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Abstract

Background: MicroRNAs (miRNAs) are important post-transcriptional regulators which control growth and
development in eukaryotes. The cestode Echinococcus granulosus has a complex life-cycle involving different
development stages but the mechanisms underpinning this development, including the involvement of miRNAs,
remain unknown.

Results: Using lllumina next generation sequencing technology, we sequenced at the genome-wide level three
small RNA populations from the adult, protoscolex and cyst membrane of E. granulosus. A total of 94 pre-miRNA
candidates (coding 91 mature miRNAs and 39 miRNA stars) were in silico predicted. Through comparison of
expression profiles, we found 42 mature miRNAs and 23 miRNA stars expressed with different patterns in the three
life stages examined. Furthermore, considering both the previously reported and newly predicted miRNAs,

25 conserved miRNAs families were identified in the E. granulosus genome. Comparing the presence or absence of
these miRNA families with the free-living Schmidtea mediterranea, we found 13 conserved miRNAs are lost in

E. granulosus, most of which are tissue-specific and involved in the development of ciliated cells, the gut and
sensory organs. Finally, GO enrichment analysis of the differentially expressed miRNAs and their potential targets
indicated that they may be involved in bi-directional development, nutrient metabolism and nervous system
development in E. granulosus.

Conclusions: This study has, for the first time, provided a comprehensive description of the different expression
patterns of miRNAs in three distinct life cycle stages of E. granulosus. The analysis supports earlier suggestions that
the loss of miRNAs in the Platyhelminths might be related to morphological simplification. These results may help
in the exploration of the mechanism of interaction between this parasitic worm and its definitive and intermediate
hosts, providing information that can be used to develop new interventions and therapeutics for the control of
cystic echinococcosis.
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Background

MicroRNAs (miRNAs) are a class of endogenous non-
coding RNAs of around 22 nucleotides (nts) in length.
They play a role as post-transcriptional regulators, partially
or completely complementary binding to messenger RNA
transcripts (mRNAs), usually resulting in direct degradation
or translational repression of target genes [1,2]. In eukary-
otes, miRNAs are involved in a broad variety of biological
processes [3], such as embryonic development, cell prolif-
eration, cell differentiation, and apoptosis. To date, more
than twenty thousand miRNAs from 223 species have been
registered in the miRBase (http://www.mirbase.org/, release
21.0, June 2014) [4]. miRNAs are usually highly conserved
throughout the animal kingdom [2]. They have been
continuously added to Metazoan genomes. The emergence
of vertebrates is characterized by a strong increase in
miRNA families, and correlates with the increase in
vertebrate morphological complexity [5-7]. Therefore,
miRNAs may have significantly contributed to phenotypic
evolution in animals. Recently, a high rate of the loss of
conserved miRNA loci has been found in the nematodes
and the flatworms [8,9]. This result suggested that the
miRNA losses in Platyhelminths are not random events.
However, to date, there is no report about the mechanisms
of miRNA losses in metazoan phylogenetics.

Echinococcus granulosus is a flatworm and member of
the Platyhelminthes, and is the causative agent of cystic
echinococcosis (CE), a disease that is distributed through-
out most areas of the world [10,11]. Currently, up to 3
million people are infected with E. granulosus [12], and, in
some areas, 10% of the population has detectable hydatid
cysts by abdominal ultrasound and chest X-ray [13,14]. This
tapeworm requires two mammalian hosts to complete its
life cycle. The mature adult worm resides in the small intes-
tine of a carnivore (definitive host) and releases worm seg-
ments or proglottides containing hundreds of eggs which
contaminate vegetation and water. When the eggs are
swallowed by an intermediate host such as a sheep, the eggs
hatch to release larval oncospheres into the digestive tract
which are activated by bile and gastrointestinal enzymes.
The activated oncospheres penetrate the intestinal wall
and migrate via the circulatory system to various organs
(mainly the liver and lungs). In these organs, the onco-
spheres develop into hydatid cysts over many months
and the cysts generate brood capsules within which
protoscoleces (PSC) are produced asexually. The cycle
is completed when a canine (dog, wolf, fox) definitive
host swallows PSC present in the hydatid cysts in in-
fected offal, and the PSC develop into adult worms in
the small intestine [15].

Although the life cycle of E. granulosus is well known,
the mechanisms underlying the main developmental events
throughout remain largely unclear. Our previous study of
the transcriptome of E. granulosus revealed that 1,452 genes
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were up- or down-regulated in adult, PSC and cyst stages
[16]. Moreover, a global proteomic analysis of the expres-
sion characteristics of E. granulosus in larval and adult
stages identified 22 adult-specific and 263 PSC-specific
proteins [17]. These studies suggested that transcriptional
regulatory mechanisms are pivotal in the control of
E. granulosus development.

In regards to flatworms, miRNAs have been experi-
mentally identified in Schmidtea mediterranea [18,19],
Schistosoma japonicum [20-22] and Schistosoma mansoni
[23,24]. A PCR-based cloning study identified 26 mature
miRNAs in PSC and the cystic stage of E. granulosus [25].
However, due to the hitherto restricted experimental
methods and the limited genomic information available,
the numbers and expression profile of E. granulosus
miRNAs are still unclear. Here, we used next generation
sequencing technology (NGS) to further explore the di-
versity of E. granulosus miRNAs and their expression
patterns in different life stages. We expand the miRNA
repertoire of E. granulosus and identify new miRNA en-
coding loci. Through comparing miRNA families in the
Platyhelminths, we found that the losses of E. granulosus
miRNAs may be associated with the loss of ciliated cells,
the gut and sensory organs. The results significantly en-
hance our knowledge of miRNA species in E. granulosus
and provide insights into miRNA evolution, biogenesis, and
expression in parasites generally.

Results

Deep sequencing of three small RNA libraries from

E. granulosus

To investigate the composition of small RNAs and the
dynamic changes of miRNA expression during E. granulosus
development, three small RNA libraries were constructed
from adults, PSC and cyst membrane, and sequenced
using Solexa sequencing technology. After removing
low-quality sequences, adaptor contaminants and RNAs
smaller than 18 nts, we obtained 23,632,021, 20,978,758
and 15,975,894 high-quality reads of small RNAs sized
18-30 nts from adults, PSC and cyst membrane, respect-
ively [Additional file 1: Table S1]. Of these reads, 73.48%
(adult), 73.31% (PSC) and 71.60% (cyst membrane) were
20 to 24 nts in length (Figure 1a), which is the typical
size range for Dicer-derived products [26]. Through se-
quence mapping, 11,680,028, 12,966,593 and 9,375,095
reads from the three libraries perfectly matched to
E. granulosus genome [16], [Additional file 1: Table S2].
After discarding known non-coding RNAs, such as
rRNA, tRNA, snoRNA, repeat-associated RNA, and de-
graded fragments of mRNAs, the remaining 10,069,724,
11,775,532 and 8,025,262 small RNA reads from adults,
PSC and cyst membrane, respectively, were used to
search for both known and novel miRNAs (Figure 1b)
[Additional file 1: Table S2].
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Figure 1 Size distribution and classification of the small RNAs in the different libraries. (a) Length distribution of the sequencing reads in
the three libraries. The length percentages were calculated by dividing the counts of 18-30 nts reads in each library. The lengths of the small
RNA reads are mainly distributed from 20 to 24 nts. (b) Classification of the sequenced small RNAs from adults, cyst and protoscoleces (PSC),
respectively. The percentages were calculated by dividing the counts of reads matched to the genome.
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Identification of known and novel miRNAs from E. granulosus
To date, 23 mature miRNAs of E. granulosus have been
identified [25] and are included in the miRBase database
20.0 (http://www.mirbase.org/). By deep sequencing, we
found that all of the known mature miRNAs were present
in our data sets [Additional file 1: Table S3], the majority
being abundant in all three libraries. Furthermore, we
also identified 23 miRNA stars from the known miRNA
precursors [Additional file 1: Table S3].

In addition to known miRNAs, we also used miRDeep2
to predict and score novel miRNA precursors [27] and iden-
tified 94 miRNA candidates encoding 91 mature miRNAs
and 39 miRNA stars [Additional file 1: Table S4 and S5]. All
these miRNAs can be folded into characteristic miRNA
stem-loop secondary hairpin structures and have a 1-2 nt
3’overhang pattern generated by Dicer cleavage during
mature miRNA generation [Additional file 2]. We evaluated
evolutionary conservations by homologous searches to
known metazoan miRNAs and found 11 pre-miRNAs
were classified into known families based on their pre-
cursor sequences, whereas 83 did not show homology
with other miRNAs. We further matched these pre-
dicted pre-miRNA candidates to the E. multilocularis
genome (http://www.sanger.ac.uk/cgi-bin/blast/submitblast/
Echinococcus) and found 82 of 94 miRNA candidates were
evolutionarily conserved (identity >87%) in both species
[Additional file 1: Table S6]. To validate the novel miRNAs,
we randomly selected 22 mature miRNAs and 5 miRNA
stars, and conducted stem-loop RT-PCR [28]. All the
selected miRNAs were expressed in E. granulosus
[Additional file 3: Figure S1], suggesting that the filter cri-
teria were sufficiently strict for predicting novel miRNAs.

miRNA clusters are a group of miRNA genes located
within a proximal distance on a chromosome [29]. In the
present study, besides two published miRNA clusters,
miR-71/2b/2d and miR-277/4988 [25], we identified two add-
itional miRNA clusters located in closed loci (EG_S00041:
46,144-53,961 and pathogen_EMU_scaffold_007768:
2,420,386-2,428,006) in the genomes of both E. granulosus
and E. multilocularis (Figure 2a). One cluster consists of
four homologous novel miRNAs (new-15, new-24, new-61
and new-7) in the positive strand (Figure 2b), while the other
one is composed of new-12 and new-22 in the reverse strand
(Figure 2c). Multiple sequence alignments of the precursors
of these novel miRNAs showed that they contained similar
sequence at the ‘seed region’ [Additional file 4: Figure S2],
which indicated that they may play similar roles in target
regulation and belong to the same family.

Comparison of miRNA families of E. granulosus with
other flatworms

It is now well established that many miRNAs come in
families with the same seed sequences (typically defined as
position 2—-7 or 2—8 from the 5" end of the mature miRNA)
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[30,31]. From our 94 novel and 23 known miRNAs, 25
different miRNA families representing 29 miRNAs were
classified. Of these, 24 families had been expected in the
flatworms [8,9], including one which is characteristic
for Eumetazoa, 14 from Bilateria, 8 from Protostomia
and one from Lophotrochozoa (Figure 3a). This result
was much more than the 16 miRNA families finding in
a study by Fromm et al. [9]. Interestingly, the remaining one
miRNA family (mir-3479) is only present in E. granulosus,
S. mansoni and S. japonicum.

We then compared the presence or absence of the
conserved miRNA families of E. granulosus (Cestoda)
with three other flatworms, S. mediterranea (Turbellaria)
[18], Gyrodactylus salaris (Monogenea) [9] and S. japonicum
(Trematoda) [22]. Similar to the previous study [9], 8
conserved bilaterian, protostomian, and lophotrochozoan
miRNA families were not detected in the four flatworms
(Figure 3b and c); these were mir-33, mir-34, mir-137,
mir-193, mir-242, mir-252, mir-137 and mir-375. Fur-
thermore, 8 miRNAs families, mir-29, mir-92, mir-216,
mir-210, mir-315, mir-12, mir-750 and mir-1989 were
only detected in the free living flatworm S. mediterranea,
but not in G. salaris, E. granulosus and S. japonicum.
Finally, there are 6 miRNA families (mir-76, mir-96,
mir-184, mir-278, mir-2001 and mir-1175) that are
present in S. mediterranea and G. salaris, but are absent
in S. japonicum and E. granulosus.

Expression profiles of miRNAs in the three life stages of
E. granulosus

Combining all detected known and novel miRNAs, 117
pre-miRNAs coding 114 mature miRNAs and 62 miRNA
stars were identified in all the E. granulosus libraries
[Additional file 1: Table S7]. We used the ‘transcripts
per million” (TPM) approach to normalize the abun-
dance value of each miRNA [Additional file 1: Table S8]
[32,33]. Through further evaluating the relative abun-
dance of the mature miRNAs, we found miR-71 was
the most abundant miRNA with over 300,000 reads in
each library (Table 1), which was similar to the
miRNA patterns in S. japonicum [34] and C. elegans
[35]. Whereas most of the conserved miRNAs were
expressed constitutively at all development stages,
more non-conserved miRNAs were stage-specifically
expressed in E. granulosus.

The expression analysis showed that 65 miRNAs,
comprising 42 mature miRNAs and 23 miRNA stars,
exhibited statistically significant changes (a threshold
of correct P-value < 0.001 and fold-change > 2.0) in at
least one of the three life-stages during E. granulosus
development (Figure 4a) [Additional file 1: Table S9].
Further evaluation of the expression patterns indicated
that 9 miRNAs were mainly expressed in the adult worms
and six of them (new-7, new-12, new-15, new-22, new-24
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Figure 2 Novel miRNAs and clusters detected in E. granulosus. (a) The location of miRNA gene clusters in E. granulosus scaffolds. The
rightward arrow indicates the location of the miRNA gene at the positive strand, while the leftward arrow indicates the miRNAs at the minus
strand. The secondary structures of Echinococcus cluster containing new-17, new-24, new-61 and new-7 (b) and the cluster containing new-12
and new-22 (c) were predicted by mfold. The sequence of the mature miRNAs is shaded in grep. Limited by the size of the miRNA cluster, we
used “N”" instead of 5464 nt RNA sequences at the location between new-61 and new-7.

and new-61) are derived from the two new miRNA clusters
[Additional file 5: Figure S3]. We used stem-loop real-time
quantification RT-PCR to examine the expression of 35
randomly selected mature miRNAs and miRNA stars
and 31 miRNAs were shown to be in accordance with the
expression profiles detected by the Illumina sequencing
[Additional file 1: Table S10].

Since the larval PSC is an important transition life
cycle stage, capable of developing either into an adult
worm in the dog gastrointestinal tract or a secondary
hydatid cyst in the intermediate host, we compared the
expression levels of miRNAs in adult worms or cyst
membrane with those in the PSC. A total of 43 miRNAs
(22 up-regulated and 21 down-regulated) in adult tissue
and 42 miRNAs (4 up-regulated and 38 down-regulated)

in the cyst membrane were identified (Figure 4b). Further
removing similar trends of miRNA expression between
adults vs PSC and cyst vs PSC, we found that 25 miRNAs
(22 up-regulated and 3 down-regulated) and 24 miRNAs
(4 up-regulated and 20 down-regulated) were specifically
changed in the adult and cyst stage, respectively (Figure 4c).
Amongst these, 8 miRNAs appeared to show reverse trends
in expression in the adult and cyst stages compared with
PSC; miR-125, miR-277, miR-4989*, new-17*, new-87 and
new-87* were up-regulated in adult worms but down-
regulated in cyst membrane. In contrast, miR-124a and
miR-124b were down-regulated in the former stage but
up-regulated in the latter [Additional file 1: Table S11].
These results imply that miRNA expression variation
in the different life stages may be associated with the
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Figure 3 Loss and gain of miRNA families in E. granulosus and other flatworms. (a) The table for conserved miRNAs found in E. granulosus
and inferred loss/gain number of conserved miRNA families. (b) The acquisition (red) and loss (blue) of miRNA families for 4 flatworms. Numbers
in white squares show evolutionary acquisition and loss of miRNA families in each flatworms; Numbers in black squares show acquisition and loss
of miRNA families in flatworms, Neodermataand Trematoda + Cestoda. (c) The distribution of the conserved eumetazoan (blue), bilaterian
(orange), protostomian (green), lophotrochozoan (purple), and Platyhelminthes (yellow) miRNA families in flatworms.

direction of development of PSC into either an adult
worm or a secondary hydatid cyst.

Target gene prediction and functional analysis

To assign biological functions to the 65 differentially
expressed miRNAs, we predicted putative target genes
using the Miranda program [36]. Based on previously
published EST sequences [16], we found 3,622 genes
possibly targeted by 114 mature miRNAs and 62 miRNA

Table 1 The relative abundance of the top ten mature
miRNAEs in three life-stages of E. granulosus

Name Adult* Cyst* PSC* Total
egr-miR-71 325369.55 54610537 30285540 117433033
egr-miR-1 279745.11 7171895 142856.71 494320.77
egr-miR-7 16646.88 21544180  10754.68 24284336
egr-let-7 1366444 31789.98 9533097 140785.39
egr-miR-10 77170.13 18409.03 30980.17 126559.32
egr-miR-4988 1047434 12561.26 95883.37 118918.97
egr-bantam 31467.55 23201.17 47866.69 10253541
egr-miR-9 8397.63 9500.11 78860.01 96757.75
egr-miR-61 2546842 1055449 3933351 7535642
egr-miR-87 1750257 1939063 34640.86 71534.06

*The relative expression levels of each miRNA were calculated by counting the
numbers of respective miRNA reads normalized to the total number of reads
of annotated miRNAs from each library.

stars [Additional file 1: Table S12]. By enrichment ana-
lyses on the predicted targets, we determined that 182
genes could be categorized into 24 significant GO
terms (adjust P <0.05) [Additional file 1: Table S13].
The major target genes in the biological process cat-
egories were involved in the regulation of cell differen-
tiation (GO:0045595), determination of adult lifespan
(GO:0008340) and response to nutrient (GO:0007584).
These results support our premise that the differen-
tially expressed miRNAs may have important functions
in the three different life cycle stages of E. granulosus.

By using real-time quantitative PCR, we observed that
some differentially expressed miRNAs had obvious negative
correlations with their target gene expression. For example,
a high expressed miR-31 and a down-regulation of its target
gene ATP2B3 (EG_03132) were simultaneously detected in
the adult stage (Figure 5a). Moreover, in the adult and cyst
stages of E. granulosus, obvious negative correlations were
also observed between the expression of miR-7 and its pu-
tative target gene long-chain acyl-CoA synthetase (LCFACS,
EG_02438) (Figure 5b). Finally, we observed a clear
positive correlation between the expression of let-7 and its
putative target gene vitamin D receptor (VDR, EG_04794)
(Figure 5c).

Discussion
In the current study, we performed deep sequencing of
small RNAs in three distinct developmental stages of
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E. granulosus. By Bowtie mapping, there are 11,680,028,
12,966,593 and 9,375,095 18-30 nt reads were located the
E. granulosus genome, respectively. The remaining 40%
unmapped reads could be ascribed to the following
reasons: (1) some genetic polymorphisms may occur in
the E. granulosus genome which interferes with Bowtie
mapping; (2) unsatisfactory available genome data; some
sequences are probably absent in the current draft genome
of E. granulosus [16]; (3) miRNAs sequencing errors. NGS
may randomly produce some base calling errors and influ-
ence the accuracy of short reads; (4) post-transcriptional
editing of miRNAs may also have contributed to the mis-
matches observed.

It has been previously reported that the gain of
miRNA genes in Metazoan species is associated with an
increase in morphological complexity [6]. However, a
high rate of the loss of conserved miRNA loci has been
found in many subgroups of the Platyhelminthes [9].
Basing on evolutionary conservation analysis, we also
found a significant loss of conserved miRNAs in the
Cestoda. A total of 22 conserved miRNA families were
confirmed as not detectable in E. granulosus, suggesting
that the loss of conserved miRNA loci in flatworms is
not a random event in metazoan phylogenetics. It might
relate to loss of targets in the corresponding species [37]
or reduced morphological complexity [38]. A previous
study revealed that miRNA invention is closely related
to the evolution of tissue identities in bilaterian species
[7]. Through comparing these lost miRNA families in
E. granulosus, we found 8 are not detected in the para-
sitic Platyhelminthes compared with S. mediterranea
and 6 are absent from S. japonicum and E. granulosus.
On further analysis of their evolutionary origin, we ob-
served that most of the lost miRNAs may be derived
from some specific tissues, which have been reduced or lost
in tapeworms. For example, there are 8 conserved miRNA
families expressed in the free-living S. mediterranea that
are absent in the Neodermata. Among these, miR-12,
miR-216 and miR-283 have been found mainly present
in locomotor ciliated cells, while miR-29 and miR-92 are
expressed in the gut [7]. These organs have gradually dis-
appeared in E. granulosus and some of the other parasitic
Platyhelminthes groups because of a significant decrease
in locomotor and digestive activities associated with the
parasitic mode of life. Furthermore, in the Neodermata,
there is a significant degeneration of peripheral sensory
nervous system elements, such as, the loss of eyes in tape-
worms. In bilaterians, miR-183 and miR-263 have been
reported to have a conserved affiliation with sensory organ
differentiation [7,39] and miR-184 and miR-278 play
essential roles in the development of eyes [40,41].
These sensory tissue-specific miRNAs are not detected in
S. japonicum (Trematoda) and E. granulosus (Cestoda).
Thus, it seems that the loss of miRNA loci in E. granulosus
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may be related to the reduction or loss of some specific
tissues in the Cestoda.

Additionally, the biological evolution of one species to
another is usually accompanied by the acquisition of
new miRNA families in the newly evolved species [42].
Although previous studies did not report there was any
miRNA family acquired in the Platyhelminthes [8,9],
we observed that mir-3479 was present in E. granulosus,
S. mansoni and S. japonicum. This result may be due to
the lack of information in other taxa or due to evolution-
ary innovations to adapt to the new living environment.
For tapeworms, in order to escape from host immune
attack, E. granulosus produces many components to
moderate the host immune response, such as EgAgB
(antigen B), which interferes with human dendritic
cell differentiation and maturation [43]. Further, one
recent study has shown that three schistosome-specific
miRNAs, Bantam, miR-10 and miR-3479, were detected
in the plasma of S. japonicum-infected rabbits [44]. These
results imply that the gain of miR-3479 in E. granulosus or
S. japonicum may have resulted as an evolved adaptation
in the parasitic Platyhelminthes to moderate the host
immune response. It is important to note that there are
no reports to date on the plasma levels of E. granulosus
miRNAs in patients with CE. However, some Dicrocoelium-
specific miRNAs have recently been shown to be present
in exosome-like vesicles [45] and similar secretory vesi-
cles have been described previously in the early stages
of E. granulosus development [46].

Notably, two novel close miRNA clusters (new-15/
new-24/new-61/new-7 and new-12/new-22) were identified
in E. granulosus and E. multilocularis. Beside the same
genomic location, they display similar patterns of miRNA
expression, suggesting that the expression of these novel
miRNAs may be co-regulated by the same promoter ele-
ments. Furthermore, two clusters of miRNAs share the
‘GGCGCUU’ motif with the known sme-miR-2160. Re-
cently, it has been reported that sme-miR-2160 is
enriched in planarian stem cells and is down-regulated
in individuals in which stem cells had been abrogated
by irradiation [18]. These observations imply that these
two clusters of miRNAs may be associated in E. granulosus
with cell proliferation and differentiation. Moreover, since
new-7/12/15/22/24/61 of E. granulosus contains six copies
of the same seed sequences in the 5" hairpin arms, these
multiple copies may likely be functional, resulting in the
dose-dependent regulation of their downstream targets
[47,48]. Similar multiple copies of mir-2160 have been
identified in S. mediterranea [18].

Development in E. granulosus involves a number of dif-
ferent life stages including the eggs, activated oncospheres,
hydatid cyst, PSC and adult worms. It is a complicated
and dynamic process and may be associated with miRNA
regulation. By comparing the differential expression pattern
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of miRNAs, our results showed that let-7 exhibited 3.2-fold
and 2.6-fold increased expression in PSC and in the cyst,
respectively, compared with the adult. let-7 has been shown
to regulate developmental timing in C.elegans through the
direct target genes lin-41 and hbl-1 [49]. Thus, the observa-
tion of substantially increased expression of let-7 in the
PSC and cyst might be associated with the capability of
E. granulosus for bi-directional development, differen-
tiating into an adult worm in the definitive host dog
gastrointestinal tract or into a secondary hydatid cyst
in the intermediate (or human) host [50].

Indeed, bi-directional development is a unique bio-
logical characteristic of E. granulosus and our previous
study showed that some protein-coding genes, with
high homology to the bile acid receptors and trans-
porters, were located in the E. granulosus genome, and
that nuclear hormone receptors, including the farne-
soid X receptor (FXR) and VDR, may play a key role in
stimulating the PSC to develop into adult worms [16].
Recently, the hormone receptors have been reported to
directly activate transcription of the evolutionarily con-
served let-7 and control the development of larvae to
adults in C. elegans [51]. Here, we observed a positive
correlation between the expression of let-7 and VDR,
suggesting that VDR may induce crucial miRNA tran-
scriptional events and promote adult development in
E. granulosus. Furthermore, through miRNA target pre-
diction analysis, we found let-7 could complementary
bind to the VDR 3" UTR sequences, suggesting that let-
7 may mediate a negative feedback loop controlling the
bile acid signal pathway in the development of PSC. Re-
cently, a feedback circuit between let-7-family miRNAs
and DAF-12, a homolog of vertebrate FXR and VDR,
has been found in C. elegans [52]. Additional experimental
validations are required to explore this relationship in
E. granulosus in future studies.

Conclusions

In summary, this study describes the first large scale
identification and dynamic characterisation of miRNAs
in three developmental stages of E. granulosus. A total of
114 mature miRNAs and 62 miRNA stars were identified.
Evolutionary conservation analysis suggested that the losses
of miRNA families in E. granulosus may be associated with
morphological reductions. Additionally, GO analysis re-
vealed that the differentially expressed miRNAs and their
targets may be involved in diverse development processes,
including bi-directional differentiation and nervous system
development. Understanding the regulatory processes in-
volving miRNAs in E. granulosus may be helpful to explore
the mechanism of interaction between this parasitic worm
and its definitive and intermediate hosts, and provide new
information to develop new interventions and therapeutics
for the control of CE.
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Methods

Ethics statement

Ethical approval for the use of dogs and sheep was given
by the Animal Ethics Committee of Xinjiang Academy of
Animal Science(XJAASaec2011031506). The protocols for
using dogs and sheep were covered under the < The Guide-
lines for the Care and Use of Experimental Animals >
(China) National Science and Development Act 2006—398.

Preparation of E. granulosus samples

The preparation of E. granulosus samples for analysis
was undertaken as previously described [53,54]. PSC were
aspirated aseptically from several sheep liver hydatid cysts
collected from Xinjiang, China. The PSCs were sedimen-
ted at 1000 x g for 15 minutes and digested by pepsin [16].
After PSC were removed, cyst membranes were rinsed 10
times with PBS and checked microscopy to confirm no
PSC attached on the membranes, and then cut into small
pieces with a pair of scissors. The cut membranes were
soaked in PBS in a flask and stirred for 10 min at 4°C. The
flask was placed on bench at room temperature for 3 min
to precipitate laminated layer and other cyst tissues.
The membrane cells in supernatant were pelleted by
centrifuging at 1400 g for 10 min at 4°C. The cells were
resuspended with PBS and left on the bench for 3 min
to precipitate remained PSC, the supernatant was centri-
fuged at 1400 x g for 10 min at 4°C. Adult worms were col-
lected from experimentally infected dogs using procedures
describe earlier [55]. All parasite materials were subjected
to a final wash in PBS and then they were suspended in
10 volumes of RNAlater (Ambion, Austin, TX, USA),
and stored at —-80°C.

Total RNA extraction

Samples of the 3 different life cycle stages of E. granulosus
(adult, cyst and PSC) were homogenized in lysis buffer
and total RNA was extracted using mirVana™ miRNA
isolation kits (Ambion, Austin, TX, USA), according to
the manufacturer’s instructions. RNA concentration and
purity were monitored using a NanoDrop ND-1000 UV
spectrophotometer (Nanodrop Technologies, Wilmington,
DE). The RNA integrity was evaluated by an Agilent
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA)
[Additional file 6: Figure S4]. Finally, all RNA samples
were stored at —-80°C.

Small RNA library construction and deep sequencing

We constructed each small RNA library using Illumina
Small RNA v1.5 Sample Preparation Kits (Illumina, San
Diego, CA). Briefly, total RNA (5 pg) of each sample was
resolved on denaturing polyacrylamide gel electrophoresis
(PAGE) gels, and then fractions of 18 to 30 nt in size
were collected. The isolated small RNAs were sequen-
tially ligated to 3'adapters, using T4 RNA ligase 2
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(New England Biolabs, Ipswich, MA, USA), and 5adapters
using T4 RNA ligase (New England Biolabs, Ipswich, MA,
USA). The ligation products were reverse transcribed using
SuperScript Reverse Transcriptase II (Life Technologies,
Gaithersburg, MD, USA) and amplified with 12 PCR cycles.
Then, 6% (w/v) PAGE was used to purify the amplification
products. Finally, the libraries were used for clustering
and sequencing using an Illumina Genome Analyzer II
(Illumina, San Diego, CA).

Computational analysis to search for novel miRNAs and
other small RNAs

After removing low quality sequence reads and trimming
adaptor sequences through miRExpress [56], we collected
small RNAs ranging from 18-30 nucleotides and count
length distributions. Then, duplicated sequences were re-
moved from the initial dataset to produce a nonredundant
set of unique sequences, hereafter referred to as sequence
tags. To determine whether these small RNA sequences
were from E. granulosus, we mapped these small RNA
sequences by Bowtie [57] to the draft E. granulosus
genome sequences [16]. Only those mapping perfectly
onto the draft genome were further considered as can-
didate miRNAs. If a sequence mapped to more than 10
loci in the genome, it was not considered for further
analysis. Then, we compared all sequence tags against
a database of known miRNA precursors sequences
(http://www.mirbase.org/, release 21.0) [4], and profiled
every annotated miRNA in each library.

Basing on our earlier findings [16] and scrutiny of the
Rfam RNA family database (http://rfam.sanger.ac.uk), we
discarded all sequences matching with known E. granulosus
rRNAs, tRNAs, snRNAs and mRNAs. With the annota-
tion of repeat sequences in the E. granulosus genome,
small RNAs positioned at repeat loci were identified
and annotated as repeat-associated small RNAs. Finally,
the remaining clean sequenced reads were used to
search for both conserved and novel miRNAs.

In order to identify new miRNAs, we used miRDeep
2.0 [27] to identify miRNAs without prior information.
The software uses a Bayesian algorithm and provides a
score based on the expected pattern of miRNA-duplex
excision from the stem of the precursor hairpins by
Dicer [58]. The secondary structures of putative precur-
sors were identified using the RNAfold program [59] and
computed by minimum free energy (MFE). We used the
following criteria to filter the candidate miRNAs: (1)
The lengths of mature miRNA ranged from 18 to 25
nucleotides; (2) The miRNA precursors should have a
characteristic fold-back structure and MFE should be
less than —20 Kcal/mol; (3) The miRDeep score should
be more than 1; (4) The GC content of the mature
miRNA should be 15%-85%; (5) Small RNAs with mul-
tiple loci in the E. granulosus genome were excluded
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(more than five times); (6) In order to remove acciden-
tal hits, only the precursors with at least 5 sequence
reads in three libraries were used. Furthermore, these
predicted mature miRNAs were also compared with
known miRNAs from other species. If the E. granulosus
miRNAs shared >80% homology with known miRNAs and
had the same seed sequences (2—8 nt), the miRNAs were
considered as conserved miRNAs and were thus named
after the known miRNA [60]. We defined the mature
miRNA and miRNA star basing on the total number of
reads in three life stages.

Detection of differential expression

Using the quantifier module of miRDeep2, we summed
up read counts for all known or novel mature miRNAs
in the sequencing data. Then, relative expression levels
were calculated by counting the numbers of respective
miRNA reads normalized to the total number of anno-
tated miRNAs in each library. After ignoring the sim-
ultaneously lowly expressed miRNAs in three libraries
(less than 50 TPM at all stages), differential expression
in the three libraries was evaluated using the statistical
R package DEGseq [61]. (http://www.bioconductor.org/
packages/2.6/bioc/html/DEGseq.html). Based on this stat-
istical model, statistical significances were calculated
using Fisher’s exact test and likelihood ratio test, and
then corrected for multiple testing according to
Benjamini-Hochberg multiple test method [62]. Potentially
interesting miRNA candidates were chosen according
to the criteria of a 2-fold expression level change and
adjusted P-value < 0.001.

MicroRNA target prediction

In order to seek miRNAs targets, we first predicted the
3'UTRs by combined analysis of the predicted mRNAs
and the released EST scafford sequences for E. granulosus
[16]. Only the sequences located at the 3 untranslated
region of predicted genes were regarded as potential 3’
UTR sequences. Then, the miRanda program [36] was
used to predict the target genes for all mature miRNAs.
The energy thresholds were set at<-20 kcal/mol and
other thresholds used a default value (score threshold, 120;
gap-opening penalty, -9; gap-extend penalty, —4). Then, all
ESTs sequences predicted to contain miRNA target sites,
were annotated as earlier described [16].

Gene ontology and pathway analysis

Target genes regulated by the different subgroups of miRNAs
were collected and subjected to Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGQG)
pathway analysis. Based on NCBI-nr annotation, we used
the BLAST2GO program (http://www.BLAST2go.org/)
to obtain GO annotation of every target [63]. Then, the
hypergeometric test [64] was used to classify the GO
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category, and the false discovery rate (FDR) was calcu-
lated to correct the P-value. KEGG pathway analysis
was carried out using the KEGG Automatic Annotation
Server for ortholog assignment and pathway mapping
(http://www.genome.jp/tools/kaas) [65]. The hypergeo-
metric test was used to assess the significant pathway
of enrichment.

Quantitative RT-PCR of miRNAs and their targets

A stem-loop quantitative RT-PCR was performed to valid-
ate the miRNA expression levels in each developmental
stage. Total RNA was extracted using mirVana™ miRNA
isolation kits (Ambion, Austin, TX, USA) according to the
manufacturer’s instructions. The total RNA was reverse
transcribed in a 20 pl reverse transcription (RT) reaction
using 500 ng total RNA, 1 U PrimeScript RT Enzyme
Mix I (Takara Bio, Otsu, Japan), 4 ul of 5 x RT buffer,
and 1 pl of 2 pM miRNA-specific stem-loop primers
[Additional file 1: Table S14a] designed according to
Chen et al. [28]. 5.8S rRNA was chosen as a reference
and was reverse-transcribed with a specific reverse primer
[Additional file 1: Table S14a]. The RT reaction mixture
was incubated at 37°C for 30 minutes, then at 85°C for
5 seconds. A control was set up at the same time with no
RNA input. With the cDNA products as a template, quan-
titative PCR was carried out using SYBR® Premix Ex Taq™
(Takara Bio, Otsu, Japan) in a StepOne Plus real-time sys-
tem (Applied Biosystems, Carlsbad, CA, USA). The primer
sequences are listed in [Additional file 1: Table S14a and
S14b]. A 10 pl reaction mixture including 1 pl of diluted
cDNA (1:5), 0.4 ul of each primer (10 mM), 5 pl SYBR Pre-
mix Ex Taq II and 3.6 ml H,O was placed in 0.2 ml eight-
strip PCR tubes (Applied Biosystems, Carlsbad, CA, USA).
Cycling conditions were: 95°C for 30s, followed by 40 cycles
of 95°C for 5 s and 60°C for 34 s, 72°C for 60s. For each
PCR, dissociation curve analysis was carried out to dis-
criminate the specific products from the primer dimers.
The CT-values are the average of three technical and
three biological replicates and fold changes of miRNAs
and their targets in different samples were calculated by
the 2-AACt method.

Statistical analysis

The miRNA expression levels in each developmental stage
were compared by using a two-tailed t-test. Correlation
analysis was made using the Pearson correlation coefficient.
P < 0.05 was considered statistically significant.

Additional files

Additional file 1: A file of all supplementary tables in the present
study. Table S1. Length distribution of the sequencing reads in three
libraries of E. granulosus. Table S2. Raw data filtration and distribution of
sequenced small RNAs across different categories. Table S3. All identified
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known mature miRNAs and miRNA stars. Table S4. All predicted novel
miRNA precursors in E. granulosus. Table S5. All identified novel mature
miRNAs and miRNA stars. Table S6. The conservation analysis of the

E. granulosus miRNA candidates in present E. multilocularis. Table S7.
Summary of all previously known and newly found miRNAs in

E. granulosus. Table S8. Profiles of miRNAs from adult, protoscolex (PSC)
and the cyst of E. granulosus. Table S9. The miRNAs with different
expression patterns in the different development stages of E. granulosus.
Table S10. Validation of miRNA expression patterns by stem-loop
real-time quantitative PCR. Table S11. The different expression patterns
of miRNAs in the adult or cyst compared with PSC. Table S12. Target
genes of all detected miRNAs. Table S13. Gene Ontology (GO)
abundance analysis of the putative target genes for the differentially
expressed miRNAs in E. granulosus. Table S14. Sequences of stem-loop
RT primers, forward primers and reverse primer.

Additional file 2: The secondary structure predictions and
homology sequence alignments of all predicted miRNAs.
Additional file 3: Figure S1. Confirmation of expression of novel
miRNAs using stem-loop PT PCR.

Additional file 4: Figure S2. Sequence alignment of six new E.
granulosus miRNAs in two newly found cluster.

Additional file 5: Figure S3. Stem-loop semi-quantitative PCR of six
new E. granulosus miRNAs with 5.8 s rRNA as an internal control.
Additional file 6: Figure S4. The RNA integrity (RIN) of the Samples of
the 3 different life cycle stages.
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