denitrification is a distributed form of energy
metabolism resulting in the production of nitrogen gas
in oxygen-deficient waters (<20 μM O2 per kg) [29,30].
The first step in denitrification is nitrate reduction to
nitrite. In the combined HOT DNA and RNA datasets the
predicted pathway variant nitrate reduction IV included a
subset of CDS transcripts for ‘nitrate reductase gamma
subunit’ (24 in DNA, 79 in RNA) while the predicted
pathway variant nitrate reduction I included CDS tran-
scripts for multiple nitrate reductase subunits (Figure 6).
While CDS for nitrate reductase subunits originated from
a number of different taxa including Alphaproteobacteria,
Gammaproteobacteria, Nitrospira and Planctomycetes,
435 out of 523 (83%) predicted nitrate reductase transcripts
originated from Nitrospira and Planctomycetes consistent
with a role in nitrite oxidation [31-34] (Figure 6). The
second step in denitrification is nitrite reduction to nitric
oxide. Within the DNA dataset both bacterial and archaeal
CDS for nitrite reductase were recovered while transcripts
originating from ammonia oxidizing archaea dominated the
RNA dataset (Figure 6). Coding sequences/transcripts for
downstream pathway components including nitric oxide
reductase and nitrous oxide reductase were not detected,
although CbbQ/NirQ/NorQ family regulators necessary for
inorganic carbon fixation in the Calvin-Benson-Bassham
cycle, nitrite and nitric oxide reduction were identified in
DNA and RNA datasets [35] (Figure 6). Given that the
mean oxygen concentration at 500 m is ~120 μM O2 per
kg [18,20], these results are consistent with active water
column nitrite and ammonia oxidation processes. Recent
studies in the Eastern Tropical South Pacific OMZ ob-
served changes in the frequency distribution of denitri-
fication genes between free-living (0.2-1.6 μm) and
particle-associated (>1.6 μm) size fractions, with nitric
oxide reductase and nitrous oxide reductase encoding
genes enriched on particles [36]. The extent to which
denitrification or anammox processes partition between
free-living and particle-associated microoganisms in the
HOT water column remains to be determined.

Conclusions
While advances in high throughput sequencing tech-
nologies are rapidly giving rise to tens of thousands of
environmental datasets, the computational and analytic
powers needed to organize, interpret and mobilize these
datasets have lagged behind. Conventional BLAST-based
annotation methods combined with gene-centric analyses
tend to overlook the network properties of microbial
communities driving ecological and biogeochemical inter-
actions. We argue that pathway-centric analyses via the
MetaPathways pipeline and Pathway Tools provides the
scientific user community with an end-to-end solution for
comparing ePGDBs constructed from environmental se-
quence information revealing known and novel network
properties. As with any automated analysis, this method
is no replacement for manual curation. Indeed, we have
highlighted specific instances where taxonomic range,
idiosyncratic annotation, multifunctional enzymes, regula-
tory functions, and reversible enzymatic forms predicted
by Pathway Tools result in interpretive hazards that
require expert knowledge to resolve.
Continued development efforts are needed to improve

on existing features and add new functionality to both the
MetaPathways pipeline and Pathway Tools. Specifically,
improved import features amenable to categorical metadata
e.g., taxonomic origin, location, depth, etc., need to be
integrated with Pathway Tools 'groups', a feature that
enables users to integrate external data and group
pathways and objects within Pathway Tools. The ‘groups’
feature in turn needs to be better integrated into the
‘omics’ viewer allowing for improved pathway navigation
and page summaries within the Pathway Tools browser.
Tooltip enhancements that summarize the categorical
data mentioned above could further enhance the browsing
experience. Current ePGDBs are constructed using
concatenated CDS sequences and improved viewing
features are needed that map coverage and noncoding
sequence information onto complete contigs. Finally,
the PathoLogic algorithm should be improved to
incorporate the described prediction hazards and WTD
into its calculations. Specifically, one can imagine tree-
based algorithmic improvements to PathoLogic akin to



Figure 6 Taxonomic and functional breakdown of nitrogen cycling pathways. (a) Nitrogen cycling pathways and reactions assigned by
PathoLogic. Arrow color indicates pathway, nitrate reduction I (denitrification) (brown), nitrate reduction IV (dissimilatory) (yellow), and intra-aerobic
nitrite reduction (red). Grey numbers adjacent to arrows indicated number of reads assigned to the reaction in the DNA and RNA (RNA in parentheses).
Overlapping circles indicate the distribution of reads across multiple pathways. (b) BLAST-based functional and taxonomic breakdown of reads
assigned to reactions in given pathways as indicated by letters A-E. Function was determined by the top RefSeq BLAST hit, reported by the
MetaPathways pipeline, and indicated by reaction arrows, with color corresponding to taxa or taxonomic group with known activity: taxa with
nitrate and nitrite reducing activity (blue), nitrite oxidizing activity (green), and ammonia oxidizing activity (purple). Grey reactions indicate no
reads for enzymatic activity were detected, only regulatory proteins that may be involved in gene expression regulation (*).
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the WTD described here that integrate taxonomic infor-
mation with enzyme or pathway directionality.
Despite current limitations, ePGDBs provide an inter-

active and holistic data structure in which to investigate
distributed metabolism and differentiate between micro-
bial community metabolic potential and phenotypic ex-
pression. Thus, ePGBDs provide a functional blueprint of
microbial community metabolism that can be harnessed
to engineer microbial consortia with defined emergent
properties. These properties can in turn be transferred to
industrial strains or modeled using MetaFlux to improve
process performance [13]. Although the set-difference and
visual inspection methods used to identify distributed
metabolic pathways described here do not scale for big
datasets, future algorithmic improvements will enable
comparisons of reference genomes and metagenomes in
large numbers. Indeed, splitting the proverbial “reaction
arrows” for each step in a given metabolic pathway into
taxonomic bins provides a basis for integer optimization
methods that compute “distribution” scores and a baseline
for monitoring changes in the reaction network associated
with environmental change or even human health status.
Looking forward, we envision an open source collection of
ePGDBs, called EngCyc analogous to BioCyc [16], which
can be queried and compared online revealing the network
properties of microbial communities in natural and
engineered ecosystems on a truly global scale.
Methods
Metabolic pathway analysis
Environmental PGDBs were constructed from public
datsets using MetaPathways (http://github.com/hallamlab/
MetaPathways/) [14] with default parameter settings: open
reading frame (ORF) detection by Prodigal (minimum
length 60 amino acids), functional annotation by BLAST
(e-value 1e-5, blast-score ratio 0.4) against protein data-
bases KEGG [37], COG [38], MetaCyc [11] (version 16.0),
and RefSeq [39] (Downloaded August 2012), and pathway
prediction via the PathoLogic algorithm with taxonomic
pruning disabled. Predicted pathways and associated
annotated CDS sequences were extracted from created
ePGDBs using the utility script extract_pathway_table_-
from_pgdb.pl included with MetaPathways.

Pathway prediction on simulated data
Simulated sequencing experiments were performed using
MetaSim [22] with the parameter settings: Long read:
clone size 36000 bp, Gaussian error, mean read length
700 bp, standard deviation 100 bp; Short read: Gaussian
error, mean 160 bp, standard deviation 40 bp) against
the E. coli K12 MG1655 complete nucleotide genome
(GenBank: NC_000913) at a series of fractional levels
(1/32, 1/16, 1/8, 1/4, 1/2, 1/1) of the total combined
length of starting component genomes (Gm). Pathways
were predicted using the MetaPathways pipeline, as

http://github.com/hallamlab/MetaPathways/
http://github.com/hallamlab/MetaPathways/
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described above, against each of the resulting sequence
sets (Additional file 1: Tables S3 and S4). A classification
performance analysis was performed; True positives
(TP) were pathways found in both the simulated sample
pathways (test set) and the complete gold standard
E. coli genome. True negatives (TN) were pathways not
predicted in the test set or gold standard. False positives
(FP) were pathways found in the test set but not in the
gold standard. Finally, false negatives (FN) were path-
ways found in the gold standard but not in the test set.
Multiple summary statistics for the resulting confusion
tables (Sensitivity (Recall), Specificity, Precision, Accuracy,
F-measure, and Matthew’s Correlation Coefficient (MCC))
were calculated. A summary of these performance sta-
tistics is provided in the supplement (Additional file 1:
Note S1: ‘A Note on Confusion Table Statistics’).

Simulated metagenomes: Sim1, Sim2
Simulated sequencing experiments of metagenomes Sim1
and Sim2 were generated and analyzed as described above
for E. coli. To minimize name-mapping problems, we used
prokaryotic genomes from the tier-2 BioCyc database
collection [21]. The Sim1 metagenome was composed
of ten tier-2 BioCyc genomes (Additional file 1: Table S2)
in equal copy number, while Sim2 was composed of the
Caulobacter cresentus NA1000 genome in 20-fold excess
relative to other genomes (Additional file 1: Figure S1). A
classification performance analysis was performed as de-
scribed above with the set of 646 pathways predicted from
the complete tier-2 genomes used to derive Sim1 and
Sim2 representing the gold standard (Additional file 1:
Tables S5-S8).

Simulated metagenomes: HOT (25 m)
A 25 m metagenome from the Hawaii ocean time series
was sub-sampled with replacement to different fractional
levels (1/20, 1/10, 3/20, 1/5, 2/5, 3/5, 4/5, and 1/1) and
pathways were predicted as described above. Similarly, a
classification performance analysis was performed with
the set of 864 pathways predicted from the complete
454 run representing the gold standard (Additional file 1:
Tables S7 and S8).

Taxonomic pruning experiments
The full-Gm simulated sequencing samples for Sim1 and
Sim2, both short and long read lengths, and the full-Gm

HOT (25 m) sample, had their pathways predicted with
the above method, but with taxonomic pruning enabled
using the taxonomic lineage parameter set to “Unclassi-
fied sequences”. The number of predicted pathways were
tabulated and compared with the pathways previously
predicted with taxonomic pruning disabled. As simple
set analysis showed that within a sample the pruned path-
ways were a strict subset of the “no-pruning” ones, and
the reduction in pathways was calculated (Additional
file 1: Table S9).

Weighted taxonomic distance
For each predicted pathway in the HOT dataset, a
weighted taxonomic distance (WTD) distance was
calculated using the WTD algorithm (Additional file 1:
Supplementary Note 2). First, the lowest common ancestor
algorithm (LCA) was applied to a pathway’s RefSeq CDS
sequences. The WTD algorithm calculates a weighted dis-
tance D between the observed LCA taxonomy xobs and the
pathway’s expected taxonomic range(s) xexp ∈ TR(MetaCyc)

(p), where TR(MetaCyc)(p) is the set of taxonomic range(s) for
a given pathway p on the NCBI Taxonomy Database
hierarchy.
This WTD algorithm takes as input p and xobs, and

calculates a weighted taxonomic distance for each xexp
on nodes in the connecting path P(xexp, xobs), as

D xexp; xobs
� � ¼

X

ea;b∈EP xexp ;xobsð Þ

1

2d að Þ ;

where ea,b is an edge between nodes a and b in the
path and d(a) is the depth of node a. If xexp descends
from the expected taxonomic range xobs, then the
WTD is assigned a positive value and WTD for paths
descending outside this range are assigned a negative
value. After calculating the WTDs for all pairs xexp, xobs,
the WTD algorithm first attempts to return the mini-
mum non-negative distance e.g., WTD corresponding to
the closest xexp where xobs is a descendant of xexp, and
returns the maximum negative score e.g., closest to zero if
all observed and expected taxonomies diverge. For each
dataset, predicted pathways were assigned to a “Disagree-
ment Class” based on the following criteria: (i) pathways
with positive WTD were given the “None” class, (ii) path-
ways with distances greater than the median of negative
WTDs were given the “Low” class, (iii) pathways within
the 2nd quartile were given the “Medium” class, and
(iv) pathways in the lower quartile were given the
“High” disagreement class (Additional file 1: Figure S2).
The expected taxonomic ranges of each pathway where
then collapsed into the higher taxonomic levels: “root”,
“cellular organisms”, “prokaryotes”, “archaea”, “bacteria”,
“eukaryotes”, “animals”, “fungi”, ”plants”, and “other”, as
defined on the NCBI Taxonomy Database hierarchy and
pathway frequencies and disagreement classes were sum-
marized for each sample (Additional file 1: Figure S3).

Distributed metabolic pathway prediction
Four genomes of similar size and complexity from the
tier-2 dataset were combined in a pairwise manner:
Aurantimonas manganoxydans SI85-9A (GenBank: NZ_
AAPJ00000000.1), Bacillus subtilis subtilis 168 (GenBank:
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AL009126.3), Caulobacter crescentus NA1000 (GenBank:
CP001340.1), and Helicobacter pylori 26695 (GenBank:
AE000511.1), abbreviated by the first character of their
proper names, A, B, C, and H, respectively. The six pair-
wise and four original genomes were analyzed as de-
scribed above for E. coli (Additional file 1: Table S10).
Pathways predicted in the combined PGDBs were con-
sidered candidates for distributed metabolism if they
were absent from PGDBs for individual genomes (i.e.,
found in A and B combined, but not in either A or B in-
dividually) (Additional file 1: Table S11 and Additional
file 2). Candidate pathways were manually inspected
and deemed ‘plausible’ if there was sufficient coverage, i.e.,
75% of reactions in a pathway had associated CDS
sequences from both taxa (Additional file 1: Figure S4).
Similarly, the Candidatus Moranella endobia and

Candidatus Tremblaya princeps genomes (GenBank:
NC-015735 and NC-015736) were downloaded from
NCBI and analyzed as described above for E. coli.
Resulting PGDBs for individual and combined genomes
were manually inspected for amino acid biosynthetic
pathways described in McCutcheon and Dohlen [17]
(Additional file 1: Figure S5).

Hawaii ocean time-series
Unassembled metagenomic and transcriptomic pyrose-
quences from the Hawaii Ocean Time-series (10 m, 75 m,
110 m, and 500 m) were obtained from the NCBI Sequence
Read Archive (SRA Accession: SRX007372, SRX007369,
SRX007370, SRX007371, SRX016893, SRX016897, SRX
156384, SRX156385) and run through the MetaPathways
pipeline using default settings (Additional file 3). To avoid
spurious predictions, only pathways with more than ten
mapped CDS sequences in an individual sample were used
in downstream analysis. The pathways with nine or fewer
mapped CDS sequences represent the lower quartile of
pathway annotations (Figure 4a, Additional file 4). Pathway
CDS counts for each sample were normalized to the total
number of unannotated ORFs in each dataset. Count data
was then converted to percentages providing relative ORF
abundance for each pathway (Additional file 5), along with
their weighted taxonomic distances and sample-wise
disagreement classes (Additional file 6). Relative CDS
abundance of the top-40 pathways from DNA and RNA
datasets were compared (Additional file 1: Figure S8). In
addition, pathways predicted in the DNA and RNA
datasets were compared at each depth interval to provide
sample-wise fractions for each depth e.g., DNA-only,
DNA-RNA, and RNA-only (Figure 4c). Given the
small number of pathways in the RNA-only sets no
set-difference analysis was needed (Additional file 1:
Figure S6). The DNA-only sets were declined and tabu-
lated at various levels of the MetaCyc pathway hierarchy
(Additional file 1: Figure S7). A final four-way set analysis
was performed on the DNA-only and DNA-RNA path-
ways at each depth (Figure 4d, Additional files 7 and 8).
DNA-RNA set-difference subsets with more than 5
predicted pathways were compared in detail (Additional
file 1: Figures S9-S14). All data transformations, set opera-
tions, and comparisons were performed in the R statistical
environment (http://www.r-project.org), and visualized
using the ggplot graphical package (http://ggplot2.org)
and d3.js graphical library (http://d3js.org/).

Availability of supporting data
The ten full-length genomes used to create simulated
metagenomes can be downloaded from GenBank under
accession numbers AE008687-AE008690, NZ_AAPJ00
000000.1, AL009126.3, AE005673, CP001340.1, AE000511.1,
AE000516, AL123456, NC_007604.1, AE003852, and
AE003853.
The symbiotic Candidatus Moranella endobia and Can-

didatus Tremblaya princeps genomes can be downloaded
from GenBank under accession numbers NC-015735 and
NC-015736). The Hawaii Ocean Time series datasets can
be downloaded from the NCBI Sequence Read Archive
under accession numbers SRX007372, SRX007369,
SRX007370, SRX007371, SRX016893, SRX016897, SRX
156384, SRX156385.

Additional files

Additional file 1: Supplementary notes, figures, and tables.

Additional file 2: Summary of candidate pathways that are
potentially distributed by set-difference analysis.

Additional file 3: Summary table of 1033 pre-QC predicted pathways
and CDS counts for the Hawaii Ocean Time-series samples.

Additional file 4: Summary table of the 840 post-QC predicted
pathways and CDS counts for the Hawaii Ocean Time-series
samples.

Additional file 5: Summary table of the 840 post-QC predicted
pathways and normalized CDS counts for the Hawaii Ocean
Time-series samples with taxonomic disagreement class highlighted.

Additional file 6: Summary table of the 840 post-QC predicted
pathways and normalized CDS counts for the Hawaii Ocean
Time-series samples with observed LCA taxonomies, expected
taxonomic ranges, calculated weighted taxonomic distance, and
taxonomic disagreement class.

Additional file 7: Summary table of normalized CDS counts for the
593 DNA fraction pathways of samples from the Hawaii Ocean
Time-series.

Additional file 8: Summary table of normalized CDS counts for the
495 pathways common to DNA and RNA samples from the Hawaii
Ocean Time-series.
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