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Abstract

Background: RNA-seq, based on deep-sequencing techniques, has been widely employed to precisely measure
levels of transcripts and their isoforms expressed under different conditions. However, robust statistical tools used
to analyze these complex datasets are lacking. By grouping genes with similar expression profiles across treatments,
cluster analysis provides insight into gene functions and networks that have become increasingly important.

Results: We proposed and verified a cluster algorithm based on a skellam model for grouping genes into distinct
groups based on the pattern of gene expression in response to changing conditions or in different tissues. This
algorithm capitalizes on the skellam distribution to capture the count property of RNA-seq data and clusters genes
in different environments. A two-stage hierarchical expectation-maximization (EM) algorithm was implemented

to estimate the optimal number of groups and mean expression levels of each group across two environments.

A procedure was formulated to test whether and how a given group shows a plastic response to environmental
changes. The model was used to analyze an RNA-seq dataset measured from reciprocal crosses of early Arabidopsis
thaliana embryos that respond differently based on the extent of maternal and paternal genome contributions,
from which genes associated with maternal and paternal contributions were identified. Simulation studies were also
performed to validate the statistical behavior of the model.

understanding of gene functions and networks.

Conclusions: This model is a useful tool for clustering gene expression data by RNA-seq, thus facilitating our
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Background

The transcriptome is the total set of transcripts in a given
organism at a specific developmental stage or under
external environmental condition. Understanding the
transcriptome is therefore essential to interpret the rela-
tionship between genome and organism function. Tran-
scriptomics can be used to gain considerable biological
insight by cataloguing all species of transcripts, determin-
ing the transcriptional structure of genes, and quantifying
the changing expression levels of each transcript under
various conditions [1-3]. RNA-seq, a next-generation
sequencing technique, quantifies the transcriptome at a
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given moment in time, allowing for a better understanding
of genome structure, gene expression patterns and gene
regulatory networks [4,5]. The organism can alter tran-
scriptome levels and pattern responses to environmental
changes [6,7]. RNA-seq is a powerful tool used to identify
specific genes associated with adaptive environments; such
studies can assess genes involved in adaptation to environ-
mental changes, particularly under different stresses or in
various developmental stages. We hypothesized that, while
an organism responds to growth conditions, particular en-
vironmental cues cause differential expression of its genes
at a level that can be detected by RNA-seq. By profiling
transcriptional changes induced by environmental changes,
it is possible to identify gene regions or pathways that are
likely to be targets of selection. This information is import-
ant to enable researchers to assess variation across gene
regions, on a landscape scale, to predict the capacity of
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organisms to adapt to different conditions. Recently, RNA-
seq experiments have evaluated differential mRNA process-
ing events along the developmental gradient, as well as in
different tissues, to account for the reaction norms of gene
expression profiles [8-10]. In addition, RNA-seq has been
used to assess the physiological response of organisms at
different spatial scales and gain more insight into adaption
mechanisms [11].

To better understand responses of gene expression to
growth conditions, cluster analysis has been used as a
powerful computational tool to divide genes into groups
according to their expression patterns. In biology, cluster
analysis is implied by the basic assumption that a gene
expression profile may have similar features within the
group [12-14]. Despite their widespread use, traditional
approaches, such as hierarchical clustering algorithms and
k-means algorithms, are largely heuristic, lacking a strin-
gent inference about the underlying biological mecha-
nisms. On the other hand, a model-based clustering
approach assumes that the data are generated by a mix-
ture of the underlying probability distribution compo-
nents, in which a different group or cluster represents a
component [15-18]. Also, this approach is flexible in
choosing the component distribution and obtaining
density estimation for each cluster. Nevertheless, most
existing approaches for model-based cluster analysis have
several limitations. First, the level of gene expression de-
termined by RNA-seq is represented by the abundance of
short reads, mapped to the reference, which is defined as a
set of exons [19]. In practice, model-based cluster analysis
is computationally difficult, especially because some genes
are expressed at a very high level. In general, to discover
important biological changes in expression and eliminate
calculative hardship, normalization continues to be an
essential step in the analysis, but most normalization
methods neglect data features [20]. As a type of count
data, three discrete probability distributions: binomial,
Poisson and negative binomial (NB), have been used to
model RNA-seq data [21-23].

Second, a regular RNA-seq experiment designed is to
compare gene expression levels between test conditions.
By comparing differential expression across treatments,
one can characterize key genes that regulate the pattern of
an organism’s response to rapid and stochastic environ-
mental changes. Joint clustering for expression amounts
in different treatments has been developed [24], but this
strategy may not be sensitive to identify the differential re-
sponse of genes to environmental changes, i.e., phenotypic
plasticity [15]. The phenotypic plasticity of a gene can be
expressed as the difference or ratio of expression amounts
of the gene between two particular treatments. Since the
difference and ratio of two Poisson variables requires
totally different treatments of statistical modeling, we
will, in this study, focus on model-based clustering for
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treatment-dependent differences to accommodate envi-
ronmental impact.

Although some attempt has been made to overcome the
first limitation [24], simultaneous treatment of the two limi-
tations has not been explored in the literature. Here, we de-
veloped a computational model that clusters the differences
between two statistically independent random variables,
each having a Poisson distribution. Since the difference of
two Poisson variables follows a skellam distribution [25],
skellam parameters were implemented within a mixture
model framework in which each component is represented
by a distinct pattern of expression differentiation. Model
parameters are estimated through the two-stage hierarch-
ical expectation—maximization (EM) algorithm. Mean level
of gene expression for a group is calculated for different
environments, allowing us to compare the response level of
gene expression to environmental changes. Results from
this skellam model will obtain diverse insight into the
genetic basis underlying adaptation to environments. The
skellam model was used to analyze an RNA-seq dataset
collected for early Arabidopsis thaliana embryos derived
from reciprocal crosses in the one-to-two-cell stage [26]. By
comparing it with conventional k-means and self-
organizing mapping approaches, we show that the new
model is statistically more powerful for gene clustering.

Methods

Mixture model-based likelihood

The most common type of transcriptome study is car-
ried out to measure the response of organisms to two
treatments. This type of analysis is especially useful for
comparison of expression in different organs, treated
versus untreated conditions in the same tissue, or study-
ing the difference between reciprocal crosses, etc. Sup-
pose we obtain a transcriptome dataset in which the
organism is measured for reads of # genes with two
treatments (1 and 2), and expression reads of gene i are
denoted as X; and Y}, respectively. In general, genes that
are differentially expressed can be identified by deter-
mining differential expression between treatments. To
assess gene expression changes across treatments, clus-
ter analysis is a powerful tool for analyzing gene expression
levels according to different patterns of gene expression.
Therefore, we can discern different groups of genes per
their functional similarities and differences in their plastic
responses to changes in environment.

For any gene i, it should arise from one of the J groups
that are classified on the basis of two expression values
with two treatments. The joint likelihood of the expres-
sion data z; = (X; - Y;) of n genes is written as

n

L(©f) = [[[mf1(z) + ... + mif ()] (1)

i=1
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where 6 represents a set of unknown parameters, 7; rep-
resents the probability of group j(j=1,...,J) in the total
genes, and f(z;) represents the density function of two
expression difference values for gene i that belongs to
group j with the two treatments.

We used a skellam distribution function to describe
fi(z), which is specified by the mean values of gene
expression with treatment 1(6;1) and 2(6),). Let X; and
Y; denote two independent random Poisson variables
with mean 6;;, 6,, for group j, respectively. The two
variables are expressed as one independent random
variable: z;=X,-Y;. A skellam distribution of z; for
gene i is described by a probability density function,
expressed as

(6165)"
) (Zl' + k)'k'

(2)

where 6;; and 6, represent the mean expression values
of all genes that belong to group j in treatment 1 and 2,
respectively, with the two parameters arrayed in A;= (6,1,
05). Here, fi(z;) in the mixture model (1) is specified by f;

(Z= ZilA/')~

f(Z=z|N) = exp(-(60 +62))65 D
k= max(0,-z,

Estimation via the EM algorithm
Maximum-likelihood (ML) estimation is more compli-
cated since the likelihood involves the modified Bessel
function. If the true data X; and Y; are observed, then
the estimation is straightforward since their means
would be the ML estimates for Poisson parameters.
Here, an EM-type algorithm is constructed based on
the missing data representation of difference values Z.
Unlike a general skellam model, the likelihood of z; is
formulated within a mixture-model framework (1), whose
estimation is based on implementation of the EM algo-
rithm. Thus, we implemented a two-stage hierarchical
EM algorithm to estimate the parameters A; of the like-
lihood (1).

In the E step, we calculate the conditional expectation
of X; by

Sl(t) = E(X,'|Z,’, Al(til))
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x X E P f(Xi=xY;, =x-z)
J -1
%=0 E ,:lﬂft )f/(Z =z)

]

U

J (¢-1) (¢-1)
> (ZiV\f )

J -1)_ (-1 -1
O )

Page 3 of 9

where f* is the density of joint distribution of (Xj Y;).
Meanwhile, we calculate the posterior probability of
gene i that belongs to group j,

(1) (:-1)
m filzilA)
w;lti) — j_JJ J (4)

J o (t-1) 1\’
Z,‘:17T/' f/'(zi|A/' )

In the M step, we obtained the estimates of parameters
m; and A; by using

o ()
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where E and M steps are iterated between equations
(3=7) until the estimates of the unknown parameters
converge to stable values. Estimates obtained this way
represent the maximum-likelihood estimates (MLEs) of
the parameters.

6](;) _ ej(lf)_

Choosing an optimal number of groups

One important question in the implementation of model-
based clustering analysis is to determine the actual number
of clusters using a model selection criterion, such as BIC.
For a given number of clusters /, we calculate the likeli-
hood L by (1) and the BIC by - 2 log(L) + Jlog(n), where n
is the number of genes in the model. A low value of BIC
corresponds to an optimal number of clusters.

Hypothesis tests

After an optimal number of gene clusters is determined,
we tested whether genes are expressed differentially between
treatments. Three biologically meaningful tests were formu-
lated as follows:

(i) For a given group j, we want to know whether its
genes are differently expressed between the two
treatments. This can be tested using the following
equation:

Ho : 6]‘1 = 0]'2 VS. H1 : 61«1¢6]2 V] = 1, ,] (8)

If the H, is accepted, then the group of genes expressed
between the two treatments is stable. Otherwise, they
exhibit differential expression across treatments, in which
case, they can be used as a predictor of environmental-
induced changes.
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(ii) For a pair of groups j and /, we want to know
whether they interact with each other to determine
environmental-induced changes. This can be
determined using the following equation:

Ho : 61'1—9[1 = 01‘2—612 VS. H1
: 91'1—0117-'91'2—912 Vj<1 = 17 ,] (9)

If the H, is rejected, then these two groups of genes
have significant interaction effects on biological changes
between treatments.

(ili) For a particular group j, we want to know whether
changes in gene expression for a group are
consistent with the extent of change of the
environment. This can be determined using the
following equation:

H() : 9]‘ —91‘2 = CVS. Hl :Gjl—ﬁjzicvj: 1,...,] (10)

where ¢ represents the difference between the environ-
mental signals between treatments. If H, is rejected,
then the change in gene expression for the group is
consistent with a change in the environment between
treatments.

For each of the hypotheses (8—10), the likelihood ratio
test statistics (LR) between these two hypotheses H, and
H, are calculated. Since the H, is nested within H;, the LR
value can be thought of being chi-square distributed, with
the degree of freedom equaling the difference between the
numbers of parameters to be estimated under the two
hypotheses. The LR value is compared with a critical
threshold to determine the acceptance or rejection of the
null hypothesis. If these tests are incorporated by a par-
ticular environmental signal, e.g., temperature or nutri-
tional level, we can better understand the relationship
between gene expression and environmental change.

Results

Working example

The prevailing theory for the maternal-to-zygotic transi-
tion in plants proposes that most early embryonic mRNAs
are maternally derived, resulting either from maternal in-
heritance or from higher transcriptional activity of mater-
nally derived genes until the globular stages. However, this
theory is difficult to reconcile with reports of equivalent
maternal and paternal expression of interrogated genes at
the preglobular stage. Recently, a study aimed to determine
the origins of embryonic transcripts globally by recipro-
cally crossing polymorphic Col-0 and Cvi-0 Arabidopsis
thaliana accessions Col-0 x Cvi-0 and Cvi-0 x Col-0; the
transcriptomes of embryos with one-to-two cells were then
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measured for two reciprocal crosses [26], from which a
total of 1,521 differential expression genes were gained.

The skellam model was used to analyze this data, clus-
tering 1521 DE genes into distinct groups. We used BIC
to determine an optimal number of gene groups. From
the plot of BIC value against the number of groups, 13
was found to be an optimal number of groups (Figure 1).
For each group j, the mean values of gene expression (6,
and 0,) in reciprocal crosses were estimated, with reason-
able good standard errors, by a resampling approach
(Table 1). In practical calculations, the estimate of 6; is
sensitive to the choice of initial values. To obtain a global
maximum, multiple initial values have been selected and
compared. Figure 2 illustrates mean expression values of
each group in two crosses; 13 groups not only display dif-
ferential levels of gene expression, but also vary dramatic-
ally in terms of the difference of expression between
reciprocal crosses. In Figure 3, we showed the pattern of
how genes are differently expressed over different crosses.
As can be seen, 13 groups of genes did not parallel,
exhibiting significant gene—environment
under reciprocal cross conditions.

The hypothesis test (8) provided information regarding
the significance of expression differences between treat-
ments to determine the extent of the maternal and pater-
nal contributions. Of these 13 groups, gene expression
levels from group 3 (accounting for nearly 84% of genes)
tended to be stable between reciprocal crosses, although
change in gene expression was statistically significant (P <
0.05) (Table 2). This indicates that most genes of maternal
and paternal genomes contribute slightly differently to
Arabidopsis thaliana embryos at the one-to-two cell stage.
Approximately 6% of genes (groups 1, 5, 6, 7, 9, 10, 12,
and 13) and about 10% (groups 2, 4, 8, and 11) were clearly

interactions

BIC
18875 18900
T T

18850
T

18825
T

1 1 1 1 1 Il 1 1 1 1
10 1 12 13 14 15 16 17 18 19
# of cluster

Figure 1 Plot of BIC values over the number of groups
calculated from the transcriptomic data of early Arabidopsis
thaliana embryos in reciprocal crosses.
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Table 1 Maximum likelihood estimates of mean
expression values of genes (6;; and )5, j=1, ..., 13) for gL AN
P . o © i
13 distinct groups in reciprocal crosses of early yd
Arabidopsis thaliana embryos /
Group Proportion 6, ;2 / s
o
1 0.01287(0.0021) 2079.323(127.271) 1531.356(123.073) § - s -
2 0.02995(0.0034) 1679.736(119.864) 1869.816(129.490) /,/)
3 0.84635(0.0020) 1775.796(124.636) 1767.683(124.244) Eé /"4 7
[} /
4 0.00724(0.0007) 615.983(122.105) 1947.895(127.480) % § L /
N
5 0.00445(0.0008) 2259.002(137.770) 1477.989(134.481)
6 0.00658(0.0008) 5565.413(1236.57) 3943.197(1221.47)
7 0.00460(0.0008) 15070.72(4277.45) 12378.64(4240.52)
o I
8 0.00329(0.0009) 12640.44(4880.39) 14001.97(4875.96)
9 0.00263(0.0004) 63549.43(22325.8) 57509.99(22313.7)
10 0.02102(0.0020) 1977.736(130.340) 1597.144(120.552) 1 L 8
1 000132(00006)  236824(213877)  3025391(2244.53) S CulGx Cokt
1 0.05259(0.0045) 1874.926(129.278) 1676.266(120332) F!gure 3 Relative dlfference§ among gen'e eeressm.n curves of
different groups expressed in early Arabidopsis thaliana
13 0.00721(0.0009) 3017.567(266.219) 1938.277(260411) embryos of reciprocal crosses.

The MSEs (in parentheses) of the estimates are calculated from 1000
bootstrapping samples.
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Figure 2 Differentiation patterns of genes from 13 distinct groups expressed in early Arabidopsis thaliana embryos of reciprocal
crosses. In each group, the mean expression curve is indicated by a thick line over expression curves of individual genes (thin lines).
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Table 2 Hypothesis tests for gene-environment
interactions between the two treatments in a group
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Table 4 Hypothesis test about whether gene expression
is consistent with the change of environment

Group Test static P-value FDR Group Test static P-value FDR
1 1446.04 0.00 0.00 1 1.17 0.28 091
2 496.42 0.00 0.00 2 5.90 0.015 0.19
3 24.23 8.53e-07 8.53e-07 3 0.13 0.72 0.99
4 271.19 0.00 0.00 4 222 0.14 061
5 836.91 0.00 0.00 5 033 0.57 0.99
6 235829 0.00 0.00 6 0.089 0.77 0.99
7 1678.18 0.00 0.00 7 026 061 0.99
8 329.24 0.00 0.00 8 0.17 0.68 0.99
9 1146.73 0.00 0.00 9 0.023 0.88 0.99

10 1260.75 0.00 0.00 10 0.094 0.76 0.99
1 142.87 0.00 0.00 1 0 1.00 1.00
12 827.88 0.00 0.00 12 3.63 0.056 0.36
13 211568 0.00 0.00 13 0.0096 0.92 0.99

down- or up-regulated from Col-0 x Cvi-0 to Cvi-0 x Col-0,
respectively, suggesting that they were preferentially inhe-
rited from one parent in one-to-two cell embryos. Hypoth-
esis test (9) was used to determine whether a particular pair
of gene groups interacts with the environment. Table 3 lists
the significance test used for such gene—gene interac-
tions. All pairs of gene groups exhibited significant
gene—environment interactions (P <0.05). Hypothesis test
(10) was utilized to investigate whether gene expression
was consistent with environmental change. Except for
group 2, all groups conform to the extent of environmental
change (Table 4). All calculations and hypothesis tests done
above took about 24 h in a 225-nodes computing cluster.
The data were also analyzed by traditional approaches,
k-means and self-organization mapping (SOM). K-means
is a partitioning approach, whereas SOM is a method

Table 3 Hypothesis tests for gene-environment
interactions for different pairs of gene groups

Group Test static P-value FDR
1 versus 2 22967 0.00 0.00
2 versus 3 13818.97 0.00 0.00
3 versus 4 14171.06 0.00 0.00
4 versus 5 24.06 9.32e-07 1.12e-06
5 versus 6 78.20 0.00 0.00
6 versus 7 413 4.22e-02 4.22e-02
7 versus 8 41.70 1.07e-10 143e-10
8 versus 9 15.08 1.03e-04 1.12e-04
9 versus 10 287.59 0.00 0.00
10 versus 11 34434 0.00 0.00
11 versus 12 704.90 0.00 0.00
12 versus 13 595.10 0.00 0.00

based on a machine learning algorithm that uses a compe-
tition and cooperation mechanism to achieve unsuper-
vised learning, processed as implemented in the R package
yasomi [27,28]. It was observed that k-means and the
skellam model produce a similar result, different from that
by SOM (Figure 4). Since these three approaches have
different underlying principles, they can be interpreted
differently. K-means clustering tends to identify clusters of
similar spatial extents, whereas SOM is typically used as
an artificial neural network that is trained using unsuper-
vised learning to produce a low-dimensional, discretized
representation of the input space of the training samples.
The skellam model identifies clusters based on their pat-
tern of gene expression in response to treatment.

Computer simulation

Simulation studies were conducted to test the statistical
power of the skellam model. By assuming three up- or
down-regulated expression patterns, we simulated 2000
genes expressed in two treatments. The treatment-
dependent means of groups and their probabilities were
given in Table 5.

Table 6 gives the maximum-likelihood estimates of 6;;
and 6, in a comparison with their true values. In gen-
eral, mean gene expression values in different treatments
can be reasonably well estimated. The estimated curves
of gene expression for each group were broadly consist-
ent with the true curves (Figure 5), suggesting that our
model was fully powered.

We used k-means and SOM to analyze the same simu-
lation data. Overall, the skellam model performs better
than SOM since the former correctly clusters all genes
into their underlying groups whereas the latter provides
incorrect clusters for about 20% of genes. Like the
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Figure 4 Comparison of clustering results in 13 distinct groups using three methods (SKM: skellam model, KM: k-means, SOM:
self-organizing map).

J

skellam model, K-means can correctly discern three
groups and clusters all genes into correct groups. The
advantage of skellam over k-means lies in its capacity to
provide biologically testable hypotheses (8) — (10), thus
being of greater value from a biological perspective.

Discussion

Recently, RNA-seq has become a highly popular tech-
nology for measurement of transcript levels in response
to different environment conditions. Here, we propose a
statistical model to group RNA-seq data in response to
changing environmental conditions based on a skellam
distribution. The skellam model is able to identify and
cluster co-expression patterns of genes derived from dif-
ferent treatments. The same group of co-regulated genes
responds to environmental change through a similar
function; therefore, a set of model responses can be esti-
mated and tested in a functional space. These can then
be used to characterize the functional relationship be-
tween genes and the environment. The model has three
features that differentiate it from traditional clustering
methods. First, traditional methods cluster genes based
on their expression at single points in time or their joint
expression at multiple points in time [22], ignoring the
mechanism by which genes are differentially expressed

Table 5 Cluster parameter of the simulation study
Group j Treatment m;
6 6
1 30 25 0.2
2 15 45 0.5
3 60 8 03

in response to environmental conditions. By determining
the differences in expression among treatments as the ex-
pression plasticity of a gene, the new model clusters genes
into different groups based on their capacity to respond to
environmental changes. This peculiarity makes the model
particularly useful for understanding the changes in gene
expression in response to different treatment conditions.

Second, classical clustering approaches are based largely
on continuous expression data measured by microarrays
[29,30], whereas gene reads measured by RNA-seq are
count data, which are believed to follow a Poisson distribu-
tion [20]. Our model has considered the Poisson property
of reads. Third, the skellam model treats the co-expression
of genes under different condition as a system and inte-
grates their capacity to co-respond to environmental
changes into clustering procedures. This treatment faci-
lities our understanding of gene plasticity induced by
environmental cues.

The skellam model has successfully clustered genes of
early Arabidopsis thaliana embryos into groups based on
their response to different conditions. Of the genes with a
statistically significant change, group 9 is associated with

Table 6 Results of parameter estimates from simulated
data

Proportion 6n 6,
Group
True MLE True MLE True MLE
1 0.2  0.201(0.004) 30 29.7(0.497) 25 25.0(0.501)
2 05 0.500(0.004) 15 16.1(0.439) 45 46.1(0431)
3 03 0.299(0.004) 60 61.7(0.698) 8 8.59(0.693)

The MLE from the model are compared with the true values for each
parameter. MSEs of the MLEs (in parentheses) are calculated from 1000
simulation replicates.
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Figure 5 Comparison of estimated gene expression curves (solid lines) with true curves (broken lines) for three distinct groups from
the simulated data. (A) Absolute values of gene expression in two treatments. (B) Relative differences between gene expression levels of

Treatment 1 Treatment 2

adenosine triphosphate (ATP)-involved ATP synthase 9,
ATP synthase subunit C family protein and ATPase, F1
complex, alpha subunit protein [31], and group 8 is
related to arabinogalactan protein 21, pathogenesis-
related thaumatin-like protein, and ribonuclease 1 [32].
Although both maternal and paternal genomes are
active and contribute substantially to the embryonic
transcriptome during the one-to-two-cell stage, some
active gene sets are clearly derived from one parent.

We provided a general framework for gene clustering
based on the Poisson function. Given a complex data with
great variability in different treatments, i.e., overdispersion,
the Poisson distribution with one free parameter is too
simple to allow for the variance to be adjusted independ-
ently of the mean for such a data. Other more sophisti-
cated distributions should be incorporated to provide a
better flexibility of fit. These include negative binomial
distribution as a natural extension of Poisson distribution
and generalized Poisson distribution [33]. In general, clus-
tering of genes with differential expression is not the final
step of the analysis. Other analyses, such as gene set test-
ing, gene network construction and knowledge databases
should follow. A comprehensive model of integrating gene
clustering and these follow-up analyses should be derived,
which would enable geneticists to extract biological insight
from gene expression data.

We used the difference of gene expression as a measure
of gene plasticity over different environments. This meas-
ure can characterize the amount of environment-induced
response, but it cannot well discern the slope of differenti-
ation expression, i.e., the sensitivity of a gene environmental
change per its expression unit). Such a slope can be de-
scribed by the ratio of gene expression over different envi-
ronments. In theory, the clustering model can be extended
to cluster genes expressed under multiple conditions, and
provides greater understanding of the mechanistic relation-
ships between gene expression and environmental changes.

The extended model allows for the classification of different
trajectories of reaction norm in response to an environ-
mental gradient. In addition, most studies of gene ex-
pression by RNA-seq are performed in a static state, but
the role of dynamic gene expression in constructing
regulatory networks is being recognized [14,15]. To
model dynamic changes in gene expression in response
to environmental stimuli, more advanced statistical
model such as longitudinal data analysis integrating the
multivariate skellam distribution [34] is required; this
warrants further investigation.

Conclusion

As a deep-sequencing technique, RNA-seq has proven to
be powerful for precisely measuring levels of transcripts
and their isoforms expressed under different conditions.
We have developed a computational algorithm that clus-
ters genes into distinct groups based on the differences of
RNA counts between different treatments. The algorithm
is based on the Poisson distribution of counts, making use
of the skellam function that specifies the distribution of
the differences between two independent Poisson vari-
ables. A two-stage hierarchical EM algorithm was imple-
mented to estimate the optimal number of groups and
mean expression levels of each group across two environ-
ments. In a comparison with traditional clustering ap-
proaches, such as k-means and self-organization mapping,
the new skellam model has more biological relevance,
equipped with a capacity to test whether a given group is
responsive to environmental changes and how this plastic
response is related with, or induced by, an environmental
cue. The skellam model provides a useful tool for cluster-
ing gene expression data by RNA-seq, thereby enhancing
our understanding of gene functions and networks.
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