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A systems biology approach identified different
requlatory networks targeted by KSHV miR-K12-11
in B cells and endothelial cells

Yajie Yang, Isaac W Boss, Lauren M Mclntyre” and Rolf Renne’

Abstract

Background: Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid
origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both
gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue
specific gene expression. Advances in target identification technologies and molecular interaction databases have
allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in
endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate
underlying mechanisms of KSHV pathogenesis.

Results: Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin
and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed
transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types.
However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon
response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling,
bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different
nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated
transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of
putative direct targets to a larger set of genes.

Conclusions: This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues
infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using
a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and
influencing signaling pathways, to counter the host anti-viral response and to promote proliferation and survival
of infected cells. The targeted GRNs are more reproducible and informative than target gene identification, and
our approach can be applied to other regulatory factors of interest.

Background

Kaposi’s sarcoma (KS) is an endothelial tumor and a
major cause of AIDS patient death. Its associated herpes
virus (KSHV, HHV-8) is a double strand DNA virus and
a member of the y subfamily of human herpes viruses
[1]. KSHV can also infect lymphocytes, promoting trans-
formation into primary effusion lymphoma (PEL) or
Multicentric Castleman’s disease (MCD) in immuno-
deficient patients [2,3]. The distinct pathological outcome
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of KSHV in two types of human tissues serves as a model
system for studying cell type specific gene regulation.

In KS tumors and PELs, the majority of cells are
latently infected and express viral genes only within a
specific region of the viral genome: the KSHV latency-
associated region (KLAR) [4-6]. This region encodes the
latency-associated nuclear antigen (LANA, involved in
latent DNA replication and episomal maintenance),
v-Cyclin (cyclin D homolog that promotes S phase entry),
v-Flip (promotes cell survival), the kaposin gene fa-
mily (involved in cytokine mRNA stabilization and
cell transformation), and 12 microRNAs (miRNAs).
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MiRNAs are small RNAs of 19-24 nucleotides that inhibit
translation [7,8] and induce degradation of mRNAs [9-11].
The genomic location of KSHV miRNAs and their abun-
dant expression in KSHV-associated tumors suggests they
play an important role in establishing latency and promot-
ing KSHV pathogenesis.

The first step in deciphering the functional role of a
miRNA, is to identify its target genes. The 5' sequence
(especially bases 2-7, termed the “seed sequence”) of a
miRNA, guides its complementary binding to the 3’
UTRs of its target mRNAs and facilitates the repression
of the latter in the RNA-induced silencing complex
(RISC) [12-15]. Therefore, analysis of miRNA sequence
properties can computationally predict its targets [16,17].
Due to the short length of the seed sequence and the
general disregard for tissue specific target-gene expres-
sion, bioinformatic approaches typically report large
numbers of genes as putative targets of individual miR-
NAs reviewed by [18-20]. Greater than half of all protein
coding genes in mammalian cells are estimated to con-
tain multiple miRNA target sites [21]. Restricted by tissue
specific gene expression, only a small fraction of putative
targets are present in a specific cellular context (the
direct targets) [22,23]. The direct targets frequently do not
function in isolation but interact with other molecules to
form gene regulatory networks (GRNs). Accordingly,
genes that are positioned at a lower level of the network
hierarchy may also be functional targets even without the
miRNA target site in their sequences (the indirect targets)
(Figure 1).

This global regulatory effect can be captured by gene
expression profiling after perturbing specific miRNA
levels. The differentially expressed genes (DEG) reflect
the global outcome of the miRNA regulation [13,24].
A priori knowledge of molecular interactions is neces-
sary to place the DEGs in the context for interpreting
the joint effect of direct and indirect targets from a net-
work perspective. A systems approach, which integrates
secondary data with primary measurements of gene ex-
pression, can connect different layers of regulators from
sparse and noisy expression profiles [25]. This approach
is enabled by a variety of databases on DNA-protein and
protein-protein interactions [26-28].

KSHV miR-K12-11 provides a unique model for study-
ing tissue specific GRNs with regard to viral infection
and pathogenesis. Its seed sequence is identical to cellu-
lar miR-155. Previous studies have identified similar
functional targets of the two miRNAs [29,30]. MiR-155
is a well-studied “oncomiR”, being associated with im-
mune activation [31-33] and implicated in tumorigenesis
[34-38]. MiR-K12-11 and miR-155 show mutually exclu-
sive expression in KSHV infected tissues: miR-K12-11 is
abundantly expressed in PEL cells, while miR-155 was
detected in KSHV infected endothelial cells [30].
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In this study, miR-K12-11 was expressed in KSHV
negative human endothelial and B cells, close to physio-
logical levels observed during KSHV infection. Tissue
specific, as well as common target genes and pathways,
were identified and the results were integrated with tran-
scription networks, protein-protein interactome and sig-
naling pathways. This systems approach (Figure 2) revealed
that miR-K12-11 opposes host defenses and contributes to
the proliferation and survival of KSHV infected cells by
influencing key elements in cellular GRNs like TFs and sig-
naling proteins. Our approach is applicable to a broader
range of regulators of interest for understanding the GRNs
in which they operate.

Results and discussion

Targetomes of miR-K12-11 in endothelial and B cells had
little overlap in direct target genes, but shared many
indirect targets in common pathways

To mimic the cellular context of miR-K12-11, we mod-
erately expressed miR-K12-11 in cells of lymphatic
origin (BJAB) and endothelial origin (TIVE), using a re-
combinant retroviral vector with bi-cistronic miRNA
and GFP genes. The constant detection of GFP in the
transduced cells indicated stable expression of the miRNA
gene (Figure 3A and 3B). Quantitative PCR results further
confirmed the ectopic expression of miR-K12-11 in both
BJAB and TIVE cells (Figure 3). Specifically, the retroviral
transduction approach imitates miRNA expression under
physiological conditions, unlike transfection experiments
that excessively over-express the miRNA and trigger off-
target effects [39-42]. In our experiment, the copy num-
bers of ectopic miR-K12-11 were lower than in BCBL-1
cells (KSHV infected B cell line isolated from cancer pa-
tients with PEL), indicating that it was not expressed at
superphysiological levels (Figure 3C). To compare the
GRNs of miR-K12-11 to those of miR-155, we also carried
out retroviral transduction for miR-155. In BJAB cells,
miR-155 was significantly expressed over the endogenous
level. The miR-155 transduced TIVE cells, however, did
not show significantly increased miR-155 levels over
endogenous expression, preventing further analysis on
miR-155 in this cell line.

In addition, the over-expression of miR-K12-11 did
not affect the baseline expression of miR-155 in BJAB
cells but was repressive in TIVE cells (Additional file 1:
Table S4).

RNA samples for microarray analysis were collected
from four biological replicates of BJAB cells expressing
miR-K12-11or miR-155, TIVE cells expressing miR-K12-
11, and corresponding mock controls. All samples were
successfully hybridized and showed statistical agreement
among biological replicates (Pearson correlation > 0.9,
Spearman correlation >0.9, weighted kappa >0.7). Differ-
entially expressed genes (DEGs) were determined using
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Figure 1 MicroRNAs can affect GRNs directly and indirectly. The regulatory effects of a miRNA are not limited to the direct RISC-dependent
targeting. Both direct and indirect targets are integral components of GRNs and should be included in functional analysis. When a miRNA is
over-expressed, its direct targets should be down-regulated. If the direct target is a repressor of downstream genes, then as a result of miRNA
regulation, these genes will be de-repressed and their levels will go up (Upregulated differentially expressed genes or DEGs). On the other
hand, genes downstream of activators and transcription factors will go down accordingly with the direct targets. In addition, proteins that
physically associate with direct targets to function together in a complex may also be affected.
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Figure 2 Analysis pipeline. By comparing the microarray profiles
of miRNA-expressing cells and mock transduced cells, genes with
significant changes were identified. The down-regulated genes with
predicted miRNA binding sites were categorized as putative direct
targets of miR-K12-11/miR-155. For direct targets that are known
transcription factors, transcription factor binding sites (TFBS) were
searched in the promoter regions of other affected genes. For those
indirect targets, motif analysis within their sequences identified potential
regulators. In addition, Gene Ontology and known protein-protein
interactions help to build the gene regulatory networks (GRNs).

paired comparisons with FDR < 0.05 as the significance
cutoff. Among the total 13,793 genes surveyed by the
array, 141 were DEGs responsive to miR-155 in BJAB
cells, and miR-K12-11 affected 1,215 and 3,189 genes in
BJAB and TIVE cells, respectively (Table 1; Additional
file 2: Table S1). Endogenous expression of miR-155 is
expected to affect its target genes, and therefore few
genes were expected to be differentially regulated by the
addition of ectopic miR-155. This, and the target speci-
ficity beyond the seed sequence, led to few overlapping
DEGs between miR-155 and miR-K12-11 in BJAB cells
(Figure 4). The fold changes of the DEGs were mostly
modest: 91% of the DEGs caused by miR-K12-11 had
less than a 50% change at the RNA level in TIVE cells
(Figure 4A). The effect was even more moderate in
BJAB cells, with 97% of the DEGs changing less than
50%. The small fold changes were consistent with pre-
vious reports [7,11] that miRNAs act as fine tuners of
gene expression.

Genes commonly affected by miR-K12-11 between
BJAB and TIVE were relatively few (<20%; Figure 4B
and 4C). We also compared our DEGs with multiple
miR-155/miR-K12-11 perturbation studies (Additional
file 2: Table S1). A similar study expressing miR-K12-11
in BJAB transductants [29] had 40% of the DEGs (19 out
of 48) shared by our miR-12-11 targets in BJAB. No such
studies have yet been carried out in endothelial cells. In
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Figure 3 Ectopic miR-K12-11 and miR-155 expression. A and B. BJAB (A) and TIVE (B) cells stably express GFP after foamy virus transduction
and purification by Fluorescence Activated Cell Sorter. C. Expression and copy number analysis of miR-K12-11 in transduced cells compared to
the PEL cell line BCBL- using stem-loop gRT-PCR. The absolute numbers of miR-K12-11 from transduced cells was lower than in BCBL-1 indicating
that ectopic expression was not to super-physiological levels. D and E. Expression levels of miR-155 in BJAB cells. There was endogenous expression
of miR-155, although the ectopic miRNA expression was higher. Multiplicity of infection (MO, i.e. copies per cell) did not result in consistent and
significant changes in the miRNA expression levels, and was therefore not separately considered in further analysis. Y axis: relative quantity to the
reference RNUG6.

other cell types, few overlapping genes were identified,
likely because the tissue specific transcriptomes are dif-
ferent (Evidence on tissue specific transcriptome profiles
is abundant, e.g. in [43,44]). These results demonstrated
the tissue specificity of miRNA target genes and the
importance of targetome identification in relevant cell

types.

Direct targets of miRNAs are expected to be repressed
through sequence complementarity. We identified these
genes as down-regulated DEGs that also contained seed
matches, as predicted by a union of bioinformatics algo-
rithms (Additional file 2: Table S2). The repression of four
such genes was verified by qPCR. They are AGTRAP
(angiotensin), APOBEC3G (controls RNA processing),
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Table 1 Number, direction and fold change (FC) of
differentially expressed genes (DEGs)

miRNA Cell Direction FDR FDR <0.05 FDR <0.05
type <0.05 andFC>12 andFC>2
miR-K12-11  TIVE  Down 1607 1332 151
Up 1582
miR-K12-11  BJAB  Down 608 325 21
Up 607
miR-155 BJAB  Down 52 37 4
Up 89

DEGs were identified using a paired test with significance cutoff FDR < 0.05.
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SAMHDI1 (regulates TNF- a proinflammatory responses)
and SOCS]1 (cytokine suppressor) (Figure 4D). AGTRAP
and SAMHDI are validated targets of miR-K12-11 [29].
MiR-155 is able to suppress SOCSI, a suppressor of cyto-
kine signaling [45] and AID, a member of the same family
of deaminases with critical functions in adaptive and innate
immunity as APOBEC3G [46-48].

Comparison between the computational target predic-
tion and DEGs found only a small portion of the DEGs
attributable to direct targeting. The number of up-
regulated genes was about the same as the number
down-regulated. Down-regulated genes and predicted
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Figure 4 Overall effect on the transcriptome after ectopic miRNA expression. A. miRNA effects are quantitatively moderate. The fold
change of expression levels for most DEGs was below 2-fold. B: Venn diagram showing common gene expression changes between cell lines.

C. Heatmap showing the expression change compared to the mock samples for all down-regulated differentially expressed genes (DEGS) that are
also predicted to be miR-155/miR-K12-11 targets. Most DEGs show strong tissue specificity. D. Verification of microarray measurements by qPCR
on four previously reported miR-155/miR-K2-11 targets.
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targets were associated in TIVE cells (chi-square test
p =0.0128 for TIVE, p =0.3227 for BJAB) (Additional
file 1: Table S4). Several factors may contribute to the
predicted but not observed targets: false predictions by
the bioinformatics algorithms; true targets that are tis-
sue specific, false negatives for the tests of differential
expression; or targets subject to translational control
not measured by mRNA profiling.

Despite the limited overlap between DEGs in TIVE
and BJAB cells, miR-K12-11 targeted many common
pathways in these two cell types (Additional file 2:
Table S3). By comparing Gene Ontology (GO) terms
with DEGs using Fisher’s exact test (significance cut-
off P <0.05; GEO accession: GSE59412)”, we found
carbohydrate metabolism among the top enriched
pathways in both cell types (Additional file 2: Table S3).
Delgado et al. [49] reported that KSHV latent infection
of endothelial cells strongly induced the Warburg effect,
the phenomenon that cancer cells increased glycolysis to
meet their energy needs [50,51]. Glycolysis was also iden-
tified as the top enriched biological process in a compre-
hensive miRNA targetome analysis in KSHV infected
PEL cells [52]. Taken together, this evidence suggests that
miR-K12-11 is an important regulator for the metabolic
change after KSHV infection in both endothelial and
B cells.

Effect of miR-K12-11 was amplified by transcription
factors and protein interactions

GO enrichment analysis identified sequence-specific
transcription factors (TFs) and protein binding among
the top molecular functions of direct miR-K12-11 tar-
gets in both BJAB and TIVE cells (Fisher’s exact test
p <0.05), leading us to hypothesize that the indirect
targets were produced by transcriptional regulation and
protein interactions. Enrichment of TFs in miRNA tar-
gets have been reported for plants [53], insects [54] and
human [55]. MiRNA regulation can control TF levels
[56-59] and explains the importance of the 3'UTR for
the stability of TFs [60,61]. By binding to promoter ele-
ments and interacting with cofactors, TFs regulate the
expression of a large number of genes and are able to
amplify the effect of the initial miRNA targeting event.
While miRNA regulation can result in an indirect effect
of both up-regulation and down-regulation (Figure 1),
negative regulators of gene expression are more context-
dependent and difficult to prove. Here we focused on the
feed-forward GRNs in which the components consist-
ently change towards the same direction.

In TIVE cells, we identified multiple cancer associated
TFs that were down-regulated and thereby amplified the
regulatory effects of miR-K12-11. We identified CEBPf,
E2F1, PAX6, RELA (also known as NF-kB p65), and
STAT1 using a combination of DEGs and target prediction.
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CEBPp is a previously confirmed target for both miR-155
and miR-K12-11 in B cells and in the context of human
hematopoiesis [62,63]. E2F1 is a master regulator of cell
cycle. PAX6 is involved in tissue specification during early
development. RELA promotes DNA repair and resistance
to apoptosis through the regulation of anti-apoptotic
proteins. STAT1 is required for antiproliferative activity,
immune surveillance and tumor suppression. Repression
of these key regulators involved in cancer by miR-K12-11
may help the establishment of latency and play a role in KS
tumorigenesis. Moderate down-regulation of these five TFs
by miR-K12-11 should result in decreased expression of
their downstream genes.

Putative downstream targets of CEBPP, E2F1, PAX6,
RELA and STAT1 were identified based on screening for
corresponding transcription factor binding sites within
promoter regions using HMM algorithms [64]. Initially,
3000 to 8000 putative TFBS were catalogued. Genes that
were not on the array, or were not expressed in mock
transduced cells (i.e. low intensity spots on the array)
were omitted. Genes not differentially down regulated in
the control vs miRK12-11 were also removed in order
to focus specifically on genes that were responsive to
ectopic microRNA expression. Due to the spatial and
temporal dynamics of gene expression, TF binding is
predominantly cell type specific [65]. The DNase-seq
data on HUVEC cells (primary endothelial cells) from
the ENCODE project enabled identification of active
chromatin regions. Genes that did not show DNase
hypersensitivity were also filtered from our list of genes
with TFBS as they lack TF accessibility. These filtering
steps were applied to each of the lists generated from
the preliminary prediction results in consideration of the
cellular context and the lack of tissue specificity in com-
putational prediction. After filtering, 480 genes were
deemed possible targets of CEBPJ, 240 for E2F1, 274 for
PAX®6, 499 for RELA, and 571 for STAT1. While all of
these genes contained TFBS for the corresponding TF,
more than 66% of these genes did not contain seed se-
quence matches for miR-K12-11. Therefore their down-
regulation was unlikely to be due to direct targeting by
miR-K12-11, but through the repression of the TFs by
miR-K12-11. This analysis constructed the extended
GRNs of miR-K12-11, including the candidate direct tar-
gets of a small number of TFs and hundreds of down-
stream genes (Figure 5).

Co-occupancy of different TFs on promoters can form
distinct functional regulatory complexes in a cell type
specific manner. These complexes or regulatory modules
are a mechanism especially common to pleiotropic TFs
such as E2Fs and STATs [66]. We examined our context
specific TFBS prediction, and found that co-localization
of multiple TFs on promoters was frequent (Table 2).
Putative Co-binding of STAT1 and E2F1 was identified
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J
Table 2 Co-binding of multiple TFs on same promoters for 92 down-regulated genes (14.96% of down-regulated
Cobind of Frequency Percent  S€nes; .chl-squa.re test p <0.05). RELA and Sl;ATl
CEBPB X E2F1 0 129% coocupied particularly frequer'lt (n =200; 32.52% of
the down-regulated genes; chi-square test p <0.001),
CEBPB X PAX6 128 20.81% . . .
consistent with data that activation of some genes re-
CEBPB X RELA 191 3106%  quires binding of both STAT1 and NFKB [67].
CEBPB X STAT1 181 29.43% A protein-protein interaction (PPI) pair can transmit
E2F1 X PAX6 46 7.48% the expression change of one protein that was repressed
E9F1 X RELA 8 1431% by the miRNA to its interacting partner (Figure 1). Com-
EJF1 X STATT 9 14.96% bining .TFBS with the PPI map proYlded more details for
DAXE X RELA e — extending regulatory effects. For this purpose, we assem-
¥ bled the complete human protein interactome from IntAct
PAXe X STATI 93 1512%  [26] and BioGrid [27,28]. The complete interactome con-
RELA X STAT1 200 3252%  tains 173,609 interacting pairs represented by 11,494 genes.

Percentage was based on 615 down-regulated genes. The connectivity and the neighbor numbers followed
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power law distribution (Additional file 2: Figure S3). This
comprehensive human PPI network contains all available
gene identifiers as the focal genes and all genes that physic-
ally bind to each focal gene as its interacting genes. A focal
gene and its directly interacting genes were defined as a
subnetwork.

To refine the PPI for the specific biological context in
this study, we integrated the curated interactome with
our expression data, and removed nodes for genes not
on our array and non-expressed genes from the PPI net-
work. For each sub-network consisting of a node and all
its interacting genes, the enrichment for down regulated
targets of miR-K12-11 was tested. We found that the
neighboring genes of E2F1 were enriched with genes
down-regulated by miR-K12-11, indicating that the sub-
network was targeted (Figure 6). Similar local enrich-
ment for down regulated targets was also identified for
non-TF proteins, like the apoptosis effector CASP9
(Additional file 2: Figure S2).

The degree of expression level changes for the effectors
in BJAB cells were more subtle (Table 1). Still, miR-K12-11
overexpression causes expression changes in more than
1000 genes in addition to 197 directly targeted genes. TFs
were identified from the putative direct targets, including
E2F1, a TF directly targeted by miR-K12-11 also in TIVE
cells. To examine TF-dependent regulation affected by
miR-K12-11 in BJAB cells, we analyzed the promoter se-
quences of DEGs using RSAT [68] and TOMTOM [69].
From the set of down-regulated genes, E2F, SP1 and KLF
were identified as enriched motifs (Figure 7). These TFs
contain the seed sequence of miR-K12-11, supporting their
roles as effector genes directly targeted by miR-K12-11.
These TFs are also transcriptional activators and the regu-
latory effect of miR-K12-11 is expected to cause a cascade
of repression of transcription.

miR-K12-11 synergistically regulated multiple signaling
pathways to repress the activation of interferon
responses

MiR-K12-11 also regulates interferon responses and a
variety of signaling pathways (Figure 8). Signaling path-
ways have been suggested as logical targets of miRNA
regulation, where small changes in the expression level
of upstream genes can affect the signal transduction cas-
cade significantly [70]. Individual miRNAs are able to
target several components of a single signaling pathway,
as in the cases of miR-8 for Wnt signaling [71], miR-21
for RTK signaling [72,73] and miR-126 for VEGF signal-
ing [74,75]. We identified multiple layers of JAK-STAT
signaling that were affected by miR-K12-11, with direct
targets differing between BJAB and TIVE cells (Additional
file 1: Table S4). In BJAB cells, the putative direct targets
include the cytokine receptor IFNGR1 (fc > 1.2), which
is a confirmed target of miR-155 [76]. In TIVE cells,
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miR-K12-11 directly targeted SOCS1 (fold change > 1.4,
FDR <0.05) and the transcription activator STATs (STAT1
and STAT2 fold change >2 and STAT3 fold change >1.4
FDR < 0.05 for all) (Figure 8; Additional file 1: Table S4).

Interferons are potent cytokines produced in response
to viral infection that mediate both innate immune re-
sponse and subsequent development of adaptive immun-
ity. Modulation of interferon pathways is required to
suppress the innate immune response and establish suc-
cessful latent infection. Along with JAK-STAT signaling,
multiple other signaling pathways associated with inter-
feron responses were targeted by miR-K12-11. In TIVE
cells, miR-K12-11 targets PTEN and AKT1S1 of the
AKT pathway, SKI and SMAD4 of the TGF-f signaling
pathway, MYD88 of the TLR-MYD88 pathway which
regulates host defense, and RELA of the NF-«B signaling
pathway (Additional file 1: Table S4).

The affected signaling pathways are not independent
from each other but known to be coordinated through
cross-talking [77]. The cooperation of STATs and NF-«xB
can activate downstream antiviral genes such as the
IRFs, a family of transcription factors (TFs) (Additional
file 3: Table S5) [67,78]. IRFs and other TFs such as NF-kB
and AP-1 complex (ATF-FOS-JUN) regulate the expres-
sion of interferons. Besides their transcriptional activation
property, STATs also mediate the IFN response through
competition with AP-1 [79]. In BJAB cells, IRF3, ATF1,
ATF4 and ATF5 were down-regulated by miR-K12-11
(Additional file 1: Table S4; Additional file 3: Table S5), but
not likely through direct binding because they do not con-
tain the seed sequence match sites.

In TIVE cells, a consistent decrease of expression
levels was observed for STAT1, STAT2, STAT3, and
their transcriptionally regulated genes (Figure 8). RELA
and ATF7, which contain the seed sequence of miR-
K12-11 and are down regulated are putative direct tar-
gets by miR-K12-11 (Additional file 1: Table S4). JUND
(member of JUN, protects cell from apoptosis) and mul-
tiple IRFs were also down-regulated through indirect ef-
fects. The decreased expression of IRF1, IRF7 and IRF9
(also known as p48) may be due to reduced STAT levels
since none of these IRFs contain seed sequence matches
(Additional file 1: Table S4). While RELA expression is
subject to the negative regulation of IRF7, we show that
it is directly downregulated by miR-K12-11. A similar
functional loop has been reported for miR-155, which by
attenuating NF-kB activity, contributes to stabilization
of EBV latency [80]. IRF9 can also interact with STAT
dimers to form a protein complex to bind promoter
sequences [81]. As important TFs, these reduced IRFs
likely affected a variety of downstream genes. A number
of well characterized interferon stimulated genes (ISGs)
such as ISG15, USP18 and the OAS gene family all exhib-
ited significant down-regulation by miR-K12-11, strongly
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@ Up-regulated
@ Down-regulated

@ Putative direct target
of miR-K12-11

Figure 6 Change of expression in the interacting genes with the five transcription factors. Among the genes that directly interact with
E2F1 (A), CEBPB (B), PAX6 (C), RELA (D) and STAT1 (E), there is an enrichment of down-regulation in accordance with the center node TF genes.
Protein interactions, as well as direct targeting of miR-K12-11 (genes of the circles) may contribute to the coordinated down-regulation.
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Figure 7 Motif enrichment analysis from DEGs of BJAB cells. Motifs identified from the promoter sequences of genes down-regulated by
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KLF4 and MYC. SP1 and KLF4 were down-regulated themselves and may
regulated genes in response to miR-K12-11, motif of FOXAT and FOXA2

supporting inhibition of interferon responses in endo-
thelial cells (Additional file 2: Table S3; Additional file 1:
Table S4).

Liang et al. [82] has identified IKKe as a miR-K12-11
target in lung cancer cells. Though IKKe level was un-
changed in this experiment, its downstream effector IRF
and NF-xB were reduced. It is likely that miR-K12-11
attenuates IFN signaling by down-regulating multiple

possible components, IKKe in lung cancer cells, IFNGR1
in B cells, and STAT1 in endothelial cells (Figure 5;
Additional file 2: Figure S2). Targeting of these key compo-
nents not only eliminated the activation of IFN response,
but also increased key proliferative and survival signals that
are beneficial for KSHV latency establishment.

In addition to miR-K12-11, KSHV expresses homologs
to cellular IRFs, that prevent the association of IRFs with
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Figure 8 Interferon responses were repressed via the interplay of multiple signaling pathways and transcription factors. MiR-K12-11 targeted
cytokine receptors and TFs, both of which affected a variety of interferon stimulated genes (ISGs). Through direct and indirect impact, miR-K12-11 is able
to modulate the host innate immune response and to help KSHV to establish latency.

— ISGs

. Decrease
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their co-activators [83,84]. The inhibition imposed by
miR-K12-11 and VIRF to cellular IRFs may reinforce
each other through a feedforward loop. While we cannot
estimate the relative contribution of miR-K12-11 versus
VIRF signaling, expressing a miRNA comes with the
added advantage of not eliciting humoral host immune
responses like the protein products do. Other KSHV
gene products such as v-cyclin and vIL-6 are also cyto-
kine signaling genes that can block the activity of host
homologs [85]. Taken together and in part due to miR-
K12-11, KSHV is able to manipulate cell cycle and apop-
tosis, to evade immune response, and promote prolifera-
tion, and survival of infected cells.

Conclusions

Analyzing GRNs provides insights into the regulatory
networks of miRNA regulation that cannot be found by
studying single genes. Examining miRNA target genes in
the context of cellular GRNs can separate targets that
drive phenotypic consequences from non-functional ones.
GRNs are highly tissue specific [43,44,86,87], therefore it
is imperative to recognize the tissue specificity and define
the GRNs of the miRNA only in the relevant cell types.
We demonstrated a systems approach to infer the com-
binatorial GRNs utilized by miR-K12-11 in cellular con-
texts that are close to KSHYV infection in vivo. This study
included the first target identification of KSHV miRNAs
in TIVE cells, a frequently used endothelial cell culture
system for studying KSHV infection [88-90].

We found that miR-K12-11 functioned at different
hierarchical levels of the GRNs. Putative direct targets
of miR-K12-11 were underrepresented in the altered
transcriptomes. By targeting a few effector genes, five
times more genes were affected beyond direct sequence
pairing. Different components, but frequently of com-
mon biological pathways, were targeted in BJAB and
TIVE cells. There was a preference to targeting TFs, in-
cluding CEBPp, PAX6, RELA, and STAT1 in TIVE cells,
FOXA, KLF and SP1 in BJAB cells, and E2F1 common to
both. Decrease in the TF levels significantly amplified the
effect of miR-K12-11 to many more genes downstream,
which could potentially result in broad phenotypic effects
such as inducing endothelial cell differentiation in the
context of KSHV infection. Since viral miRNAs co-
evolve with host genes and can be functional orthologs,
we found that like its cellular homolog miR-155 [29,30],
miR-K12-11 is also involved in innate and adaptive im-
mune functions by modulating the interferon response
and carbohydrate metabolism. Previously validated tar-
gets of miR-155 such as CEBPP and SOCS1 were also
identified.

MiR-K12-11 also regulated genes at the middle and
bottom of the well-known signaling cascades, like signal-
ing proteins and caspases, and modulated key biological
processes like cell cycle control and various signaling
pathways, all of which were accomplished by targeting
distinct sets of genes within each cell type. Host re-
sponses to viral infection, such as innate immunity and
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apoptosis, are countered by miR-K12-11 and additional
viral gene products, enabling the establishment of la-
tency. The multilevel regulation allowed one individual
miRNA to profoundly affect the gene expression pro-
gram to adapt to specific needs.

Finally, the approach we have taken here to identifying
miR-K12-11 GRNs can be applied to investigating the
viral and cellular miRNAs in different tissues and sys-
tems. With an anticipated expansion of genome wide
data on short RNA profiles, ChIP, ribonomics, and pro-
teomics in the near future, our strategy could be applied
to reveal conditional regulatory pathways in a highly tis-
sue and cell type specific manner.

Methods

The experimental design allows comparison of miR-155
transduced cells, miR-K12-11 treated cells, and mock
transduced cells. The experiment was conducted in four
subsequent time periods such that all the experimental
conditions were independently repeated.

Vector system

The foamy virus vector plasmid pCEGFPL was con-
structed as described before [62]. The gag, pol and
env genes are replaced by a miRNA gene following a
minimal human cytomegalovirus (CMV) immediate-
early promoter at the transcription start site located
in the 5'-LTR and a GFP gene as the reporter. The
replication ability of the viral vector can be restored
by co-transfection with the packaging plasmid pCI
env3.5. Recombinant virus vectors expressing miR-
155, miR-K12-11 and empty vector without insert as
the control were produced by transient cotransfection
with Mirus transfection reagent following the manu-
facturer’s instructions. The supernatant was filtered,
concentrated by centrifugation. Resulting foamy vi-
ruses were titrated on fresh 293Tand green cells were
evaluated for GFP expression using fluorescence mi-
croscopy. Notably, empty vectors may lack the control
over the non-specific effect of the precursor tran-
scripts but they were able to reduce the off-target ef-
fects of a scramble insert.

Cell culture

BJAB is a Burkitt’s lymphoma human B cell line that is
uninfected and Epstein-Barr virus-negative. BJAB cells
were grown in culture suspension in complete RPMI
medium with 10% fetal bovine serum (FBS). Telomerase-
immortalized human umbilical-vein endothelial (TIVE)
cells [88] have been specially developed for the purpose of
studying the effects of KHSV latent infection in endothelial
cells. TIVE cells are adherent cells grown in Medium 199
supplemented with 20% FBS and 60 pg/mL Endothelial
Cell Growth Factor (ECGF).
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Transduction and validation

TIVE and BJAB cells were retrovirally transduced at two
levels of Multiplicity of Infection (MOI): 1 and 10. 72 hr
post transduction, positive cells were sorted according to
their GFP signal. Cells were aliquoted in 1 million cells
per tube and frozen down in liquid nitrogen. Empty vec-
tors without miRNA expression cassettes were used for
mock transduction to control for the impact of retroviral
integration on the cellular transcriptomes. The aim of
the freezing is to synchronize the growth status of the
cells across samples, and to reduce noise to microarray
profiling. Later, cells were removed from liquid nitrogen
and grown for the same number of passages. RNA was
extracted using the RNA-Bee reagent according to the
manufacturer’s instructions. The quantity and quality of
RNA was confirmed by NanoDrop spectrometer and
agarose gel electrophoresis. The integrity of total RNA
was assessed with Agilent Bioanalyzer. Expression of
miRNAs was examined using TagMan qPCR. Expression
levels of miR-155 and miR-K12-11 were normalized to
RNUG66 levels. The MOI did not result in differences in
miRNA expression levels. Therefore, all samples were
treated as biological replicates.

Microarray analysis

For each HG-133 plus 2.0 chip, 200 ng RNA was
used as the starting material. RNA was synthesized
and labeled using GeneChip® 3" IVT Express Kit and
chips were hybridized according to manufacturer in-
structions (Affymetrix). Raw data (cell intensity files, CEL)
were summarized using Affymetrix Expression Console
software (v1.1). Chips were examined for successful
hybridization by ensuring that the marginal distribu-
tion of all slides was similar. Samples were compared
for the global effect of miRNA treatment at a popula-
tion level using principal component analysis [91].
Probe sets were flagged as ‘absent’ if they were absent
according to Affymetrix probe detection algorithm
(Affymetrix Statistical Algorithms Description Document.
http://media.affymetrix.com/support/technical/whitepa-
pers/sadd_whitepaper.pdf) in more than half of the sam-
ples. The data were deposited in the GEO database with
accession number GSE59412.

The following model was fit Yj; = u + a; + &; , where Yj;
is the difference of the log2 signals for each probe set
between the miRNA transduced and control vector for
the i™ condition and the j™ replicate; y is the difference
for the overall expression mean. g;~N (0, o?). The
signal differences between miRNA transduced samples
and their corresponding control samples were used as
this paired design reflects the experimental design.
The test of the null hypothesis that «; =0 is a direct
test of the miRNA condition. F tests for each of the
miRNA conditions (miR-155 in BJAB, miR-K12-11 in
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BJAB, miR-K12-11 in TIVE) were conducted. An FDR
of 0.05 was used to determine statistical significance
for the probe set [92].

The probe sets were annotated by comparing the gen-
ome positions of human genes and of probe set hits.
A gene was considered differentially expressed (DEG)
when at least one probe set was significant. The change
in expression levels was the difference in the mean of all
probe sets between treatment and control. DEGs were
examined for potential functional groups by enrichment
analysis [93]. Enriched Gene Ontology terms [94] of the
DEGs and known biological pathways were compared
using Fisher’s exact test.

Identification of direct miRNA targets

To increase the specificity of our GRN inference, we
focused on the canonical targets, for which a range of
targeting rules have been defined and most prediction
algorithms are developed. Even so, our analysis and pre-
vious reports [19,95] found the lack of concordance
across the miRNA target prediction of different algo-
rithms. This is the result of using different training set
of target genes when the algorithms were developed. A
comprehensive list of putative targets of miR-155/miR-
K12-11 was created by using the union of target predic-
tion from multiple algorithms: EMBL-EBI mirBase [96],
TargetScan [21], PITA [97], DIANA [98], miRDB [99],
RNA22 [100], mirWalk [101], mirZ [102] and PicTar
[103]. In addition, SylArray [104] was used to identify
enrichment of miRNA seed sequence matches. The pre-
dicted targets were also compared to validated target
genes in the literature.

Identification of transcription factor regulation

A list of human transcriptional factor (TF) genes was
obtained from the JASPAR database [105] and a TF cen-
sus study [106]. DEGs on this list as well on the miRNA
target list were examined in detail for expression
changes and biological implications, as they were the
primary targets of the miRNA. We used MAPPER
[64,107], which uses binding site information from
TRANSFAC and JASPAR databases derived Hidden
Markov Models, to detect putative transcription factor
binding sites (TEBS). Genes containing TFBS within the
upstream 2 kb region of transcription start sites were iden-
tified as genes that might be under TF regulation.

For DEGs with the same direction of expression
change, enriched motifs in their promoter regions were
identified using RSAT oligo analysis [68]. The motifs
were compared to the binding motifs of TFs using the
TOMTOM program of the MEME suite [69]. Motifs
identified from up- and down-regulated set of DEGs
were compared, and unique motifs for each set were
identified. Additional evidence for TF regulation was
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obtained from literature search and the Transcriptional
Regulatory Element Database (TRED) [108]. ChIP-seq
(measuring DNA-protein interaction) and DNase-seq
(measuring DNA accessibility to regulatory proteins)
profiles of the ENCODE project [65] from correspond-
ing cell types were used to constrain the TF regulated
genes to be tissue specific.

Identification of signaling genes

Human signaling pathway data was obtained from the
National Cancer Institute Pathway Interaction Database
(NCI PID) [109], which is a manually curated collection
of biomolecular interactions and key cellular processes
assembled into signaling pathways. NCI PID holds 128
pathways including 47 sub-networks. All subnetworks
with their parent networks were combined to generate
the set of signaling pathways. Pathways curated in the
BioCarta database (http://www.biocarta.com/) were used
for cross-referencing to reduce ambiguity. In addition,
all pathways that have more than one predicted micro-
RNA target gene were kept, leading to a final data set of
79 human signaling pathways containing 1573 unique
human proteins. The database also provides information
on subcellular location terms from the Gene Ontology
Consortium. Process type information was extracted for
each biological process, which can be input, output,
positive or negative regulator. In total, there are 1120 in-
teractions of which 765 are activating, 74 inhibiting and
281 proteins acting as activators as well as inhibitors.

Identification of functional interaction

A binary interactome was assembled enabling an over-
view of all physical interactions that can occur between
human proteins. Gene association data were downloaded
from GeneRIF (Gene References into Function) database
at NCBI [110] and the IntAct database [26] at EBI on
Febuary 28 2011. The interactions in GeneRIF are
sourced from Bind [111,112], BioGrid [27,28], EcoCyc
[113], and HPRD [114]. The IntAct database includes
interactions from literature curation at EBI as well as
user submission. Only protein-protein interaction data
for human was retained. The formatted data contain a
list of focal genes that covers all available values of gene
identifiers, the interacting genes for each focal gene,
the detection method and the source of the interaction.
Secondary interactions are derived from the interac-
tions of the genes identified as interactors of the initial
focal gene.

The human PPI networks were plotted as undirected
graphs, where the nodes are proteins and two nodes are
connected by an undirected edge if the corresponding
proteins physically bind to each other. DEGs were
mapped to the interactomes to identify the interactants
of the indirect targets. The expression levels of genes
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belonging to the map were examined and absent genes
were removed. Up- and down-regulated DEGs were
flagged to display in different colors. A focal gene and its
neighboring genes were defined as a subnetwork. The
percentage of DEGs in the subnetwork for each focal
gene was calculated. If DEGs were present more often
than in the experiment as a whole, the focal gene was
identified as an enriched regulator and its subnetwork
was considered as responsive. GO enrichment was also
examined on the enriched regulators, to determine if
transcriptionally regulated sub-networks shared GO
terms indicative of known or related biological functions.
The subnetworks were viewed in Cytoscape [115,116] for
active biological pathways.
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