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Background: Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is the most widely used
method for characterizing the epigenetic states of chromatin on a genomic scale. With the recent availability of large
genome-wide data sets, often comprising several epigenetic marks, novel approaches are required to explore
functionally relevant interactions between histone modifications. Computational discovery of “chromatin states”
defined by such combinatorial interactions enabled descriptive annotations of genomes, but more quantitative
approaches are needed to progress towards predictive models.

Results: We propose non-negative matrix factorization (NMF) as a new unsupervised method to discover
combinatorial patterns of epigenetic marks that frequently co-occur in subsets of genomic regions. We show that this
small set of combinatorial “codes” can be effectively displayed and interpreted. NMF codes enable dimensionality
reduction and have desirable statistical properties for regression and classification tasks. We demonstrate the utility of
codes in the quantitative prediction of Pol2-binding and the discrimination between Pol2-bound promoters and
enhancers. Finally, we show that specific codes can be linked to molecular pathways and targets of pluripotency

Conclusions: We have introduced and evaluated a new computational approach to represent combinatorial
patterns of epigenetic marks as quantitative variables suitable for predictive modeling and supervised machine
learning. To foster widespread adoption of this method we make it available as an open-source software-package —

Background
Biochemical and structural properties of chromatin are
implicated in the function and maintenance of genomes
(e.g. [1]). Chromatin immunoprecipitation followed by
deep sequencing (ChIP-seq) is becoming the standard
method for the genome-wide mapping of histone modifi-
cations and transcription factor (TF) binding sites [2].
The analysis and interpretation of ChIP-seq data sets
is a difficult task [3]. Most of the existing analysis tools
are focused on the delineation of enriched sites from a
single sample with optional “input control” [4]. For his-
tone modifications this task becomes more challenging
as their enrichments are often weaker and less local-
ized. A number of groups have extended the peak-calling
approach to identify broad domains [5,6] or analytically
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represent ChIP-signals beyond read-counts [7]. In order
to link epigenetic marks to biological functions and pro-
cesses, peak calling has also been adapted to paired exper-
imental designs [8]. Individually, each epigenetic mark
provides some data towards understanding the structure
and biochemistry of the underlying genome. However, it
has been argued that the cooperative action of multiple
histone modifications, variants, and TFs is functionally
most informative [9,10]. Unfortunately, none of the stan-
dard peak-based method deals with multiple marks and
the reconciliation of several sets of peaks is an added
challenge [11-13].

An alternative, and orthogonal, approach is to inte-
grate individual histone modification maps to discover
latent relationships between epigenetic marks. Broadly,
these approaches fall into two categories: genome-wide
segmentation and locus-based clustering. For example,
ChromHMM and Segway [14,15] partition the genome
into epigenetically-similar regions and have been able
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to reliably associate chromatin profiles with transcrip-
tion start sites and putative enhancer regions [16].
Similarly, clustering approaches, such as ChromaSig,
attempt to identify loci with globally congruent “chro-
matin signatures”. Although the two types of methods
differ greatly in the statistical modeling of data, they
make the general assumption that a small set of “chro-
matin states” is sufficient to annotate the genome [17].
Experimental results suggests that these models are too
restricted to capture the genome-wide variability of chro-
matin patterns [16]. The number of global “chromatin
states” has been estimated to be in the several hundreds
even when only a small set of marks is used to define each
pattern [18].

Both clustering and segmentation results in the hard
assignment of a single “chromatin signature” to each
locus. This allows for certain types of functional enrich-
ment analyses [19], but is not, in general, conductive to
quantitatively link “chromatin state” to genome biology.
Regression and other supervised machine learning tech-
nique are needed to move from descriptive annotations to
quantitative and predictive models [20]. In most of these
approaches, levels of epigenetic signals are linked to a bio-
logically important readout (e.g. transcript level [21,22] or
polymerase occupancy [20]). Unfortunately, histone mod-
ifications tend to be highly correlated, which makes it
difficult to asses the relative importance of the variables
(marks) [23]. Since these problems are further exacerbated
during stepwise regression, it is difficult to explain how, in
terms of direction and strength, combinatorial interactions
between marks are linked to the biological readout [24].

Here, we describe a novel method based on non-
negative matrix factorization (NMF) to discover com-
binatorial patterns of epigenetic marks from integrated
epigenetic data sets. Locus-specific weights of these mark
co-occurrence patterns are used as quantitative variables,
suitable for regression and supervised machine learn-
ing. We are able to demonstrate that basis patterns are
quantitative predictors of biochemical activity, discrimi-
nate between classes of genomic regions, and are asso-
ciated with molecular pathways. Hence we propose to
call these patterns bona fide epigenetic “codes”. In the
remaining sections we describe the basic algorithm and its
extensions (Formulation), investigate important statistical
properties of basis patterns (Properties), and show their
utility in regression, classification, and gene set analysis
(Case Studies). A reference implementation of the method
is available at https://github.com/mcieslik-mctp/epicode
and in (Additional file 1).

Results

Formulation

The total number of distinct “chromatin states” in
the genome is likely inestimable, but clearly specific
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combinations of a small number of marks are associated
with distinct functions or region classes [18,25]. Rather
than trying to delineate global “chromatin states’, we
attempt to identify patterns of marks that frequently co-
occur in subsets of genomic regions. We anticipate marks
within a combinatorial pattern to be “written” or “erased”
by the same chromatin remodeling complex or during the
same reprogramming event, which results in their high
correlation. Along the lines of the original “histone code”
hypothesis [9] we expect these patterns to either, encode
biochemical signals that are recognized by multivalent
epigenetic “readers” [26], or to represent coordinated epi-
genetic regulation [27,28]. We introduce a method which
represents the full set of histone modifications or variants
occurring at a selected annotation class (i.e., promoters
or enhancers) across a genome in terms of a small set of
co-occurring “basis” patterns. We will refer to these basis
patterns as “codes”. In contrast to previous approaches
[16,17,25] we attempt to represent the unique “chromatin
signature” at each locus as a weighted superposition of
multiple basis patterns (i.e. each locus will be a linear
combination of several codes with non-zero weights). We
formulate the task of epigenetic code discovery in the
framework of non-negative matrix factorization (NMF)
[29,30]. This method transforms an input matrix V into
two factor matrices H and W:

V~WH

In the context of epigenomics V is a matrix of the
observed “chromatin signatures”. Each row of this matrix
is an arbitrary user defined locus e.g. a region of 2 kbp
flanking a transcription start site (TSS). Each column
quantifies the level of a histone modification and is a
function of the number of reads mapping to at least one
base pair within this locus. H is a small matrix of sparse
basis patterns, technically called basis vectors, which we
refer to as codes, and W is a matrix of weights to recon-
struct V using the codes in H (Figure 1B). Within a single
basis pattern highly correlated input variables have pos-
itive values. We observed that for epigenetic marks the
NMF algorithm yields a sparse matrix H. The result-
ing basis vectors in H are dissimilar and interpretable
e.g. (Figure 2B). Unlike other matrix factorization meth-
ods, NMF is suitable for this particular task because it
constrains both H and W to be non-negative. Given a fac-
torization V' ~ WH we can assign code labels to genes by
finding, for each gene, the code with the highest weight
in W, which is analogous to “hard” cluster assignment in
K-means [29,31].

The basic NMF procedure randomly initializes matri-
ces W and H and minimizes the reconstruction error
V — WH - difference between the actual and model out-
put values of the epigenetic factor levels — by updating
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Figure 1 NMF-based algorithms for epigenomic data. (A) Schematic representation of the transformation of ChIP-seq data. (top) transformation
of read counts into elements of the V matrix in the basic “absolute” mode. Each mark - locus combination is a single element in matrix V. Reads at
each locus are summed. Columns of V are additionally scaled. (bottom) transformation of read counts from paired samples in “differential” mode.
The differential signal is obtained by subtracting sample A coverage from sample B coverage after correction for sequencing-depth. Positive and
negative area under curve is summed (integrated) into “gain” and “loss” scores. (B) NMF factorization in the “absolute” algorithm. V matrix is the
same as the top of sub-panel (A). (C) NMF factorization in the “discriminatory” algorithm. contains two classes of loci V; and V5, which are used to
derive two independent basis pattern matrices H; and H,. All codes are concatenated and used to derive a single matrix Wi,. (D) NMF factorization
in the “differential” algorithm. The V matrix corresponds to the bottom of sub-panel (A) and contains columns for the “gain” and “loss” of each mark.

W and H using a projected gradient algorithm [32]. This
algorithm finds only local optima that depend on the
starting conditions, analogously to the common K-means
algorithm. For the initialization of the NMF algorithm
we propose to use the deterministic non-negative dou-
ble singular value decomposition (NNDSVD) technique
[33]. The NMF algorithm depends on a single param-
eter ¢ - the rank of the factor matrices, which is the
expected number of basis patterns. As with most unsu-
pervised algorithms the choice of ¢ is not straightforward.
A large c results in sparse codes and few combinatorial
interactions. Sparsity of the output is a prominent feature
of NMEF, but is further enhanced by additional constraints
[34]. In our implementation the constraints are applied to
the matrix H and thus favor combinatorial patterns of only
few histone marks. To illustrate the sensitivity of NMF to
initialization and the relative performance of NNDSVD
for epigenomic data we compared the default factoriza-
tion with a random initialization approach (Figure 2C).
We found that this approach has the smallest reconstruc-
tion error (the objective function of NMF) and largest
sparsity. Further, randomly initialized solutions tend to
have a smaller reconstruction error if their H matrix is
more similar to the NNDSVD solution (Additional file 2:
Figure S1). Together, these results show that NMF out-
put is sensitive to initialization. However, the NNDSVD

approach yields a solution that outperforms even a large
number of random runs.

We develop three complementary approaches which
apply the NMF algorithm on epigenomic profile data for
distinct tasks of prediction, classification and associa-
tion: (1) absolute, (2) discriminatory and (3) differential
(Figure 1). As shown in (Figure 1A-B), the absolute algo-
rithm performs NMF on the quantified levels of epigenetic
marks at one annotation class (e.g., promoters). The dis-
criminatory algorithm performs NMF on quantified levels
of the same set of epigenetic marks at two classes of loci
(e.g, promoters and enhancers) (Figure 1C). As depicted in
Figure 1D, the differential algorithm performs NMF on nor-
malized differential epigenetic levels — gains and losses —
between two cell lines or cell states (e.g. stem cells vs
differentiated cells).

To construct V' from genome-wide maps of multiple
histone modifications, we individually quantify and scale
“absolute” signals of epigenetic marks at each queried
locus (Figure 1A top). Each row of the input matrix V rep-
resents scaled levels of epigenetic marks within a single
locus. Some form of column normalization, or scaling, is
usually necessary to account for the differences in magni-
tudes and dynamic ranges of histone modifications, and
to reveal the patterns of interest [35]. By default we use a
sigmoid function to normalize all signals to 0 to 1 range
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Figure 2 Properties of NMF on epigenomic data. (A) Average Sparsity of factor matrices W and H as a function of ¢ calculated using Hoyer's
formula (see Results). (B) Approximate nesting of “basis patterns” for factorizations using different factorization ranks c. Nesting occurs if a lower rank
basis vector is approximately derived by adding two higher rank basis vectors. (C) NMF reconstruction error and sparsity on 1000 random
initializations of matrices H and W. NNDSVD - deterministic non-negative double singular value decomposition, random — uniformly (0 to 1 range)
random non-negative matrices. The 1000 NNDSVDar randomizations find approximately the same factorization as NNDSVD and are not shown.

as this has been shown to accelerate and improve NMF
[36,37].

Different classes of genomic regions, such as promot-
ers and enhancers, show discriminatory epigenetic pat-
terns [25]. Regulatory mechanism operating at distinct
classes often have a unique epigenetic component, such
as the activity of a specific chromatin remodeling complex
(e.g. [38]). Thus, it is reasonable to assume that specific
or enriched combinatorial patterns could discriminate

between classes of sites. To identify such specific codes
we propose the “discriminatory” algorithm (Figure 1C). In
this mode we first apply the “absolute” algorithm at each
set of k genomic regions separately and next reconstruct
a single weight matrix. Specifically, we partition input
matrix V into k sub-matrices V;, each of these matrices
is independently factored V; = W;Hj;, next we concate-
nate the k H; matrices into a single matrix H. Finally the
matrix W is obtained using non-negative least squares
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from matrices V and H. Intuitively, we first discover opti-
mal codes for each class of genomic regions and next allow
all codes to be used to describe the “chromatin signa-
ture” at each locus regardless of its class. If the epigenetic
patterns at different classes of sites have the same latent
structure, the discovered class-specific codes will be very
similar or interchangeable. In both cases codes discovered
for one class of sites will be useful to encode the epigenetic
features of other classes of loci. On the other hand, if the
latent epigenetic structure of the different region types is
dissimilar, some of the discovered codes will be discrim-
inatory and not useful to encode epigenetic features of
other classes.

Histone modification levels are dynamic and are due to
net changes in the activity of modifying enzymes called
“writers” and “erasers” [39]. Relative to a second sample
a locus might show “gain”, “loss”, or, if it is sufficiently
large, both “gain” and “loss” of a histone mark. Although
chromatin remodelling complexes often have multiple
catalytic activities and substrate cross-reactivities [40],
simultaneous changes to multiple marks at a subset of
loci might suggest a shared regulatory mechanisms or
function [41]. Therefore, we define basis patterns in the
dynamic context as coordinated changes to histone mod-
ification levels. Analogously to the “absolute” and “dis-
criminatory” cases, in “differential” mode (Figure 1D,
Figure 1A bottom), mark levels are quantified within each
query locus. However, because paired samples are typ-
ically sequenced to different depths, the mapped read
counts are normalized using the DESeq algorithm [42].
Within each locus absolute signals are transformed into
differential “gain-loss” scores (Figure 1A bottom). This
approach results in twice the number of columns in
V —two for each epigenetic mark. Histone modifica-
tion levels are spatially auto-correlated. In “absolute” and
“discriminatory” modes we rely on this property to cal-
culate average enrichment levels within a possibly large
locus. Much less is known about the auto-correlation of
differential (subtracted) levels. Therefore we divide each
locus into adjustable windows (default 100 bp). For each
window paired ChIP signals are subtracted resulting in a
net “gain” or “loss” of a histone modification. We obtain
the final per-locus “gain” score by summing the windows
with a net “gain”, and the “loss” score by summing win-
dows with a net “loss”. If the differential signal is strongly
auto-correlated most windows within a locus will show
“gains” or “losses” and the whole locus will show only
“gain” or “loss”. A simple example shows that this is not
always the case. If a peak is broadened it results in “losses”
at the summit but “gains” at the slopes. Integrating over
windows with sizes in the range of ChIP-seq resolution
(hundereds of base pairs) allows us to differentiate these
two cases. The per-locus columns are likewise scaled to
the 0 — 1 range before entering the NMF method. The
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output is similar (Figure 1D): H contains basis “gain-loss”
patterns W contains the weights associated with each pat-
tern at each locus. The difference is that now rows in the
matrix H correspond to patterns of correlated changes —
not patterns of absolute levels.

Algorithm properties

To illustrate important properties of NMF when applied
to epigenomic data we ran the “absolute” algorithm on a
relatively simple publicly available ChIP-seq data set. We
analyzed 7 histone modifications and one histone variant
(H2A.Z) mapped by the ENCODE project in the A549
adenocarcinomic alveolar basal epithelial cell line [43].
We focused on regions of TSS-proximal gene bodies since
they contain epigenetic traces of transcription initiation
and elongation, and prominently feature all probed marks.

To illustrate the dependence of ¢ on the factorization
we ran the “absolute” algorithm with all default parame-
ters and scanned ¢ values from 3 to 8. First, we quantified
the average sparsity of matrices H and W using Hoyer’s
formula [34] (Figure 2A). Hoyer’s sparsity takes on val-
ues between 0 (all vector elements equal) and 1 (single
non-zero component). We observed that the sparsity of H
increases linearly up to a knee-point at ¢ = 6, whereas the
sparsity of W is much lower and has a minimum at ¢ = 6.
This means that if ¢ is (too) high the H matrix will con-
tain many rows that have only a single mark with positive
values. Matrix W contains weights that optimally use all
codes to reconstruct the observed “chromatin signature”
at each locus (rows of V). The relatively constant spar-
sity of W suggests that at most loci multiple basis patterns
are used and superimposed (Figure 2A). An empirical
property of NMF is that the higher-rank (large c¢) solu-
tions are largely consistent with the lower-rank (small ¢)
solutions. For example, in one study involving microarray
clustering, higher resolution clusters are in general sub-
sets of lower resolution clusters [30]. To illustrate this for
basis patterns, we visualized matrices H for ¢ = (3...6)
(Figure 2B). This showed that codes obtained for higher
¢ values are, in general terms, obtained by splitting one
of the lower resolution codes into two. For example code
1 at ¢ = 4 is split into code 1 and 5 at ¢ = 5 while
the latter is further split into code 5 and 6 at ¢ = 6.
This suggests that for NMF specifying a ¢ which is (too)
small yields a solution which is consistent with a higher
(ostensibly correct) rank factorization. This type of stabil-
ity is particularly useful when analyzing the hierarchical
dependencies between histone modifications [44]. The
lower-bound of c is determined by the diversity of histone
modifications.

The most important property we would like to high-
light is that NMF basis patterns are less correlated
than the input features. Correlation heatmaps are often
used to reveal patterns of associations between histone
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modifications e.g. [45,46]. As exemplified in (Figure 3A)
these heatmaps show typically little structure beyond
the general split into marks associated with permissive
or closed chromatin, which limits their interpretability.
More importantly, the high correlation between histone
modifications is problematic for regression and some
classification methods [47]. High correlation among mul-
tiple variables in a regression model, referred to as mul-
ticollinearity, leads to poor interpretability of multiple
regression slopes [48]. In particular, it is important to test
for multicollinearity when attempting to use regression
coefficients to assess the importance of variables (here lev-
els of histone modifications and NMF basis patterns). We
compared correlations of histone modifications to corre-
lations between basis patterns (Figure 3B) and found that
codes are remarkably less correlated. According to a rule
of thumb variables that have correlation coefficients larger
than 0.8 (Spearman’s rank correlation coefficient) should
not be included together in a single model [49]. Only two
pairs of NMF codes exceed this threshold and only a single
code would need to be dropped. This is compared to 11
pairs of individual epigenetic marks that are exceedingly
correlated. If all affected marks were dropped, the pruned
model would contain only three independent variables. In
Additional file 3: Figure S2 we show an analogous compar-
ison with the difference that mark levels are calculated at
promoters and in a different cell type (see Methods).
Another important feature of the NMF algorithm
in absolute mode is the similarity of the H matrices
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across cell lines. In (Additional file 4: Figure S3) we
show the H matrices from human embryonic stem (ES)
cells (HIESCs), myoblasts (HSMM blasts), and myotubes
(HSMM tubes) derived from a set of 9 common epige-
netic marks with ¢ set to 6. In general, rows of each H
matrix are in no particular order and equivalent codes
obtained from two or more data sets have to be found
using (for example) the Munkres assignment algorithm
[52]. The NNDSVD approach initializes rows of matrix
H using SVD eigenvectors and indirectly ranks basis pat-
terns by their variance. This order is likely to be similar
between different cell lines. We observe that the matrices
are essentially the same for myotubes and myoblasts and
only slightly different for HIESCs. This suggest that the
co-regulation of epigenetic marks is not drastically chang-
ing during differentiation. To get further insight on the
complexity epigenetic patterns in terms of combinations
of the H basis patterns we applied K-means clustering to
the W matrix (Additional file 5: Figure S4). We clustered
the W weight matrix corresponding to the ¢ = 6 factor-
ization from (Figure 2B). The majority of clusters (8) is
dominated by at most 2 of the 6 codes, which means that
for the majority of genes a simple weighted sum of two
codes from (rows from H) is (globally) optimal to recon-
struct relative levels of epigenetic marks. This should be
contrasted with the hypothetical case, where most loci
have highly variable and unique code weight patterns and
the W matrix displays a second level of combinatorial
complexity.
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Figure 3 Correlation of marks and codes within gene bodies. Heat maps of Spearman’s rank correlation coefficients between epigenetic marks
(A) and NMF basis patterns (codes) (B) in promoters of protein coding genes (marks were mapped in H1ESCs). The rows and columns of both
heatmaps were sorted using Ward's clustering [50] and the cosine metric [51].
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Case studies

Regression Pol2 binding

In our formulation epigenetic patterns are quantitative i.e.
each locus has a specific non-negative weight for each
of the basis patterns. This enables us to quantitatively
link the weights of codes to functional or biochemi-
cal properties of the underlying loci. To illustrate this
we tried to predict levels of Pol2 binding at promoters
of protein-coding genes in human embryonic stem cells
(H1ESC). We compared ridge regression models, which
either included basis patterns (code-based) or individ-
ual histone marks (mark-based) as independent variables.
Levels of histone modifications and Pol2 were calculated
within 5k kbp window centered at the TSS.

To obtain the code (H) and weights (W) we applied the
algorithm in “absolute” mode on 10 histone modifications
with default parameters and ¢ = 7. The discovered codes
are shown in (Figure 4A). As expected (see Properties),
we found that codes are not significantly correlated and
that all of them should be included in the multiple regres-
sion (Additional file 3: Figure S2B). On the other hand, six
pairs of individual epigenetic marks are exceedingly corre-
lated (Additional file 3: Figure S2A). The primary reason
why highly correlated variables should not be included in
a multivariate model is that their beta regression coef-
ficients become unreliable both in magnitude and sign,
and thus their biological or physical role is difficult to
interpret. This suggests that at least three marks out of
(H3K4me2, H3K4me3, H3K9%ac, H3K27ac, H3K79me2)
should be dropped. Unfortunately, it is not a priori known
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which ones (an alternative method to establish variable
importance and mitigate effects of multicollinearity is to
inspect the output of penalized regression). The mark-
model’s performance dropped significantly from r? =
0.85 to 2 = 0.70 when we kept two marks that are known
to be associated with both recruited (H3K4me3), and
actively transcribing (H3K79me2) Pol2 [20,53]. Although
the code-based regression includes fewer independent
variables it has almost the same performance (both r? =
0.85) as the mark-based model (Table 1). An inspection of
the regression slopes (Table 1) and code values (Figure 4A)
reveals that high weights of code 6 (H3K9ac/H3K27ac)
and code 1 (H3K4me2/H3K4me3) are most positively
associated with Pol2 levels, which fully confirms a recent
study [20]. Due to multicollinearity, coefficients of the
mark-based regression are not reliable to rank variable
importance. For example, the negative beta for H3K4me3
is inconsistent with numerous reports that link H3K4me3
to Pol2 binding and transcription [54], which idictates
overfitting although a penalized regression approach was
employed.

To differentiate active transcription from promoter-
proximal Pol2 pausing we assigned each gene to the basis
pattern with the highest weight (see Formulation) and
plotted genes from select codes in the gene expression —
Pol2 level plane. This projection revealed that genes from
code 6, featuring most prominently high levels of H3K9ac
and H3K27ac, have all moderate to high levels of Pol2.
In contrast, genes associated with code 2, which is dom-
inated by H3K27me3, have uniformly low levels of Pol2.
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Table 1 Parameters and performance of mark-based and
code-based ridge regression models

Code-based Mark-based
code beta mark beta
code 1 13.48 H2AZ -1.33
code 2 1.64 H3K27ac 1.28
code 3 -24.98 H3K27me3 -0.33
code 4 12.63 H3K36éme3 0.73
code 5 6.55 H3K4mel -0.17
code 6 32.24 H3K4me2 1.17
code 7 -2.28 H3K4me3 -0.80
H3K79me2 -0.63
H3K9%ac 3.41
H4K20mel 0.73
R2 0.85 0.85
MSE 0.01 0.01

Ridge regression of Pol2 levels in promoters of protein coding genes. beta -
regression coefficients; MSE — mean squared error.

Remarkably, high levels of these activating acetylations are
not significantly correlated with gene expression, while
H3K27 tri-methylated genes tend to be expressed at a
low level. This suggests that high levels of H3K27me3 are
incompatible with Pol2 binding, and that high levels of
Pol2 are associated with K3K9ac and H3K27ac at gene
promoters but not necessarily high gene expression.

In this example we have shown that quantitative weights
of the “absolute” basis patterns can be used instead of indi-
vidual histone modifications levels as independent vari-
ables in the prediction of Pol2 binding. The code-based
model had equal performance to the mark-based regres-
sion, but included a smaller number of independent vari-
ables and alleviated problems of multicollinearity. Hard
assignment of genes to codes allowed visualization of
the regulatory differences in Pol2-recruitment and active
transcription.

Classification Pol2-bound enhancers vs. promoters

Polymerase II (Pol2) is known to localize both at promot-
ers and within intragenic regions. In HIESC preferential
association of Pol2 was observed for promoter-distal sites
enriched for p300, H3K4mel, and H3K27ac [55]. Genes in
the vicinity of these regulatory regions showed increased
expression levels, while genes that were activated dur-
ing differentiation gained Pol2 at close enhancers [56].
In differentiated cells Pol2 levels at enhancers have been
shown to change in response to stimuli and to be asso-
ciated with H3K4me3 and bidirectional transcription
[57]. These findings established that enhancers actively
engaged in transcription are occupied by the polymerase.
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The chromatin patterns of this class of enhancers show
relatively high levels of H3K4me3 and are more simi-
lar to patterns at promoters of protein coding genes. We
decided to test whether Pol2-bound enhancers and Pol2-
bound promoters can be distinguished based on levels and
multivariate patterns of epigenetic modifications.

In the same line of human embryonic cells we divided
Pol2-enriched regions into two classes. The promoter-
proximal class was defined as 2 kbp regions centered on
an Pol2 peak, that overlapped any GENCODE annotated
TSS site. All remaining 2 kbp sites centered on an Pol2
peak were classified as promoter-distal. We performed
the analysis using all promoter and enhancer regions,
but found the classification was relatively trivial because
the largest Pol2 peaks are preferentially associated with
promoter regions [55]. Thus, we challenged the classifi-
cation algorithm by rerunning the analysis excluding the
top 20 percent of peaks i.e. those with a very high p-
value of 1e-25. First, we compared the overall distribution
of histone modifications at the promoters and putative
enhancers.

We found that some marks showed relatively sim-
ilar levels (Additional file 6: Figure S5). As expected
we found substantial H3K4me3 levels at Pol2-bound
putative enhancers. Strikingly, levels of H3K4mel and
H3K4me2, which are often associated with poised or
active enhancers, were markedly higher in TSS-proximal
sites. On the other hand, H3K27ac, which is associated
with permissive chromatin, and H4K20mel/H3K79me2,
which are associated with transcriptional elongation, had
similar levels at both classes of sites. In agreement with
recent discoveries, we found that a significant portion of
intragenic Pol2 sites occurred within “poised” enhancers
that were enriched for H3K27me3 (Additional file 6:
Figure S5). Notably, while there were some informative
level differences, the distributions significantly overlapped
for the majority of marks.

To discriminate enhancer from promoter regions we
first built a series of logistic regression models. The sim-
plest models (“zero-order” models [23]) included only a
single independent variable (i.e. the normalized level of
a single histone modification). These zero-order correla-
tions directly measure the shared variance between two
variables, since they reflect the amount of variance in
the binary outcome variable that is explained by a single
continuous predictor. In addition a “multivariate” model
was built that included levels of all marks as predictors.
An analogous set of zero-order and multivariate models
was built using NMF codes. This new set of models dif-
fered from the previous in that they used weights from the
W matrix rather than levels of individual marks to per-
form the classification. We applied the “discriminatory”
algorithm and discovered optimal codes for enhancers
and promoters independently (Figure 1C, Formulation).
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Intuitively, we attempt to identify codes that are useful
to encode histone modification levels at enhancers, but
not promoters (or vice versa). We combined all codes into
matrix H and re-derived the weight matrix W. Therefore,
weights for certain codes should discriminate between
promoters and enhancers.

We trained all models using 10-fold cross-validation
and evaluated model performance on 20 percent of the
observations never used for training (Methods). We found
that both multivariate models had very good performance
(Additional file 7: Table S1) as judged by the Matthews
correlation coefficient (MCC), whereas among zero-order
models only some code-based regressions showed good
performance (Area Under the receiver operating char-
acteristic (ROC) Curve (AUC) in Figure 5, MCC in
Additional file 8: Table S2). The multivariate code-based
model outperformed the mark-based model in both per-
formance measures and achieved an almost perfect score
AUC 0.97 (Additional file 7: Table S1). The majority of
the mark-based zero-order models had similar and aver-
age performance, whereas the AUC scores of zero-order
code-based models were highly variable (Figure 5). Single
code models either outperformed all histone modifica-
tions (with the exception of H3K27me3) or were close to
the performance of random assignment (Figure 5). Impor-
tantly, the two best single-code regressions (c10 and c8)

0.75+
0.50+
&)
2
<
0.254 I
0.00+
I I I I
§ S5z % 9i:%% 2
Qo0aoaNogoRBRoRraZN SRR 2020
25236283813 shorhfenogon
3 338 2 §3INg3 3
@ o @ o Q @ a9 I
@ (] - )

Figure 5 Classification performance of individual marks and
codes. Classification performance between TSS-proximal and
TSS-distal Pol2-bound sites estimated as the area under the ROC.
Classification on individual marks or codes was done using L
penalized logistic regression and all models were trained using
10-fold cross validation and the model with the highest performance
was evaluated on a holdout set of 20 percent observations. Codes
and their weights were obtained by the “discriminatory” algorithm.

Page 90of 18

had significantly better performance than all individual
histone modifications including H3K27me3. While code
10 contained H3K27me3 together with H2A.Z, code 8 was
dominated by marks associated with elongation includ-
ing H3K36me3 and H4K20mel. This shows that the codes
had discriminating power beyond that of the best mark
(H3K27me3 in this case).

To assess the relative importance of independent vari-
ables in multivariate regression it is important not to rely
only on regression coefficients [23]. One approach is to
compare the ranking and signs of variables from zero-
order and multivariate models. We found that mark-based
logistic regressions have incongruent slope estimates. For
example beta coefficients of three marks change signs
between the two models. Also the ranking of the beta
coefficients are not even approximately maintained and
do not track model AUCs (data not shown). In the mark-
based case it was difficult to ascertain which histone
modifications discriminate enhancers from promoters. In
contrast regression on codes yields models that are eas-
ier to interpret. Specifically, codes with large zero-order
coefficients were also relatively important in the multi-
variate model, which largely maintained the rank-order of
variables (Additional file 9: Figure S6). Also, codes with
the largest multivariate coefficients consistently showed
the best zero-order predictive performance (Figure 5B).
Several codes have very small zero-order coefficients and
AUCG:s, but relatively large multivariate slopes. Likely, these
codes are not important and could be dropped from the
multivariate model.

The code-based approach allowed us to identify which
patterns of histone modifications discriminate between
Pol2-bound promoters and enhancers (Figure 6 and
Additional file 10: Figure S7). Most strikingly, we found
that promoters and enhancers were separated by codes
with high levels of H2A.Z. In the context of promoters
H2A.Zislinked to H3K4me2 and H3K4me3. At enhancers
H2A.Z frequently co-occurs with H3K27me3 or in a com-
plex pattern with H3K4mel, H3K9ac, and H3K27ac. This
explains why the variant on its own is unable to differen-
tiate sites (Figure 5, Additional file 9: Figure S6A). Recent
findings on the functional and mechanistic roles of H2A.Z
allow us to give plausible interpretations of the codes: At
the TSS H2A.Z levels and close positioning have been
shown to positively correlate with gene expression and
Pol2 occupancy [58], also high levels of H3K4me2, and in
particular H3K4me3, are generally associated with active
promoters. Hence, code 1 is likely associated with genes
that are transcriptionally active in the ESC state. H2A.Z
has been shown to be associated both with poised and
active enhancers in ESC [59]. It has been proposed to
act as a general facilitator of genome accessibility due
to its role in the maintenance of pluripotency and dif-
ferentiation [39]. The two H2A.Z-loaded enhancer codes
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were reconstructed using all 12 basis patterns (Figure 10C).

Figure 6 Code-based classification of Pol2-bound promoters and enhancers in ES cells. Parameters of a multivariate penalized logistic
regression model using code variables. Codes and their weights were obtained by the “discriminatory” algorithm. (A) Basis patterns associated with
the six coefficients with the largest magnitude (B) Coefficients of all basis patterns, where positive and negative values indicate propensity towards
TSS-proximal and TSS-distal regions, respectively. In total 12 codes were trained: 6 on TSS-proximal and 6 on TSS-distal regions. The weights in W
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(10 and 7) seem to reveal this context dependent role
of H2A.Z. In code 10, H2A.Z is in a repressive con-
text with H3K27me3 and presumably identifies enhancers
poised for expression during differentiation while in code
7 H2A.Z co-occurs with permissive acetylations and the
base-line enhancer mark H3K4mel [60,61]. Code 7 high-
lights features of enhancers active in the pluripotent state.

Surprisingly, both enhancers and promoters, are asso-
ciated with codes dominated by histone modifications
associated with transcription elongation. At promoters
this code is very sparse and contains non-zero values
for H3K36me3, H4K20mel (both high), and H3K79me2
(low). At putative enhancers the code is slightly different
as it does not contain H3K79me2, but includes H3K9ac
and H3K27ac at low levels. Recently it was shown that
H3K79me2 is most enriched at 5’ ends of genes, slightly
downstream of H3K4me3, but before the classic elonga-
tion associated mark H3K36me3 [62]. Thus, it is expected
to occur at promoter proximal Pol2-bound regions. To the
contrary, active enhancers are sometimes found in introns
of transcribed genes. This dependency between active
transcription and activation of enhancers in the gene body
appears to be captured via code 7.

In total, these results suggest that the discovered
basis patterns capture dependencies between marks that
discriminate Pol2-bound enhancers or promoters. The

factorization approach successfully de-correlated epige-
netic marks, which resulted in an interpretable multi-
variate classification model. Further, the discovered codes
are consistent with known epigenetic mechanisms and
features that regulate Pol2-dependent transcription in
pluripotent cells.

Gene set enrichment analysis

In the previous analysis we have compared “absolute” lev-
els of histone modifications at multiple classes of loci to
discover patterns of co-occurring marks that discriminate
among them. Somewhat analogously, histone modifica-
tion levels can be compared between two experimental
conditions. Intuitively, the idea is that patterns of co-
occurring changes to mark levels could be used to identify
loci that are subjected to coordinated epigenetic regu-
lation. Differentiation is a highly regulated process and
specific reprogramming mechanisms could result in sim-
ilar epigenetic changes at functionally related genes. In
other words, genes that share combinatorial patterns of
changes could have some common molecular functions or
participate in related pathways.

To test this hypothesis we applied the “differential” algo-
rithm (see Formulation) to histone modification data in
myoblasts and myotubes. The alignment of myoblasts into
myotubes represents an important step in myogenesis
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and is an example of differentiation. Thus, by comparing
the epigenetic state of myotubes to myoblasts we hope
to discover patterns of epigenetic changes that are asso-
ciated with genes that undergo coordinated epigenetic
reprogramming during myogenesis [63]. We obtain basis
“gain-loss” patterns from the observed epigenetic changes
at promoters of protein coding genes (see Formulation
and Methods). The number of codes represents a signifi-
cant reduction from the 24 input variables — the 12 gains
and 12 losses of epigenetic marks (Figure 7). Still, the
codes are relatively sparse and most variables take signif-
icant values in only a small number of codes. It should
be noted that the codes are not gain- or loss-specific and
gains of certain marks are linked to losses of other marks.
For example, one pattern highlights H3K4me3 and H2A.Z
loss linked to an increase in DNase I accessibility and gain
of H3K4me2 (code 4, Figure 7).

We tested whether any of the basis patterns are enriched
for Gene Ontology (GO) terms, biochemical pathways,
or experimental molecular signatures [64]. Specifically,
we evaluated the strength of positive association between
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the weights of each code at each locus with functional
annotations of the underlying loci (see Methods). We
have chosen the random-set method [65] to quantify
the enrichment, but other methods including the Gene
Set Enrichment Analysis (GSEA) [66] and the Fisher’s
exact test are equally applicable. Surprisingly, we found
only one statistically significant (after False Discovery
Rate (FDR) correction) GO term: code 5 was found to
be associated with genes involved in the cell cycle (p-
value: 6.20e-17). Several codes are significantly associated
with specific pathways (Table 2). Broadly, membrane pro-
teins and specifically G protein-coupled receptors (GPCR)
have increased weights of the repressive code 2; code
3 is linked to genes involved in transcription; splicing
and translation; finally, genes involved in the cell cycle
are, again, associated with higher levels of code 5. These
pathways are critical to myogenesis. During differentia-
tion myoblasts exit the cell cycle and increase protein
synthesis to expand the myofibrillar muscle cell com-
partment [67]. Fully mature muscle cells express tens of
different GPCR receptors [68]. Many of which have been
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Figure 7 “gain-loss” codes of epigenetic reprogramming during differentiation. Graphical representation of the H factor matrix of the
“differential” algorithm. Rows correspond to “gain-loss” basis patterns, columns to both gains and losses of epigenetic marks. The height of each bar
is equal to the loading of a mark gain or loss on a code. Columns are grouped based on the direction of epigenetic change (“gain” or “loss”). Within a
single code it is rare to observe both a significant “gain” and “loss” of the same mark. Most mark changes have significant loading in two codes with
the exception of H3K9me3 gain and H3K27me3 loss. The majority of patterns combines “gains” and “losses”of multiple marks.
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Table 2 Statistical association of epigenetic remodelling patterns and molecular pathways during myoblast

differentiation

Code Pathway identifier in MSigDB p-value (FDR)
code 2 REACTOME_GPCR_LIGAND_ BINDING 1.25E-48
code 2 REACTOME_CLASS_Al_ RHODOPSIN_ LIKE_RECEPTORS 5.80E-39
code 2 KEGG_NEUROACTIVE LIGAND RECEPTOR INTERACTION 1.57E-34
code 2 REACTOME PEPTIDE LIGAND BINDING RECEPTORS 2.00E-32
code 2 KEGG_OLFACTORY_ TRANSDUCTION 2.09E-17
code 2 KEGG_CYTOKINE_ CYTOKINE RECEPTOR_INTERACTION 4.39E-12
code 3 REACTOME_GENERIC_TRANSCRIPTION_ PATHWAY 1.18E-11
code 3 REACTOME TRANSCRIPTION 3.38E-08
code 3 REACTOME NONSENSE MEDIATED DECAY ENHANCED. .. 1.41E-06
code 3 REACTOME_METABOLISM OF PROTEINS 3.68E-06
code 3 KEGG_SPLICEOSOME 3.68E-06
code 3 REACTOME_MUSCLE_CONTRACTION 6.62E-06
code 4 REACTOME_CELL_CYCLE_MITOTIC 1.88E-07
code 5 REACTOME CELL_CYCLE 2.28E-68
code 5 REACTOME CELL CYCLE MITOTIC 4.19E-48
code 5 REACTOME_TRANSCRIPTION 7.90E-35
code 5 REACTOME_MITOTIC_M M _G1_PHASES 1.10E-31
code 5 REACTOME_DEPOSITION OF NEW_CENPA ... 1.69E-28
code 5 KEGG_SPLICEOSOME 2.32E-27
code 6 REACTOME CELL CYCLE 2.15E-06
code 8 REACTOME_GENERIC TRANSCRIPTION PATHWAY 1.64E-09

For each of the “gain-loss” basis patterns only the most significant (FDR-corrected) terms are shown for each code. Pathway gene annotations and identifiers are from
MSigDB, but are originally sourced from KEGG and Reactome. Codes that did not have any significant terms at the 1E-6 level were omitted.

shown to enable muscle function by regulating growth,
contractility, and glucose uptake. However, the genes asso-
ciated with code 2 (neuroactive (p: 1.57e-43) and olfactory
(p: 2.09e-17) GPCRs) are transcriptionally silenced as cells
transition from myoblasts to myotubes. Among molecu-
lar signatures we found over 350 highly enriched terms
(p: 1le-10) (Additional file 11). The most significant associ-
ation was between targets of E2F4 and the “gain-loss” code
5 (p: 8.54e-156). E2F4 is a transcriptional regulator with
a specific role in the repression of cell-cycle genes and
ability to recruit HDACI-containing co-repressor com-
plexes [69]. It is notable that the most prominent feature
of code 5 is the loss of H3K9ac and H3K27ac. Although
HDAC:s have relatively low substrate specificity, which is
dependent on their co-factors, HDAC1 has been recently
implicated in the specific deacetylation of H3K9 [70].
A prediction based on this analysis is that H2A.Z lev-
els increase at cell cycle genes repressed during myoblast
differentiation. Taken together these results suggest that
during myogenesis distinct patterns of net gains or losses
of epigenetic marks are associated with functional classes
of genes.

Myoblasts are embryonic progenitor cells with myo-
genic potential. They are more differentiated than ES
cells, but markedly less than myotubes. Expression of
pluripotency factors can either abrogate differentiation
into myotubes or elicit reprogramming of myoblasts into
induced pluripotent stem cells (iPSC) [71,72]. We hypoth-
esized that targets of pluripotency factors which are
silenced during differentiation will share an epigenetic
signature of their repression. We found that experimen-
tal targets of several pluripotency factors, including MYC
(c-Myc), NANOG, POUSF1 (Oct4), and SOX2, are all
strongly associated with the repressive “gain-loss” code
5 (Additional file 11). Further significant enrichments
were observed for other “pluripotent” gene categories
including the protein-protein interaction network shared
among pluripotent cells (PluriNet) [73], and the core
ESC-like module [74], which includes genes coordinately
up-regulated in a compendium of ESCs. We decided
to test whether these enrichments are due to the spe-
cific combinatorial pattern of gains and losses captured
by code 5, or alternatively could be explained by any
of the individual marks (Figure 8). We found that each
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Figure 8 Epigenetic reprogramming of the pluripotency
network. Association of histone modification changes and NMF
codes with genes involved in pluripotency. Myc/Max, Nanog, Oct4,
Sox2 are shorthand for experimental targets of these TFs in human
embryonic stem cells. PluriNet are genes involved in the
protein-protein interactions networks discovered in pluripotent cells.
Stem are genes up-regulated in embryonic stem cells shared
between mouse and human. The five marks or codes most

significantly (p-value) associated with each group of genes are shown.

category of pluripotent genes is more strongly associ-
ated with code 5 than with any of the single epigenetic
marks. Further, the association of other epigenetic marks
within the six categories was inconsistent and no sin-
gle mark could be chosen as a strong proxy for code 5.
This suggests that promoters of genes that maintain the
pluripotent state are epigenetically silenced in a coor-
dinated way and that this is captured by one of the
“gain-loss” epigenetic “codes”. Other patterns of silenc-
ing i.e. codes 4 and 6 which display loss of H3K4me3/
H2A.Z and H3K4me2/H3K4mel/H2A.Z, respectively
are not consistently associated with the pluripotency
categories.

Discussion

We have introduced a new computational technique
to discover combinatorial patterns of histone modifica-
tions. At its core this method relies on non-negative
matrix factorization (NMF) to separate the complex
“chromatin signatures” at genomic loci into small basis
patterns we refer to as codes. These simple parametriza-
tions of the data reveal frequently co-occurring marks,
which could potentially be read by multivalent chromatin
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complexes, or represent differential signatures of coordi-
nated epigenetic reprogramming. Most importantly, the
application of NMF results in dimensionality reduction
and de-correlation, but maintains the quantitative aspect
of epigenetic mark levels.

NMF is one among many matrix factorization algo-
rithms. Results from alternative methods are different due
to the difference in the imposed factorization constraints
and objectives. Principal component analysis (PCA) con-
strains H to be a set of orthonormal vectors; vector
quantization (VQ), which is equivalent to K-means, con-
strains W to contain vectors with one non-zero value;
while NMF imposes that W and H are non-negative.
These constraints result in fundamentally different out-
puts. PCA favors global reconstruction, which means
that every element in V' is reconstructed through com-
plex cancellations of positive and negative values in W
and H. PCA allows basis vectors (principal component,
PC) in H to be ranked by importance. The reconstruc-
tion error increases when the least important PC is
omitted, but the “coarse” global features of input data
are preserved. On the other hand NMF basis vectors
cannot be dropped, since it would result in the loss
of important parts of (a subset of) the reconstructed
vectors.

While PCA dimensions do not resemble any particu-
lar data point or combination of data points, NMF basis
vectors can be readily interpreted as patterns of fre-
quently co-occurring histone modifications. Only a small
number of these codes is sufficient to reliably recon-
struct the observed “chromatin signatures” at thousands
of loci and, as shown by our analyses, to preserve, or
even boost, biological information. Although with respect
to the mean squared error (MSE) PCA is theoretically
optimal for reconstruction, NMF can perform better for
classification [75] or recognition [76]. In some sense NMF
returns results that are in between PCA and VQ. In
VQ each data point is locally approximated by a sin-
gle cluster centroid, PCA uses all available components,
while in NMF typically few, but not all, basis vectors are
required to represent a single data point. If the goal is
to assign loci to epigenomic states a form of clustering is
preferred as cluster centroids are often intuitively under-
stood. PCA will perform best if the number of histone
modifications is large but one desires only few basis vec-
tors (principal components). As illustrated in this paper
NMEF basis vectors perform well in supervised machine
learning. An alternative and analogous approach, known
as principal components regression, is to use weights of
principal components instead of weights of NMF basis
vectors. An advantage of NMF is the physical inter-
pretability of the its basis vectors. Conversely, the optimal
reconstruction error of PCA might be important for very
simple models.
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Conclusions

We have shown that NMF applied to epigenetic marks
yield sparse codes with an important nesting property.
Further we have demonstrated the benefits of using codes
over individual marks in predictive modeling of Pol2-
binding. In particular, dimensions obtained from NMF are
less correlated than the individual marks, and problems
resulting from multicollinearity are alleviated. In addition
we developed two variants of the basic algorithm which
extended its applicability to multiple classes of genomic
regions and paired experimental samples. We have shown
the excellent performance of codes for the classification
of Pol2-bound enhancers and promoters. The most dis-
criminatory codes highlighted the context-dependence of
H2A.Z, which is consistent with current knowledge on the
role of this histone variant in the regulation of transcrip-
tion in ES cells [59]. To showcase the algorithm for paired
experimental samples, we analyzed chromatin remodel-
ing during myogenesis. We established that genes from
pathways involved in protein synthesis (anabolism), the
cell cycle, and signaling from G protein-coupled receptors
show unique patterns of chromatin activation or silencing.
Finally, we were able to show that target genes of pluripo-
tency factors are also associated with the same chromatin
remodeling pattern [77].

In summary, we have introduced a general NMF-based
approach to represent combinatorial patterns of epige-
netic marks as quantitative variables. We have shown
the utility of this representation for predictive model-
ing, supervised machine learning and gene set analysis.
Hence, this technique is complementary to more descrip-
tive methods aimed at “chromatin pattern” discovery such
as genome-wide segmentation and clustering.

Methods

Implementation

All three variants of the presented NMF-based algorithm
are provided as the epicode open-source software pack-
age. The software provides all that is required to dis-
cover basis patterns from aligned sequencing data and
sets of user-provided reference regions. Epicode pro-
vides three modes of operation: “absolute” and “discrim-
inatory” and “differential”. In the “absolute” mode the
user is expected to provide a set of genomic loci (in a
UCSC Browser Extensible Data (BED) file) of interest and
aligned sequencing data for a single experimental con-
dition (in Binary sequence Alignment/Map (BAM) files).
The regions can be global such as promoters of protein
coding genes or specific subsets e.g. “putative enhancers of
expressed miRNAs”. The input sequencing data are typ-
ically histone modifications mapped in a single cell line
and experimental condition. In the “discriminatory” mode
the user provides two sets of loci e.g. enhancers and pro-
moters. The “differential” mode requires a single set of
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genomic regions, but two sets of sequencing data, which
correspond to the same marks mapped in two conditions
or cell lines.

We have implemented epicode as a Python 2.7 software
package, and also provide a command-line executable.
The code should run on UNIX-like operating systems and
has been tested on Linux (Arch, RHEL 6). Dependencies:
several Python packages are required by epicode, includ-
ing NumPy [78], SciPy [79], scikit-learn [80], and pysam.
Input formats: the tool is designed to work with stan-
dard file formats. Reference genomic sites are expected in
the BED6+ file format [81]. Sequencing data is read from
coordinate sorted BAM files [82]. Output: Results are
reported in a machine-readable tab-delimited file format.
Scripts in the R language are provided to generate pub-
lication quality figures from one of the output files. The
current implementation of Epicode is IO-bound mean-
ing that the majority of time is spent in reading the BAM
files. The factorization takes typically less than 5 minutes
on a single Intel(R) Xeon(R) CPU E5-1620 0 3.60 GHz
core. Reading the BAM files takes up-to 30 minutes using
four cores and strongly depends on the hard-drive speed.
6. URL and license for software should be mentioned in
manuscript. The software is freely available (MIT license)
at https://github.com/mcieslik-mctp/epicode.

Throughout the manuscript epicode has been used with
all default parameters (as of version 1.0), with the excep-
tion of the “differential” algorithm for which a step of 50
was chosen.

Data normalization

To construct matrix V from sorted BAM files, individual
reads are counted within regions (lines) of the user pro-
vided BED files. Each read that overlaps the target region
is counted towards that region. All columns (marks) of
V are scaled from 0 to 1 using a sigmoid function such
that the mapping is approximately linear up to the 95th
percentile [36].

=2/1+e %MWy _1

Here, u is the 95th percentile of the values in vector
x and & is the scaled vector. The scaling is done before
factorization. In “differential” mode enrichment signals
(Figure 1D) are windowed and corrected for sequencing-
depth (i.e., normalized) using the provided Python imple-
mentation of the DESeq algorithm [42]. After subtraction
the window scores are summed to overall “gain” (posi-
tive integral) and “loss” scores (negative integral) for each
locus. “Gain-loss” scores are likewise sigmoid scaled.

Enrichment analysis

Associations of functional gene sets with mark levels
and basis pattern weights were done using the random-
set method [65]. (an implementation of the random-set
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method is included in the source-code distribution of epi-
code). Annotations for Ensembl genes were obtained from
MSigDB [64] (msigdb.v3.1.entrez.gmt) and re-mapped
from Entrez gene ids (EG) onto GENCODE V14 genes
[83] using identifier maps (EG to ENSG) from Ensembl
(current as of Apr 20th 2013). Association p-values
(obtained from the random-set method) were FDR-
corrected (BH-method [84]) over the whole 8513 terms in
the MSigDB database (which is more stringent), but we
reported on associations from different classes of MSigDB
gene sets individually, since different types of gene sets
have different distributions of association p-values (exper-
imental gene sets are typically more closely correlated
than literature-derived).

Data sources

All raw sequencing data used in the case studies were
downloaded from the ENCODE project website as
FASTQ files. We included all available histone modifica-
tion data sets for four cell lines A549, HIESC, HSMM,
and HSMMT, with the exception of H3K36me3 in A549
because of poor reproducibility of this dataset between
replicates. Additional Pol2 (ChIP-seq), expression (RNA-
seq), and DNase accessibility (Digital Genomic Footprint-
ing (DGF) and DNase-seq) data sets were downloaded for
HI1ESC. In the case of histone ChIP-seq and DNase acces-
sibility, reads from multiple replicates (BAM files) were
combined into a single BAM file using samtools merge.
List of all analyzed files in included in in Additional file 12.

Data processing

We used Bowtie2 [85] with all default settings and indexes
for the HG19 genome build (ftp://ftp.ccb.jhu.edu/pub/
data/bowtie2_indexes/hgl9.zip) for all alignments. To
count exonic RNA-seq reads we used the HTSeq tool [42]
with default settings on the GENCODE-provided General
Transfer Format (GTF) file. To estimate expresssion levels,
read-counts for each gene were normalized by total exon
length, averaged over replicate samples, and finally scaled
to the 0 to 1 range using the same sigmoid function.

Supervised machine learning

Predictive modeling (ridge regression, penalized logistic
regression) was done using scikit-learn. All model param-
eters, including penalty type (11’ or ‘12’) and regularization
strength C (1, 2, 5, 10, 50, 100, 500), were trained using
10-fold cross-validation. All cross-validated models used
‘12’ penalty and C = 1. Models were evaluated on 20 per-
cent, using scripts included in scikit-learn, on hold-out
data which was never used for training or cross-validation.

Evaluation of initialization methods
Three initialization methods were evaluated NNDSVD,
random, and randomized NNDSVD (NNDSVDar). In the
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random initialization both W and H matrices are filled
with random uniform numbers (0 to 1 range). In the
NNDSVDar only zero elements (after NNDSVD) are set
to small (close to 0) random numbers. The NNDSVD
approach is deterministic and is described in detail in
[33]. To evaluate similarity between two H matrices we
use the Munkres algorithm to establish the minimum cost
assignment. To find this minimum it is necessary to pair
the most similar rows. Similarity of a pair (cost) is eval-
uated based on the Euclidean distance. The minimum-
cost assignment of basis vector pairs is found using the
Munkres algorithm [52] i.e. a set of pairs is found that
minimizes the global cost. We calculate sparsity using
Hoyer’s formula.

Additional files

Additional file 1: Python source-code archive.

Additional file 2: Figure S1 Reconstruction error of NMF runs based
on random initializations. Reconstruction error of 1000 NMF runs plotted
as a function of the similarity of the factorization to the reference matrix H
obtained using NNDSVD. The factor matrices are initialized using random
positive numbers. Similarity between two H matrices is obtained by
calculating the minimum euclidean distance between their basis vectors
(see Methods). The approximately linear trend shows that solutions that
are most similar to NNDSVD have the smallest reconstruction error. Very
few solution with a small reconstruction error are dissimilar to the NNDSVD
output.

Additional file 3: Figure S2 Correlation of marks and codes within
promoter regions Heat maps of Spearman’s rank correlation coefficients
between marks and NMF basis patterns (codes) in bodies of protein coding
genes (marks were mapped in A549 cells). The rows and columns of both
heatmaps were sorted using Ward's clustering and the cosine metric. None
of the code-correlations exceeds 0.6, which suggests that all variables
should be included in the regression.

Additional file 4: Figure S3 Universality of the H matrix. Graphical
representation of H matrices derived for cell types at various levels of
differentiation. Levels of epigenetic marks were quantified at promoters (1
kbp windows which include 900 bp upstream and 100 bp downstream of
the TSS) of protein coding GENCODE genes. The “absolute” algorithm was
applied for ¢ = 6 with all standard settings. HIESC - H1 human embryonic
stem cells, HSMM blast - myoblast cells, HSMM tube - myotube cells.

Additional file 5: Figure S4 Clustering of the W matrix. K-means
clustering heatmap of the W matrix. The K-means algorithm was applied
for k = 12 to the code weight matrix corresponding to (Figure 2B, ¢ = 6)
using Euclidean distance and median centroids. Clusters were ordered
according to a hierarchical clustering of their medians.

Additional file 6: Figure S5 Epigenetic mark levels at TSS-proximal
and TSS-distal Pol2-bound sites. Box plots of sigmoid-scaled levels of
histone modifications at 2 kbp sites centered around a Pol2-peak summit.
(up) TSS-proximal sites overlapping a TSS site known to GENCODE.
(bottom) TSS-distal sites. Boxes indicate medians and 25th and 75th
percentiles. Whiskers extend to 1.5 time the interquartile range (IQR) or
roughly the 95th percentile.

Additional file 7: Table S1 Classification performance of mark-based
and code-based logistic regression in the classification of Pol2-bound
sites.

Additional file 8: Table S2 Parameters of penalized logistic
regression models: supervised classification of Pol2-bound
TSS-proximal and TSS-distal sites.

Additional file 9: Figure S6 Coefficients of penalized logistic
regressions for the classification of TSS-proximal and TSS-distal
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Pol2-bound sites. (A) Bar charts of regression coefficients for multivariate
(top) and zero-order (bottom) mark based logistic regressions models. (B)
Bar charts of regression coefficients for multivariate (top) and zero-order
(bottom) code-based logistic regressions models.

Additional file 10: Figure S7 Code-dependent distribution of
TSS-proximal and TSS-distal Pol2-bound sites. Each input site was
assigned to the discriminatory epigenetic code for which it had the highest
loading. For each code the number of TSS-proximal and TSS-distal
Pol2-bound sites is plotted.

Additional file 11: Statistical association of epigenetic remodelling
patterns and molecular signatures during myoblast differentiation.

Additional file 12: List of analyzed datasets.
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