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Genome-wide association study combined with
biological context can reveal more disease-
related SNPs altering microRNA target seed sites
Di Wu, Gang Yang, Lifang Zhang, Jiwei Xue, Zhining Wen* and Menglong Li*
Abstract

Background: Emerging studies demonstrate that single nucleotide polymorphisms (SNPs) resided in the microRNA
recognition element seed sites (MRESSs) in 3′UTR of mRNAs are putative biomarkers for human diseases and
cancers. However, exhaustively experimental validation for the causality of MRESS SNPs is impractical. Therefore
bioinformatics have been introduced to predict causal MRESS SNPs. Genome-wide association study (GWAS)
provides a way to detect susceptibility of millions of SNPs simultaneously by taking linkage disequilibrium (LD) into
account, but the multiple-testing corrections implemented to suppress false positive rate always sacrificed the
sensitivity. In our study, we proposed a method to identify candidate causal MRESS SNPs from 12 GWAS datasets
without performing multiple-testing corrections. Alternatively, we used biological context to ensure credibility of
the selected SNPs.

Results: In 11 out of the 12 GWAS datasets, MRESS SNPs were over-represented in SNPs with p-value ≤ 0.05 (odds
ratio (OR) ranged from 1.1 to 2.4). Moreover, host genes of susceptible MRESS SNPs in each of the 11 GWAS dataset
shared biological context with reported causal genes. There were 286 MRESS SNPs identified by our method, while
only 13 SNPs were identified by multiple-testing corrections with a given threshold of 1 × 10−5, which is a common
cutoff used in GWAS. 27 out of the 286 candidate SNPs have been reported to be deleterious while only 2 out of
13 multiple-testing corrected SNPs were documented in PubMed. MicroRNA-mRNA interactions affected by the 286
candidate SNPs were likely to present negatively correlated expression. These SNPs introduced greater alternation
of binding free energy than other MRESS SNPs, especially when grouping by haplotypes (4210 vs. 4105 cal/mol by
mean, 9781 vs. 8521 cal/mol by mean, respectively).

Conclusions: MRESS SNPs are promising disease biomarkers in multiple GWAS datasets. The method of integrating
GWAS p-value and biological context is stable and effective for selecting candidate causal MRESS SNPs, it reduces
the loss of sensitivity compared to multiple-testing corrections. The 286 candidate causal MRESS SNPs provide
researchers a credible source to initialize their design of experimental validations in the future.
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Background
MicroRNAs are small non-coding RNAs ~22 nt which
are involved in key biological processes such as cell pro-
liferation, cell apoptosis and metabolism [1,2]. Aberrant
expression level of microRNAs has been demonstrated
to be associated with common diseases and human can-
cers [3,4]. MicroRNAs achieve their biological function
by binding to mature mRNAs and decreasing the ex-
pression level of target mRNAs in most cases. Mecha-
nisms behind microRNA target recognition have been
well-studied, and the most stable feature is the nucleo-
tides 2–8 in 5′-end of microRNAs, which is so-called
‘seed’ region. Normally, seed region of a microRNA
exactly matches to the complementary sequence in 3′
UTR of its target mRNA, which is usually called ‘micro-
RNA recognition element seed site’ (MRESS) following
Watson-Crick base pairing. SNPs in both microRNA
seed region and 3′UTR MRESS can interfere with target
recognition, either by eliminating/impairing/consolidating
an existing microRNA-mRNA interaction or by creating a
new interaction. However, in view of the observations that
one microRNA can regulate hundreds of mRNAs and one
mRNA may have multiple microRNA target sites in its 3′
UTR [5-7], SNPs residing in the 3′UTR MRESSs should
be the more common genetic factor affecting the binding
between microRNAs and mRNAs. Allele-specific mRNA
expression induced by MRESS SNPs is proved to be asso-
ciated with several diseases and cancers: Nicoloso et al. [8]
observed genotype AG carriers of rs334348 G >A suffered
higher risk of breast cancer (AG vs. AA, OR = 1.69,
p = 0.048), whereas rs334348 located in a MRESS of
miR-628-5p in 3′UTR of the TGFBR1 gene and G-allele
consolidates target-binding. Expression level of TGFBR1
protein degraded after transfecting of miR-628-5p and
differed by genotype of rs334348 (50% and 20% for GG
and AA respectively, p = 0.006). Wang et al. [9] reported
rs12720208 C > T in a MRESS of miR-433 in the 3′UTR
of FGF20 gene as a causal SNP of Parkinson’s disease
(risk allele: T, p = 0.0019). Risk allele T can introduce a
G:U wobble in the binding site and impair target bind-
ing. They transfected luciferase reporter gene combined
with 3′UTR of FGF20 into Neuro2A cells that expressed
miR-433, and observed a ‘dramatically’ reduction of lucif-
erase signal for reporter gene with C-allele while reporter
gene with T-allele did not. Pathological analysis reveals
positive correlation between expression level of FGF20
and α-Synuclein, whereas overexpression of α-Synuclein is
previously reported to cause PD, which implies pathogen-
esis of the T-allele is to abolish the interaction between
FGF20 gene and miR-433 thus lead to up-regulation of
α-Synuclein.
About 60% of protein-coding genes are putative

microRNA targets [10] and millions of MRESSs may res-
ide in 3′UTR of these genes, which makes exhaustively
experimental validation for the causality of MRESS SNPs
impractical. Some researchers have tried using genome-
wide association study (GWAS) to solve this problem,
taking advantage of its ability to detect susceptibility of
hundreds of thousands of SNPs simultaneously. Richardson
et al. [11] identified 87 MRESS SNPs in strong linkage dis-
equilibrium (LD) (r2 > 0.8) with a collection of highly sus-
ceptible SNPs (p ≤ 1 × 10−5) in NHGRI GWAS catalog [12].
Significance of the observation was 1.08 × 10−23. Further
analysis provided microRNA-mRNA co-expression evi-
dence for 39 of these MRESS SNPs and 11 were also sup-
ported by eQTL mapping. Thomas et al. [13] proposed a
method to score the effect of MRESS SNPs basing on a
two-step SVM classifier and took haplotype into account.
They linked scored MRESS SNPs to 2112 top-ranking
SNPs from a GWAS of breast cancer by LD and observed
positive correlation between effect score and LD degree.
Liu et al. [14] developed an online database to annotate
predicted MRESS SNPs. They searched a list of 7705
susceptible SNPs obtained by a GWAS of schizophre-
nia against the MRESS SNPs collected by their data-
base. Three meet stringent significance threshold of
p ≤ 1.0 × 10−5, which indicated true positive association
existed in MRESS.
Despite the achievements have obtained in previous

studies, limitations still remain to be improved. Existing
methods only focus on the subset of MRESS SNPs with
p-value less than a stringent multiple-testing corrections
threshold (usually p ≤ 1 × 10−5) in GWAS datasets in order
to control false positive results. However, many true posi-
tive results will be eliminated in exchange. In addition,
biological context of MRESS SNPs such as the pathogen-
esis of their host genes and corresponding microRNAs
have been neglected. A MRESS SNP with just an ex-
tremely significant p-value or a high effect score does not
necessarily work by interfering with microRNA targeting.
Similarly, a MRESS SNP that disrupts target recognition
may not be very striking in statistics. Moreover, previous
studies covered only a few GWAS datasets (no more than
3 datasets) at a time. The feasibility of selecting causal
MRESS SNPs by GWAS analysis (say p-value or odds
ratio) still needs to be tested under more GWAS data-
sets. Here, we proposed a method which integrated
GWAS p-value, gene ontology (GO) annotation and
pathogenesis of human disease to select causal MRESS
SNPs without performing multiple-testing corrections.
The method was applied to 12 GWAS datasets covering
11 common diseases and cancers of human. Results
demonstrated MRESS SNPs are active disease regula-
tors in most of the GWAS datasets. Literature-based
causality query, co-expression evidence and alternation
of binding free energy also proved that our method is
plausible. Finally, a list of 286 candidate causal MRESS
SNPs with adequate credibility was provided for further



Figure 1 Comparisons of the SNP density between different
mRNA regions grouped by global MAF. SNPs with global
MAF ≥ 0.01 are defined as common SNPs, the rest are rare SNPs.
The figure illustrates that the MRESS region has a significantly
lower common SNP density but almost the same rare SNP density
compared to the UTR regions, which indicates the MRESS region is
under strong purifying selection. (Of note, the exceptionally high
rare SNP density of the CDS region is derived from its unparalleled
sequencing coverage).
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experimental validation. About 90% of them were newly
reported.

Results and discussion
MRESSs in 3′UTR of coding-mRNAs are under purifying
selection
Evolutionary conserved regions are thought to be func-
tional, and the conservation of microRNA targets has been
reported [10]. Previous studies always compared the SNP
density of MRESSs with their flanking region, but horizon-
tal comparison between MRESS and other mRNA region,
such as CDS, has not been implemented. Moreover, they
took all SNPs into account at a time. However, common
SNPs (minor allele frequency (MAF) ≥ 0.01) and rare
SNPs (MAF < 0.01) affected human diseases in different
patterns [15,16]. It’s more rational to calculate the dens-
ity of these two kinds of SNPs separately. We collected
experimentally validated microRNA-mRNA interactions
from miRecord [17] and mirTarbase [18], and predicted
their MRESSs in 3′UTR by TargetScan6.1 [19]. Obtain-
ing MRESSs were thought to be adequately credible.
Then, we mapped genomic coordinates of all the bi-allelic
SNPs in dbSNP135 to that of the predicted MRESSs and
thus calculated SNP density. We detected 312 MRESS
SNPs in total, comprising of 212 SNPs lacking population
frequency, 54 common SNPs and 46 rare SNPs (Of note,
SNPs with <100 observed chromosomes were considered
as lacking frequency data since they cannot accurately
generate MAF value to differentiate common and rare
SNPs). Distinct results emerged for common SNPs and
rare SNPs after comparison of SNP density in different
mRNA regions (Figure 1). On the one hand, the density
of common SNPs in MRESSs was significantly less than
that of the 3′UTRs and the 5′UTRs, even as low as that
of the CDSs, which indicated MRESSs were highly con-
served. On the other hand, the density of rare SNPs in
MRESS was very close to that of the 3′UTRs and the 5′
UTR. The contrast of densities between common and rare
MRESS SNPs demonstrated MRESSs were under strong
purifying selection and MRESS SNPs were deleterious.

MRESS SNPs interfere with microRNA-regulated human
diseases
Association between microRNA and human disease was
established if aberrant microRNA expression presented
in patient group. Since most MRESS SNPs were embed-
ded in 3′UTR of mature mRNAs but not genomic regions
associated with microRNA biogenesis, they should not be
the principal factors behind abnormal microRNA expres-
sions. However, microRNAs regulated human diseases by
interacting with mRNAs ultimately. Therefore association
between microRNA and human disease can be converted
to association between microRNA-mRNA interaction and
human disease, giving MRESS SNPs the potential to affect
microRNA-regulated human diseases. Based on this
assumption, we generated trilateral interactions for micro-
RNA, gene and disease, including microRNA-gene in-
teractions obtained from miRecord and mirTarbase,
microRNA-disease interactions obtained from HMDD
database [20] and gene-disease interactions obtained
from PubMed (Figure 2). For all the established trilat-
eral interactions, we believed that the microRNA-gene
interactions are disease-related since both part of the
interaction were associated with the same disease. Fi-
nally, we constructed association between 2109 validated
microRNA-gene interactions and 352 human diseases. 281
MRESS SNPs have the potential to affect these interac-
tions and thus lead to disease. We searched the 281
MRESS SNPs in PubMed and 11 had been reported to be
deleterious. Reported diseases associated with these 11
MRESS SNPs were highly concordant with those associ-
ated with their microRNA-mRNA interactions (Table 1),
which supported our assumption that MRESS SNPs can
interfere with microRNA-regulated human diseases.



Figure 2 Schematic diagram for the construction of the
microRNA-gene-disease three-way interactions. Ways to build up
relationships between any 2 of the 3 elements are marked above
the double-headed arrows. If a microRNA and a gene share the same
related disease, we believe that their interaction is also associated with
the disease, and any factor such as MRESS SNP that can interfere with
this interaction is highly susceptible.

Table 1 Comparison of the reported diseases between 11 val

SNP ID Interaction Reported disease of SNP

rs1042538 IQGAP1::hsa-miR-124 Breast cancer*

rs1054190 NR1I2::hsa-miR-148a Primary sclerosing cholangitis**

rs1056628 MMP9::hsa-miR-491-5p Atherosclerotic cerebral infarction

rs1057233 SPI1::hsa-miR-569 Systemic lupus erythematosus*

rs1063320 HLA-G:: hsa-miR-152 Multiple sclerosis**/systemic lupus
pre-eclampsia*/HCV infection

rs11574744 HNF4A:: hsa-miR-34a/34c-5p Diabetes**/renal cell carcinoma*

rs12720208 FGF20:: hsa-miR-433 Parkinson’s disease*

rs1621 MET:: hsa-miR-199a-3p Chronic rhinosinusitis

rs16917496 SETD8:: hsa-miR-502-5p Breast cancer/small-cell lung canc
ovarian cancer/*hepatocellular car

rs28521337 NTRK3:: hsa-miR-485-3p Anxiety disorders

rs5186 AGTR1:: hsa-miR-155 Renal disease*/hypertension*/infla
eclampsia*/type 2 diabetes*/mou
diastolic heart failure/*hypertroph
cardiomyopathy**/aldosterone-pr
adenoma**

*Diseases that exactly matched between the two blanks.
**Diseases that matched at a broad level (e.g. diabetes vs. metabolic diseases).
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GWAS analysis reveals enrichment of MRESS SNPs in
susceptible variants
Experimentally validated microRNA-mRNA interactions
account for only a small part of the real relationships. So
we performed a genome-wide target prediction to iden-
tify more possible MRESS SNPs in 3′UTR of protein-
coding mRNAs. We predicted MRESS for both wild type
and mutant type 3′UTR sequences and divided all of
them into 7mer (1–7), 7mer (2–8), 8mer-1a and 8mer
sites by the patterns of seed match. Only MRESSs con-
served between human and mice were retained to limit
false positive interactions. Finally, 150,301 3′UTR SNPs
embedded in predicted MRESSs were classified accord-
ing to their contributions to the interactions (Table 2).
To evaluate the effects of these predicted MRESS

SNPs on human diseases, we downloaded the analytical
results of 12 GWAS datasets of European-ancestry pop-
ulations covering 11 human diseases and cancers. We
utilized the ‘proxy search’ tool provided by SNAP data-
base [21] to select GWAS-SNPs having high LD with
the predicted MRESS SNPs in CEU population, then
assigned the p-values of GWAS-SNPs to their corre-
sponding MRESS SNPs as measurement of susceptibility.
Finally, a total number of 12,892 predicted MRESS SNPs
were mapped to at least one GWAS-SNP in any of the
12 datasets and presented in subsequent analysis. Ac-
cording to the hypothesis of ‘common disease, common
variant’, common diseases are polygenic diseases manip-
ulated by multiple common variants embedded in cod-
ing or regulatory regions. Therefore the effect size of a
idated MRESS SNPs and their corresponding interactions

Reported disease of interaction

Breast neoplasms*/prostatic neoplasms/colorectal
neoplasms…

Hepatocellular carcinoma**/leukemia…

* Cerebral infarction*/multiple sclerosis…

Systemic lupus erythematosus*

erythematosus/ Atherosclerosis**/pre-eclampsia*/asthma…

Metabolic diseases**/renal cell carcinoma*/coronary
artery disease/alcoholic fatty liver…

Parkinson’s disease*/ovarian neoplasms…

Atrophic muscular disorders/Crohn’s disease…

er/*epithelial
cinoma

Ovarian neoplasms*/hepatocellular carcinoma*

Asthma/hepatocellular carcinoma/leukemia…

mmation*/pre-
ntain sickness/
ic
oducing

Renal insufficiency**/kidney diseases*/hypertension*/
inflammation*/pre-eclampsia*/diabetes mellitus*/
diabetes complications/heart failure*/
adenocarcinoma**…



Table 2 Classification of the 150,301 predicted MRESS
SNPs

Contribution Number of MRESS SNPs

7mer (1–7) 7mer (2–8) 8mer-1a 8mer

Create 64,672 51,127 18,147 33,111

Loss 64,490 51,716 17,712 33,275
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single causative variant should be modest [22]. In addition,
microRNA regulations are spatio-temporal specific, which
means only a part of the microRNA-mRNA interactions
are active in the diseased tissue. Taking these two points
into consideration, we assumed that p-values of the
MRESS SNPs are enriched in the susceptible part of
each of the GWAS datasets if true association existed,
but majority of the functional MRESS SNPs would not
meet stringent multiple-correction threshold because of
their modest effective size. To validate our assumption,
we drew Quantile-Quantile plot for each of the 12
GWAS datasets (Figure 3). In most of the 12 datasets,
Figure 3 Quantile-Quantile plot for MRESS SNPs in all the 12 GWAS d
observe upward deviation from the red line in most of the subplot, which
factors involved in multiple diseases and cancers.
obviously upward deviation from theoretical distribu-
tion at the right side was observed, and only 13 MRESS
SNPs had –log10(p) larger than 5, which is a general
threshold of significance in GWAS, demonstrating the
reasonability of our assumption.

GWAS p-value combined with biological context identifies
hundreds of candidate causal MRESS SNPs
We have discovered a hint for true association signals
between MRESS SNPs and human diseases from the
analysis above (Figure 3), and the next step is to distin-
guish them from background signals and filter out false
positive. Multiple-testing correction is not a good option
because it impairs sensitivity greatly. MRESS SNPs have
the potential to regulate microRNA-induced mRNA re-
pression. If they are embedded in functional genes which
act on interested disease, the positive signals should be
more credible, and a moderate p-value threshold should
meet the needs. According to this guideline (Figure 4),
we first set up a moderate significance threshold of
atasets. The units for both x-axis and y-axis are –log10(p). We can
is the clue for true positive signals, and imply MRESS SNPs as common



Figure 4 Workflow of our method for selecting candidate causal MRESS SNPs from multiple GWAS datasets. We integrated functional
annotations from GO database to filter out false positive MRESS SNPs rather than to perform multiple-correction. The obtained causal SNPs are
greatly increased. We further validated our results by three different approaches. The results proved our method stable and effective.
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p ≤ 0.01 and selected out 2,116 MRESS SNPs. Next, we
conducted GO-term enrichment for the 1,218 host
genes of these MRESS SNPs in each of the GWAS
datasets and got 12 lists of enriched biological pro-
cesses. Meanwhile, we collected disease-related genes
for each of the GWAS datasets from CTD [23], KEGG
[24] and Gene Card [25] and also got 12 lists of
enriched biological processes. At last, we did one-by-
one comparison between the two sets of lists, found
their degree of overlap remarkably higher than ex-
pected. For example, in dataset phs000122.pha002848
which is related to systemic lupus erythematous (SLE),
102 genes contain at least one significant MRESS SNPs
and are enriched in 70 biological processes, e.g. posi-
tive regulation of tissue remodeling (p = 2.8 × 10−5),
inflammatory response (p = 0.0050), B-cell activation
(p = 0.018) and T-cell activation (p = 0.040). In these
biological processes, 21 overlap with the enriched bio-
logical processes of genes that have been reported to
be associated with SLE. Significance of this observation
is 3.3 × 10−20, demonstrating the existence of the true
association signals. We got similar results from 10
other GWAS datasets except for a GWAS dataset stud-
ied age-related macular degeneration (Table 3).
In total, we found 184 host-genes of significant

MRESS SNPs enriched in overlapped biological pro-
cesses with disease-related genes. The 286 MRESS SNPs
(see Additional file 1: Table S1) embedded in these
genes with p-value ≤ 0.01 were selected as candidate
causal MRESS SNPs.



Table 3 Statistics of the 12 GWAS datasets

Dataset Disease #Enriched
GO-terms

#Disease-related
GO-terms

Fisher-p #Candidate SNPs #PubMed SNPs Fisher-p

phs000021.pha002857 Schizophrenia 48 9 0.0003 49 3 0.05

phs000089.pha002868 Parkinson’s disease 49 7 0.001 22 2 0.05

phs000100.pha002839 Type 2 diabetes 29 8 8 × 10−5 27 3 0.009

phs000122.pha002848 Systemic lupus erythematosus 70 21 4 × 10−20 19 7 4 × 10−7

phs000124.pha002845 Neuroblastoma 92 5 0.003 28 4 0.001

phs000147.pha002853 Breast cancer 26 12 6 × 10−6 29 2 0.08

phs000171.pha002861 Multiple sclerosis 56 3 0.02 17 2 0.03

phs000182.pha002890 Age-related macular degeneration 42 0 1 0 0 1

phs000206.pha002889 Pancreatic cancer 27 13 3 × 10−9 51 3 0.05

phs000207.pha002878 Prostate cancer 46 26 7 × 10−14 36 2 0.1

phs000216.pha002867 Systemic lupus erythematosus 23 3 0.009 7 3 2 × 10−4

phs000423.pha003542 Coronary artery disease 19 4 2 × 10−4 17 0

‘#Enriched GO-terms’ denotes the number of enriched GO-terms for the host genes of MRESS SNPs with p-value ≤ 0.01 in each dataset. ‘#Disease-related
GO-terms’ denotes the number of enriched GO-terms shared between the host genes and the disease-related genes collected from CTD, KEGG and Gene Card
databases in each dataset. The probability of obtaining such number of disease-related GO-terms is calculated by fisher exact test. ‘#Candidate SNPs’ denotes the
number of MRESS SNPs passing our selection standards in each dataset, and ‘PubMed SNPs’ denotes how many of them are reported to be deleterious by
PubMed query, the probability of the observation is also calculated by fisher exact test. We can figure out from the table that most of the p-values are below the
significant level of 0.05, which indicates MRESS SNPs as causal variants in most of the GWAS datasets.
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Candidate MRESS SNPs are over-represented in known
deleterious 3′UTR SNPs
To access the effectiveness of our method for selecting
causal MRESS SNPs, we retrieved PubMed for all the
12,892 MRESS SNPs with proxy in GWAS datasets and
defined 368 of them with at least one query result as
positive samples (In view of the foreseeable importance
of the MRESS region, we removed SNPs that have been
reported to be in MRESS to suppress the priori bias).
Positive samples distributed un-evenly in different seed
types. MRESS SNPs embedded in 7mer (2–8) sites possess
the greatest precision (19/165 = 0.12), followed by 7mer
(1–7) sites (16/201 = 0.080), 8mer sites (8/109 = 0.073) and
8mer-1a sites (3/62 = 0.048) respectively. 8mer and 8mer-
1a sites possess larger binding energy than 7mer sites and
are tolerable to mismatch. It may explain their relatively
low precision. In total, 27 candidate MRESS SNPs (Table 4)
are positive, the sensitivity and precision of our method
are 0.073 (27/368) and 0.094 (27/286) respectively.
In contrast, only 2 in all the 13 MRESS SNPs with
p-value ≤ 1 × 10−5 are positive. The sensitivity of multiple-
testing correction is much lower than our method (0.0054
vs. 0.073) whereas its precision doesn’t present significant
advantage (0.15 vs. 0.094). The probability of getting 27
unbiased, PubMed-documented SNPs in 286 randomly
selected MRESS SNPs is 5.0 × 10−8, which indicates can-
didate causal MRESS SNPs are in truly functional re-
gions. We also calculated this probability for each of the
GWAS datasets and 8 of them showed statistical signifi-
cance (p ≤ 0.05, Table 3). Taking the SLE dataset
phs000122.pha002848 as an example again, 7 of 19 can-
didate causal MRESS SNPs are known deleterious
SNPs passing correction, significance of the observa-
tion is 4 × 10−7. The seven SNPs are rs2741918, rs450021,
rs1057972, rs10954213, rs13317, rs1049623 and rs1042032,
respectively. To speculate their pathogenesis, we performed
detailed literature analysis for each of the seven SNPs.
Rs2741918 C > T and rs450021 C > A are SNPs with

high LD, and both are located in the MRESSs of MEFV
gene. Mutant alleles T and A create the interactions
between MEFV mRNA and miR-1226/4252/4733-3p as
well as MEFV mRNA miR-4435/4645-5p/4673. Ustek
et al. [26] reported higher frequency of heterozygotes
for the two SNPs in the familial Mediterranean fever
(FMF) patients after removing interference of CDS SNPs
(75% vs. 48.5%, p = 0.006, OR = 3.2), while Notarnicola
et al. [27] demonstrated MEFV gene was down-regulated
in FMF patients. The observations are concordant with
the speculation that mutant alleles of the two SNPs create
microRNA binding sites and lead to repression of the
MEFV gene. Furthermore, Shinar et al. [28] found muta-
tions in MEFV gene affect phenotypes of SLE patients,
such as SLE onset (earlier), renal failure (decrease) and
febrile episodes (more common). Rs1057972 A > T is
located in MRESS of IL15 gene. Mutant allele T inter-
rupts binding-site of miR-1207-5p while creating new
binding-sites for miR-940/4514/4692. Pistilli et al. [29]
discovered that genotype AT and TT of rs1057972 are
associated with pre- to post-training absolute differ-
ence in 1RM strength (elevate, p = 0.02), fasting glucose
(decrease, p = 0.03) and BMI (decrease, p = 0.008), which
means mutant allele T leads to the development of muscle
strength. Combining with the report that IL15 can inhibit
protein degradation [30] and counter muscle loss, which is



Table 4 Information about the 23 candidate causal MRESS SNPs have been reported to be deleterious

SNP ID Allele MAF Type Gene microRNA Disease p-value #Reference

rs1053005 A > G 0.30 Create STAT3 hsa-miR-4793-5p Multiple sclerosis 0.007 2

rs1053023 A > G 0.29 Loss STAT3 hsa-miR-4506/4640-5p Multiple sclerosis 0.007 4

rs2116830 C > A 0.09 Create/Loss KCNMA1 hsa-miR-2052/659 Multiple sclerosis 0.005 1

rs2057482 T > C 0.23 Create HIF1A hsa-miR-196a/196b/3174/3927/921 Neuroblastoma 0.002 4

rs5177 C > G 0.32 Loss LRP8 hsa-miR-526b Neuroblastoma 0.003 2

rs2272383 A > G 0.44 Create TUB hsa-miR-450a Breast cancer 0.001 3

rs1349265 T > C 0.50 Create THRB hsa-miR-1468 Pancreatic cancer 0.003 1

rs788173 G > A 0.40 Create DLX1 hsa-miR-4330 Pancreatic cancer 0.002 2

rs3751934 G > T 0.47 Create RPTOR hsa-miR-1231/4667-5p/4700-5p/637 Parkinson’s disease 0.002 1

rs7309 G > A 0.43 Loss/Create TANK hsa-miR-3941/466/4789-3p Parkinson’s disease 0.0005 1

rs61865882 T > C 0.08 Create EGR2 hsa-miR-499-3p/499a-3p Prostate cancer 0.01 1

rs3160 T > C 0.38 Loss MLST8 hsa-miR-329/362-3p/603 Prostate cancer 0.01 1

rs1064395 G > A 0.26 Create NCAN hsa-miR-1205/3665/4418/509-3-5p/509-5p/657 Schizophrenia/
neuroblastoma

0.005 3

rs2296135 A > C 0.44 Create/Loss IL15RA hsa-miR-2276/4766-5p Schizophrenia 0.002 2

rs5177 G > C 0.32 Loss LRP8 hsa-miR-526b Schizophrenia 2 × 10−5 2

rs1042032 A > G 0.43 Loss EPHX2 hsa-miR-183 Systemic lupus
erythematosus

0.003 2

rs1049623 A > G 0.46 Create DDR1 hsa-miR-4499/4513 Systemic lupus
erythematosus

8 × 10−5 1

rs1057972 A > T 0.48 Create/Loss IL15 hsa-miR-4514/4692/940/1207-5p Systemic lupus
erythematosus

0.004 2

rs10954213 G > A 0.47 Create/Loss IRF5 hsa-miR-543/4477a/4729/181a/664 Systemic lupus
erythematosus

0.0007 21

rs11466285 T > C 0.08 Create TGFA hsa-miR-3190 Systemic lupus
erythematosus

0.009 2

rs1217412 G > A 0.32 Create/Loss PTPN22 hsa-miR-380/4495/3668 Systemic lupus
erythematosus

0.005 1

rs13317 T > C 0.28 Loss FGFR1 hsa-miR-3128/4470 Systemic lupus
erythematosus

0.0008 3

rs2741918 C > T 0.38 Create MEFV hsa-miR-1226/4252/4733-3p Systemic lupus
erythematosus

0.005 1

rs450021 C > A 0.37 Create MEFV hsa-miR-4435/4645-5p/4673/4755-3p Systemic lupus
erythematosus

0.005 1

rs12613 G > A 0.08 Create CBS hsa-miR-3664-5p/3944-5p Type 2 diabetes 0.0002 2

rs2336219 G > A 0.25 Create ERCC1 hsa-miR-4698/545/548p Type 2 diabetes 0.001 1

rs735482 A > C 0.34 Create ERCC1 hsa-miR-4475 Type 2 diabetes 0.001 5

‘A > G’ denote allele A as the reference allele and G as the variant allele. The ‘Type’ column denotes the effect of the variant allele to the given microRNA-gene
interactions, a type of ‘Create/Lose’ means the variant allele of the SNP can create some of the given interactions while eliminate others.
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a clinical feature of SLE patient [31]. Allele T may achieve
its function through abolishing the repression of IL15
mRNA by miR-1207-5p, thus resulting in up-regulation
of IL15 protein. Rs10954213 G > A is located in MRESS
of IRF5 gene. Mutant allele A impairs interactions be-
tween IRF5 mRNA and miR-181a/664 while enhancing
binding-site of IRF5 and miR-543/4477a/4729. Liu et al.
[32] and Hu et al. [33] validated the association between
rs10954213 and SLE in multi-ethnic population using
meta-analysis. Studies of Alonso-Perez et al. [34] and
Lofgren et al. [35] demonstrated mutant allele A in-
duces up-regulation of IRF5 mRNA and IRF5 protein in
SLE patients. Another observation reported by Lashine
et al. [36] is the significant down-regulation of miR-
181a in SLE patients. All these evidences strongly imply
that rs10954213 regulates SLE by altering the binding
of IRF5 mRNA and miR-181a. Rs13317 T > C is lo-
cated in MRESS of FGFR1 gene. Mutant allele C elimi-
nates interactions between FGFR1 and miR-3123/
4470. Guimaraes et al. [37] reported the association



Figure 5 Enrichment pattern of Pearson correlation coefficients
of the co-expressed microRNA-mRNA pairs containing
candidate causal MRESS SNPs. We divided pairs with candidate
causal MRESS SNPs into ten aliquots according to the correlation
coefficients and obtained ten intervals. Then, we counted the
number of MRESS SNPs, not necessarily candidate SNPs, falling into
each interval. At last, we divided the number of candidate causal
MRESS SNPs in each interval by that of the total set and took
logarithm. A value greater than zero means microRNA-mRNA pairs
containing candidate causal MRESS SNPs enrich in this part, and a
value less than zero stands for anti-enrichment. This figure displays
significant enrichment at parts of weakly negative correlation and
anti-enrichment at parts of positive correlation, which demonstrates
pairs containing candidate causal MRESS SNPs are more likely to
be interactive.
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between rs13317 and fracture non-union while study
of Jun et al. [38] showed higher frequency of allele C
in ossification of the posterior longitudinal ligament
patients (p = 0.048, OR = 1.35). It was also reported
that up-regulation of FGFR1 gene leads to joint fusion
in mouse [39]. Taking all the three reports into ac-
count, the microRNA dysfunction induced by mutant
allele C should be the mechanism behind injury of
bone and ligament, which is also a manifestation of
SLE patient. Rs1049623 A > G is located in MRESS of
DDR1 gene. Mutant allele G creates interactions be-
tween DDR1 mRNA and miR-4499/4513. Roig et al.
[40] revealed the association between rs1049623 and
schizophrenia. Mutant allele G corresponds to the down-
regulation of DDR1 gene in peripheral blood lymphocytes
of schizophrenia patients, which is consistent with the role
of G allele that introduces microRNA repression. Note
that some SLE patients have been reported to suffer from
schizophreniform psychosis [41], and polymorphisms at
the locus of rs1049623 may be a plausible reason.
Rs1042032 A >G is located in EPHX2 gene. Mutant allele
G causes loss of the interaction between EPHX2 mRNA
and miR-183. Lee et al. [42] observed higher risk of renal
dysfunction after kidney-transplantation in individuals car-
rying genotype AA of rs1042032 (p = 0.04). Hama et al.
[43] reported an obvious down-regulation of EPHX2
gene in mouse liver isografts compared with allografts
(FC = 3.29), which implies down-regulation of EPHX2
is associated with transplant rejection. As genotype AA
maximizes the repression of EPHX2 induced by miR-
183. Its pathogenic mechanism may have a rational
explanation.
In summary, experimental evidences of all the seven

candidate causal MRESS SNPs support the inference
that they are functional SNPs with the abilities to medi-
ate microRNA-induced mRNA repression, and it’s worth
noting that some of them have not been reported to be
associated with SLE directly, but are related to other dis-
eases that share the same or similar symptoms with SLE,
indicating MRESS SNPs as common pathogenic factor
beyond specific disease.

Candidate MRESS SNPs tend to be embedded in
negatively co-expressed microRNA-mRNA interactions
and change binding free energy of the MRESSs greatly
Co-expression of microRNA and mRNA in the same
tissue is the prerequisite of their interaction. If further
evidence demonstrates their co-expression is negatively
correlated, regulatory relationship can be established. We
retrieved mirCoX database and obtained co-expression
evidences for 495 microRNA-mRNA interactions af-
fected by the candidate causal MRESS SNPs. Then, we
compared their Pearson correlation coefficient to that of
the other interactions predicted by TargetScan. Significant
enrichment at the part of weakly negative correlation and
anti-enrichment at the part of positive correlation were
observed for these interactions (Figure 5). Correlation co-
efficients were not enriched in the part of highly negative
correlation probably because most of the 495 interactions
were created/enhanced by minor allele of the candidate
causal MRESS SNPs. For the majority of the samples in-
cluded by mirCoX database, such interactions may only
maintain at a relatively low level. Another reason would
be the mix of expression from all tissues that dilutes the
truly negative correlations in real diseased tissues.
MRESS SNPs will change the affinity of MRESSs and

thus lead to alternation of binding free energy between
wild type and mutant type MRESSs. Candidate SNPs
should trigger greater energy alternation to ensure effect-
iveness. To test this hypothesis, we calculated alternation
of binding free energy (ΔΔG) for each MRESS SNP using
a nearest-neighbor algorithm [44]. Then we compared
ΔΔG of candidate MRESS SNPs to that of the total set
(Figure 6A). A slightly decline of the peak near zero was
observed for candidate causal MRESS SNPs, which was



Figure 6 Distribution of the alternations of binding free energy (ΔΔG) are different between candidate causal MRESS SNPs and the
total set of MRESS SNPs in 12 GWAS datasets. Red dotted line denotes the candidate causal MRESS SNPs while black solid line denotes the
total set of MRESS SNPs in 12 GWAS datasets. ΔΔG in Figure 6A is calculated by single SNP while that in Figure 6B is calculated by haplotype. We
can observe a decline of the peak near zero and rightward shift for candidate MRESS SNPs, which indicates the greater alternation of binding free
energy are created.
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concordant with a larger average |ΔΔG| of 4210 cal/mol
for candidate causal MRESS SNPs versus 4105 cal/mol for
all MRESS SNPs mapped to GWAS datasets. This result
proved our hypothesis.
A single mRNA may have multiple MRESSs in its 3′

UTR. If the SNPs embedded in these MRESSs are in
high LD with each other, their effects can be accumulated
as haplotype scores. Haplotypes with greater accumulated
|ΔΔG| should have greater impact on the expression level
of mRNAs. We identified 3970 haplotypes comprised of at
least two MRESS SNPs in 3′UTR of 1336 protein-coding
genes, using LD data of 1000 genome pilot1. The average
|ΔΔG| is 8521 cal/mol. If we only concern about hap-
lotypes containing candidate MRESS SNPs, the aver-
age |ΔΔG| would increase to a much greater value of
9781 cal/mol. We also compared the distribution of
ΔΔG between haplotypes containing candidate MRESS
SNPs and the total set, and got more striking results
(Figure 6B).

Conclusion
MicroRNAs are important post-transcriptional regula-
tors. Variants in their recognition element seed sites can
result in dysfunction of microRNA-induced mRNA re-
pression and thus lead to diseases. In this study, we proved
MRESS SNPs to be functional for both credible MRESSs
and predicted MRESSs. For credible MRESSs, we first
demonstrated they were under strong purifying selection,
and then proved that MRESS SNP acted through interfer-
ing with microRNA-mRNA interaction. For predicted
MRESSs, we did in-depth analysis for p-value of MRESS
SNPs in 12 GWAS datasets and found indication of truly
disease-associated signals in most of datasets. We also
proposed a method to select candidate causal MRESS
SNPs based on both their p-values in GWAS datasets and
the relevance between their host genes and the interested
disease. Our method effectively reduced the loss of true
positive signals caused by multiple-testing corrections,
and had the potential to speculate pathogenesis of in-
terested MRESS SNP because of the introduction of
biological context. Candidate causal MRESS SNPs ob-
tained by our method were over-represented in the
known deleterious 3′UTR SNPs. They tended to be
embedded in negatively co-expressed microRNA-mRNA
interactions and generated greater binding free energy
alternation. All of these evidences proved our method, and
the perception of selecting causal variant using GWAS in-
formation is stable and effective. At last, the 286 candidate
causal MRESS SNPs provided future researchers with a
good source to initialize their studies.

Methods
Retrieval and processing of microRNA & mRNA data
We downloaded microRNA data from miRBase version
17 [45], and then abstracted all the 1539 human micro-
RNAs with prefix ‘hsa-’ but not ended up with an asterisk.
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We set up two sets of seed sequence for microRNAs,
using base 1–7 and 2–8 respectively from 5′-end of their
mature sequences. For each set, microRNAs with the
same seed were grouped together in order to save com-
puting time. Sequences of mRNAs and their annotation
data were retrieved from NCBI RefSeq and NCBI Genome
databases respectively. The ‘human.rna.fna.gz’ file from
RefSeq database contains well-curated and unique se-
quences of human mature mRNAs, while the ‘seq_gene.
md’ file from Genome database provides genome coordi-
nates and region annotations of the mRNAs collected in
the ‘human.rna.fna.gz’ file. We integrated data from these
two files using a Perl script and thus obtained sequences
and genome coordinates of 29,962 3′UTR, 24,785 5′UTR
and 31,375 CDS. As protein-coding genes are primary tar-
gets for microRNAs, we only retained mRNAs with the
prefix ‘NM_’. The sequences and genome coordinates are
both GRch37.p10 version.

Retrieval and processing of SNP information
We retrieved SNP data from the file ‘snp135.txt.gz’ pro-
vided by the UCSC genome browser [46], which deposited
annotation data of all the SNPs collected by dbSNP ver-
sion 135, including genome coordinate, alleles and allele
frequencies. For the sake of convenience, we only retained
bi-allelic SNPs located in autosomes and sex chromosome
X. Mapping between SNPs and mRNAs/MRESSs was
conducted by R package ‘BSgenome’ using genome co-
ordinates. A total of 1,149,607 SNPs are mapped to the
mature mRNAs regions, of which 150,301 are potential
MRESS SNPs. We calculated SNP density by dividing
the total number of SNPs in a certain region by the total
length of such region in unit of kilo bases.

Predicting microRNA-mRNA interactions using
TargetScan6.1
As most validated MRESSs are located in the 3′UTR of
mature mRNAs, we only predicted MRESSs for the
29,962 3′UTR sequences. To evaluate the effects of
SNPs on microRNA-mRNA interactions, we generated
two groups of 3′UTR sequences: wild type sequences
and mutant type sequences. Wild type sequences are
just reference sequences retrieved from NCBI. Sequences
with length less than 50 were discarded because of their
low probabilities of being targeted by microRNA. To gen-
erate mutant type sequences, we first got the flanking re-
gion of 50 base long on both sides of each 3′UTR SNP,
and then replaced base at the position of SNP with the
mutant allele. For each group of the 3′UTR sequences, we
predicted MRESS for both seed set 1–7 and seed set 2–8.
MRESSs of seed set 1–7 were subdivided into 7mer (1–7)
and 8mer sites according to their match length while
MRESSs of seed set 2–8 were subdivided into 7mer (2–8),
8mer-1a and 8mer sites. A 8mer-1a site was a special case
of the 7mer (2–8) site. It had exact match to position 2–8
of the mature microRNA and followed by an ‘A’. SNPs em-
bedded in MRESSs that only present in wild type were
classified as ‘loss’ while SNPs mapped to the mutant-only
MRESSs were classified as ‘create’. We conducted global
alignment for mRNAs shared by both human and mouse
using the ‘pairwiseAlignment’ function provided by the
‘BSgenome’ package of R. Penalty for gap-opening is set
to −10 and gap-extension is set to −4. Only MRESSs
which entirely matched to the aligned regions were con-
sidered as conserved.

Retrieval of GWAS datasets and p-value assignment of
MRESS SNPs
We retrieved publicly available GWAS data from the
NCBI dbGaP database by the following criteria: a) com-
ing from a case–control study; b) with more than 1000
samples for both case group and control group in repli-
cation stage; c) samples are mainly European ancestry;
d) with analysis that contains p-value for SNPs; e) study-
ing disease or cancer that is common to human.
We utilized the ‘proxy search’ tool provided by the

SNAP database to obtain SNPs having high LD with the
predicted MRESS SNPs. We chose dataset 1000 genome
pilot1 and set D’ threshold equal to 1. Other parameters
were set with the default options. We matched MRESS
SNPs and their proxies to each GWAS dataset, and
inherited their p-values in GWAS. If the p-values were
different between a MRESS SNP and its proxies, the
minimum one was retained.

Retrieval of disease-related genes
For each GWAS dataset we generated a list of disease-
related genes integrating data from the database CTD,
Gene Card and KEGG. For CTD, we searched the studied
disease of each GWAS dataset in the ‘Diseases’ entry, and
then clicked the ‘Genes’ tag and recorded all the genes
with direct association evidence (labeled as ‘M’ or ‘T’). For
Gene Card, we collected disease-associated genes in the
‘Genes Associated with Diseases’ table. For KEGG, we
searched the disease names in the ‘KEGG DISEASE’ entry
and marked the ‘gene’ checkbox at the right of the input
box to obtain genes that participate in the disease
pathway.

Retrieval of microRNA-mRNA co-expression evidence
MirCoX database deposited microRNA-mRNA co-
expression data generated by analyzing results of public
available RNA-seq experiments. Each microRNA-mRNA
co-expression pair had a calculated correlation coefficient.
Negative correlation coefficient may imply real interaction.
We downloaded the whole database in MySQL format,
and then abstracted correlation data for all the predicted
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microRNA-mRNA interactions, including the interactions
disrupted by candidate causal MRESS SNPs.

Calculation of binding free energy
We calculated binding free energy by MELTING 5.1,
which is designed to calculate the enthalpy, entropy and
melting-temperature of the helix-coil transitions for a
nucleic acid duplex. Binding free energy can be calcu-
lated according to the formula ΔG= ΔH–310.15 × ΔS.
MELTING employs a nearest-neighbor algorithm, which
can receive an accurate result when the duplex is rela-
tively short. But it lacks the ability to calculate energy
for duplex with terminal-mismatch. To overcome this
disadvantage, we added three repetitively complementary
base-pairs to both ends of each microRNA-mRNA duplex.
As we only calculated the energy alternation, additional
base-pairs will not affect the final result. Parameters we
used for calculating are –E Na = 1, −P 1e-4, and -H
rnarna.

Additional file

Additional file 1: List of the 286 candidate causal MRESS SNPs. List
of the 286 candidate causal MRESS SNPs selected out using our method.
Other information such as p-values in GWAS dataset is also provided.
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