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Abstract

Background: Hybridization coupled with whole-genome duplication (allopolyploidy) leads to a variety of genetic
and epigenetic modifications in the resultant merged genomes. In particular, gene loss and gene silencing are
commonly observed post-polyploidization. Here, we investigated DNA methylation as a potential mechanism for
gene silencing in Tragopogon miscellus (Asteraceae), a recent and recurrently formed allopolyploid. This species,
which also exhibits extensive gene loss, was formed from the diploids T. dubius and T. pratensis.

Results: Comparative bisulfite sequencing revealed CG methylation of parental homeologs for three loci (S2, S18
and TDF-44) that were previously identified as silenced in T. miscellus individuals relative to the diploid progenitors.
One other locus (S3) examined did not show methylation, indicating that other transcriptional and post-transcriptional
mechanisms are likely responsible for silencing that homeologous locus.

Conclusions: These results indicate that Tragopogon miscellus allopolyploids employ diverse mechanisms, including
DNA methylation, to respond to the potential shock of genome merger and doubling.
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Background

Whole-genome duplication (polyploidy) has played a
major role in eukaryotic evolution [1-6]. In particular,
flowering plants have experienced repeated episodes of
polyploidy since they shared a common ancestor with
the gymnosperms some 300 million years ago [7,8]. Un-
derstanding the genomic consequences of polyploidiza-
tion, particularly when accompanied by hybridization
(allopolyploidy), allows insight into the potential for spe-
ciation and adaptation of these novel entities [9,10]. In
particular, the merger and doubling of two divergent ge-
nomes can induce different genetic and epigenetic
changes in the resulting polyploid [11-16]. Genetic modifi-
cations can include gene loss, genome down-sizing, vari-
able mutation rates of the duplicated genes (homeologs),
chromosomal rearrangements and regulatory incompati-
bilities resulting from post-transcriptional modifications
in the merged genomes [16-24]. Epigenetic modifications
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involve heritable changes in gene expression without
changes in the nucleotide sequence [25-27] and can in-
clude histone modification, DNA methylation, chromatin
remodeling, or microRNA or prion activity [28-30]. DNA
methylation, the addition of a methyl group at position 5
of the pyrimidine ring of cytosine, is a common mechan-
ism associated with gene silencing in polyploids [31-33].
In general, cytosine methylation is important for main-
taining genomic stability and is involved in genomic im-
printing, transposon silencing and epigenetic regulation of
gene transcription [30,34-36].

Here, we investigated gene silencing via methylation in
the allotetraploid plant Tragopogon miscellus. This spe-
cies formed repeatedly during the early 1900s in the
western United States, following the introduction of the
diploid progenitors, T. dubius and T. pratensis, from
Europe [37-40]. Previous studies identified extensive
homeolog loss [21,41-43] and chromosomal variation
[17] in naturally occurring T. miscellus populations. Two
studies [42,43] also identified homeologous gene silen-
cing in some individuals of T. miscellus, but the mech-
anism for silencing was not known. In Tate et al. [43],
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the T. dubius copy of one locus (TDF-44) was silenced
in multiple individuals from Pullman, Washington, and
Moscow, Idaho. In Buggs et al. [42], six loci showed vari-
able silencing of T. dubius or T. pratensis homeologs in a
few individuals from five different populations (Oakesdale,
Pullman, and Spangle, Washington; Moscow and Garfield,
Idaho). In the present study, we used comparative bisulfite
sequencing to determine if these loci were silenced by
methylation.

Results and discussion

CG methylation regulates duplicate gene expression
Genomic and bisulfite-converted sequences were ac-
quired for four loci [TDF-44 (putative leucine-rich re-
peat transmembrane protein kinase) [43], S2 (putative
RNA binding protein), S3 (putative NADP/FAD oxidore-
ductase), and S18 (putative porphyrin-oxidoreductase)
[42]] from allopolyploid Tragopogon miscellus and the

Table 1 Results of methylation analysis
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diploid parents T. dubius and T. pratensis (Table 1). A fifth
locus (S8, putative acetyl transferase) identified as silenced
in Buggs et al. [42] was not amenable for study because no
single nucleotide polymorphisms (SNPs) between the dip-
loids were maintained following bisulfite conversion to
distinguish the parental copies in the allopolyploid
(Figure 1a). For the four loci examined, we took advantage
of SNPs between the diploids to determine if a parental
homeolog was silenced by methylation in the 7. miscellus
individuals. In addition to the partial gene sequences re-
trieved in the two previous studies [42,43], 5° genome
walking was undertaken to determine methylation status
of the promoter regions. The new sequences were depos-
ited in GenBank (KM260156-KM260165).

Inspection of the promoter and coding regions identi-
fied CG sites, which are common methylation sites in
plants [44,45]. The integrity of bisulfite conversion was
determined from the conversion of all the Cs not adjacent

Population Species Lineage Locus silenced Methylated?®
Pullman T. dubius 2613-1 NA
T. dubius 2613-11 NA
T. miscellus 2605-4 TDF444 Yes-A/S
T. miscellus 2605-7 TDF444 Yes-A/S
T. miscellus 2605-13 TDF444 Yes-A/S
S184 Yes-A
T. miscellus 2605-24 TDF444 Yes-A/S
T. miscellus 2605-28 TDF444 Yes-A/S
T. miscellus 2605-46 TDF444 Yes-A/S
Moscow T. pratensis 2608-31 NA
T. pratensis 2608-35x NA
T. miscellus 2604-4 TDF444 Yes-A/S
T. miscellus 2604-11 TDF444 Yes-A/S
T. miscellus 2604-15 TDF444 Yes-A/S
T. miscellus 2604-22 *T. pratensis genomic copy lost
T. miscellus 2604-24 TDF444 Yes-A/S
T. miscellus 2604-35 TDF444 Yes-A/S
Spangle T. miscellus 2693-7 S3, No
T. miscellus 2693-8 S3, No
T. miscellus 2693-14 S3, No
S184 No
Garfield T. dubius 2687-11 NA
T. pratensis 2689-17 NA
T. miscellus 2688-3 S24 Yes-A/S
S34 No
S184 No
Oakesdale T. miscellus 2671-11 S24 Yes-A/S

NA = Not applicable; subscript d or p indicates the homeolog silenced; A = antisense strand, S = sense strand.
Individual plants used in the study and their methylation status for the genes studied; silencing data from [42,43].
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Figure 1 Methylation of homeologous loci in Tragopogon miscellus. Sequence polymorphisms between the diploid parents (Tragopogon
dubius and T. pratensis) were used to determine homeolog-specific silencing in T. miscellus allopolyploids. (a) Diagrammatic illustration of the
expected chromatogram peaks for genomic and bisulfite-converted sequences when un-methylated or methylated in allopolyploid T. miscellus.
This example shows silencing of the T. dubius homeolog. (b) Chromatograms of TDF-44 indicating the position of a methylated CG adjacent to a
polymorphic site (red box) in T. miscellus compared to the diploids. (c) Chromatograms of S18 showing an un-methylated CG site in T. miscellus
(black box) and the location of a polymorphic site between parental copies (red box). Red, blue, green and yellow colors of the chromatogram
correspond to A, C, T and G, respectively. IUPAC ambiguity codes: W =A/T, Y = C/T, R= A/G. BS-converted = bisulfite-converted.
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to a G into Ts. The loci studied here all showed complete
bisulfite conversion in the genic regions, while incomplete
conversion at a few sites was detected in the promoter re-
gion of TDF-44 for three polyploid individuals (2604-4,
2604-35 and 2605-14). Given that most of the promoter
and genic regions were properly converted, the incomplete
conversion for TDF-44 does not influence the overall
interpretation of the results. Such low frequency of
partial bisulfite conversion is commonly due to reaction
temperature [46,47]. Alternatively, these sites could repre-
sent varying levels of CHH (H=A, C, or T) or CHG
methylation [48].

CG methylation of both sense and antisense strands
was detected in the genic and promoter regions of S2
(putative RNA binding protein) and TDF-44 (putative
leucine-rich repeat transmembrane protein kinase).
TDEF-44 included seven CQG sites in the promoter region
and four in genic regions; the T. dubius homeolog was
methylated in 11 of 12 T. miscellus individuals from
Pullman and Moscow (Figure 1b, Table 1), which reveals
the mechanism of silencing observed in Tate et al. [43].
The exception was individual 2604-22, which retained
only the T. dubius genomic homeolog and therefore
expressed that copy [43]. Similarly, we found methylation
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of the S2 locus, which was shown by Buggs et al. [42] to
be silenced in two T. miscellus individuals (one each from
Garfield and Oakesdale). All CG sites in the promoter
(four) and genic (six) regions of S2 were methylated in
both individuals. However, both parental homeologs
showed CG methylation and sequencing the cloned
bisulfite-converted sequences revealed twice as many
methylated 7. dubius cloned copies as T. pratensis copies.
This result suggests that methylation can quantitatively
regulate the level of expression of parental copies rather
than completely silencing one homeolog. For locus S18
(putative porphyrin-oxidoreductase), which had 11 CG
sites in the promoter and 11 in the genic regions, the only
methylation detected was one individual that showed
hemimethylation of the antisense strand (Table 1). Inter-
estingly, this individual only showed methylation at five of
the 11 CG sites in the genic regions.

Analysis of the promoter and genic regions of the other
locus (S3-putative NADP/FAD oxidoreductase) did not
show methylation of any of the CG sites (Figure lc,
Table 1; S3 included six CG sites in the promoter and
three CG sites in the genic regions). Thus, there may be
mechanisms other than DNA methylation that are re-
sponsible for homeolog-specific silencing. For example,
histone deacetylation (causing chromatin condensation) is
thought to be responsible for transcriptional repression
[49-51]. RNA interference (RNA) is also widely associated
with post-transcriptional silencing via a number of differ-
ent mechanisms, including mRNA degradation, transla-
tional inhibition and the repression of transcription
elongation [52-55].

Natural variation in epigenetic patterning is not well
understood, but can be an important driver of ecological
speciation, as has been found in Viola [56] and Dactylor-
hiza [57,58]. Here we find differences in the methylation
status and silencing mechanisms in allopolyploid indi-
viduals from different populations (Table 1). For the 17
Tragopogon miscellus polyploids studied here, most
showed silencing of only one locus in the previous stud-
ies of Tate et al. [43] and Buggs et al. [42], but three in-
dividuals showed silencing of two or more loci. Some of
these loci are silenced by methylation, but others are
not, suggesting diverse mechanisms exist within an allo-
polyploid individual to regulate duplicate gene expres-
sion. For the loci that were methylated, two showed
100% CG methylation in genic and promoter regions
(TDF-44 and S2), while the third was methylated at 50%
of the genic CG sites. As methylation of gene regions is
not usually associated with gene silencing in plants [48],
how this pattern of methylation contributes to silencing
this gene, if at all, is not understood. Comparison of the
methylation status of silenced vs. unsilenced loci could
lend further insight into the role of gene body methyla-
tion in Tragopogon.
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Hence, as in other polyploid species [Spartina anglica,
[11], Brassica, [59], wheat, [60], rice, [61], Arabidopsis
suecica, [62]], genome evolution in Tragopogon miscellus
includes DNA methylation as a mechanism to regulate
duplicate gene expression, which we demonstrate here
for the first time. Previous studies in Tragopogon showed
homeolog loss [41-43] and chromosomal repatterning
[63,64] following allopolyploid formation. These latter
phenomena seem to be more common mechanisms in
T. miscellus populations than expression changes for
dealing with the ‘genome shock’ that accompanies
hybridization and whole genome duplication [65]. The
loci silenced via methylation had the T. dubius copy si-
lenced, which, although a small number, may indicate a
‘preference’ for silencing loci of one progenitor’s gen-
ome. This result is true of the T. miscellus polyploids
formed with either 7. dubius (Pullman) or T. pratensis
(Garfield, Moscow, Oakesdale, Spangle) as the maternal
parent, so there does not seem to be a maternal ‘im-
printing’ influence for the loci studied here. This inter-
pretation is in line with previous studies that have
reported a greater tendency of homeolog loss of the T.
dubius copy compared to T. pratensis [21,41-43,66-68].
Curiously, in the case of rDNA, although T. dubius
homeologs are more frequently lost from the polyploid
genomes, transcription rates of remaining 7. dubius cop-
ies are higher than T. pratensis copies [67]. As T. miscel-
lus has shown a high frequency of homeolog loss, but
little gene silencing based on the studies to date
[21,41-43,69], a more comprehensive genome-wide ana-
lysis of methylation would help to determine the role of
this epigenetic mechanism in shaping the evolution of
Tragopogon allopolyploid genomes.

Conclusions

Allopolyploids can employ diverse mechanisms to cope
with duplicate and redundant genomes. While previous
studies of Tragopogon allopolyploids showed that home-
olog loss is a common consequence of allopoyploidization,
here we show that DNA methylation can silence one pro-
genitor homeolog or it can regulate the level of expression
of the two progenitor homeologs. As further genomic re-
sources for Tragopogon are developed, genome-wide
methylation analyses should be undertaken to assess how
extensive homeolog methylation is within the allopoly-
ploid species.

Methods

Plant material

DNA for the diploid parents (Tragopogon dubius and T.
pratensis) and Tragopogon miscellus used was the same
as previous studies [42,43]. Briefly, DNA was extracted
by a modified CTAB method [70] from tissue previously
flash-frozen in liquid nitrogen. Leaf tissue was collected
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from seedlings grown under standardized glasshouse con-
ditions. In total, 17 T. miscellus individuals, each of which
previously showed gene silencing (TDF-44 in [43]; S2, S3
and S18 in [42]; Table 1), were examined. Three represen-
tatives of each diploid species were also included.

Bisulfite conversion

Prior to bisulfite conversion, genomic DNA of the dip-
loid and polyploid samples was digested with EcoRV
(New England Biolabs, UK), which does not cut within
the genes of interest. Two micrograms of genomic DNA
were digested in a total volume of 100 ul with 80 units
of EcoRV, 10X buffer and 10 pg BSA. The reaction was
incubated at 37°C overnight (16-18 hours) and the
digested DNA cleaned by ethanol precipitation. Bisulfite
conversion was carried out using the EZ DNA Methyla-
tion kit (Zymo Research, USA). After bisulfite conver-
sion, the single-stranded DNA was quantified using
parameters for RNA-40 on a Nanodrop-1000 (Thermo
Fisher Scientific, USA).

Amplification and sequencing of genomic and
bisulfite-Converted DNA
Primers were designed following a home-made genome
walking kit [71]. Separate primers were designed to
amplify sense and antisense strands, because after bisul-
fite conversion the two strands were not precisely com-
plementary, with additional primers designed to perform
nested PCR, using Methyl Primer Express software v. 1.0
(Applied Biosystems, USA). Primers 26-29 bp in length
were designed to generate an amplicon of ~300 bp and
with a C or T near the 3’ end to avoid non-specific bind-
ing in the bisulfite-converted DNA. The primers used for
amplification of genomic DNA and bisulfite-converted
DNA are listed in Additional file 1: Table S1.
Amplification of bisulfite-converted DNA for the pri-
mary PCR reaction was conducted in a total volume of
25 ul with 10 ng template DNA, 10 uM of both gene-
specific forward and reverse primers, 10X PCR buffer, 10
mM dNTPs and 1 unit of Takara Ex Taq™™ polymerase
(Takara Biotechnology, Japan). Genomic and bisulfite-
converted DNA was amplified using the following PCR
program: 95°C for 5 min, 95°C for 1 min, 53°C for 1
min, 72°C for 1 min for the first 5 cycles, then 44 cycles
with 95°C for 1 min, 48°C for 1 min, 72°C for 1 min, and
a final extension at 72°C for 7 min. Using the nested
primers, another PCR was performed using the primary
PCR product as template. The resulting nested PCR
products were run on a 1.5% agarose gel stained with
ethidium bromide and examined using a Gel Doc 2000
system (Bio-Rad, UK). For sequencing, PCR products
were treated with Exonuclease I (5 units) and Shrimp al-
kaline phosphatase (0.5 unit) prior to the cycle sequen-
cing reaction using BigDye Terminator v. 3.1 (Applied

Page 5 of 7

Biosystems). The purified products were sequenced with
both forward and reverse primers on an ABI DNA
Analyzer 3770 at Massey Genome Service (Palmerston
North, New Zealand). The resulting sequences were as-
sembled and analyzed in Sequencher v. 4.10.1 (Gene
Codes Corporation, USA).

Because both parental homeologs in 7. miscellus poly-
ploids showed CG methylation of the S2 locus, cloning
was undertaken to determine the methylation status of
the parental copies. PCR products of BS-converted DNA
were cloned from Tragopogon miscellus individuals
2671-11 and 2688-3 using the TOPO TA cloning kit
(Invitrogen, CA, USA). Twelve positive clones per sam-
ple were sequenced with T3 and T7 primers using the
above-mentioned protocols for sequencing.

Genome walking

In order to determine the methylation status of the pro-
moter region, 5genome walking was performed follow-
ing the GenomeWalker manual (Clontech Laboratories,
USA) [72]. Genomic DNA of Tragopogon dubius (a dip-
loid parental species) was digested with three different
restriction enzymes: EcoRV, Dral and Scal (New England
Biolabs, USA) in separate reaction tubes containing 2.5
pg of genomic DNA, 80 units of restriction enzyme and
10X buffer (New England Biolabs) in a total volume of
100 pl. Reactions were incubated at 37°C for 16-18
hours. These reactions were ethanol precipitated in the
presence of 20 pg glycogen and 3M sodium acetate.
Adapter ligation to the precipitated, digested genomic
DNA was performed in a total volume of 8 pl containing
25 uM adapter, 10X ligation buffer, 3 units of T4 DNA
ligase (New England Biolabs) and 0.5 pg of purified
DNA. Primary PCR was performed in 50-ul total volume
using 10 mM dNTPs, 10X PCR buffer (Takara Biotech-
nology, Japan), 10 uM of adapter primer AP1 (Forward)
and gene-specific primer (Reverse) (gene-specific reverse
primers for all the genes S2, S3, S8, S18 and TDF-44 are
listed in Additional file 1: Table S1) and 1 unit of Takara
Ex Taq polymerase (Takara Biotechnology, Japan). The
PCR profile for the primary PCR was as follows: first 7
cycles at 94°C for 25 sec, 72°C for 3 min, then remaining
32 cycles at 94°C for 25 sec, 67°C for 3 min, and a final
extension at 67°C for 7 min. Primary PCR products for
the nested round were diluted 1:50 in ddH,O. In the
secondary PCR, 10 pM nested adapter primer AP2 (for-
ward) and internal gene-specific primers (reverse) were
used (Table S1) and 2 pl of diluted primary PCR product
were used as template. The secondary PCR profile was
as follows: 94°C for 25 sec, 72°C for 3 min for 5 cycles
and 94°C for 25 sec, 67°C for 3 min for next 20 cycles,
then final extension at 67°C for 7 min. Secondary PCR
products were separated on a 1% agarose gel and prod-
ucts from each library were cloned. At least ten positive
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clones per gene per individual were sequenced. The
resulting sequences for each gene were aligned with pre-
viously obtained sequences of that gene in Sequencher.
New methylation-specific primers were designed to
amplify promoter regions from bisulfite-converted DNA.
The amplified promoter regions from bisulfite-converted
DNA and genomic DNA of all five genes were se-
quenced for the T. miscellus polyploids and the progeni-
tors T. dubius and T. pratensis.

Additional file

Additional file 1: Table S1. List of primers used for amplification of
bisulfite-converted DNA and 5" genome walking.
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