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Abstract

related species.

Background: Foxtail millet (Setaria italica (L.) Beauv.) is an important gramineous grain-food and forage crop. It is
grown worldwide for human and livestock consumption. Its small genome and diploid nature have led to foxtail
millet fast becoming a novel model for investigating plant architecture, drought tolerance and C, photosynthesis of
grain and bioenergy crops. Therefore, cost-effective, reliable and highly polymorphic molecular markers covering
the entire genome are required for diversity, mapping and functional genomics studies in this model species.

Result: A total of 5,020 highly repetitive microsatellite motifs were isolated from the released genome of the
genotype Yugul' by sequence scanning. Based on sequence comparison between S. italica and S. viridis, a set of
788 SSR primer pairs were designed. Of these primers, 733 produced reproducible amplicons and were
polymorphic among 28 Setaria genotypes selected from diverse geographical locations. The number of alleles
detected by these SSR markers ranged from 2 to 16, with an average polymorphism information content of 0.67.
The result obtained by neighbor-joining cluster analysis of 28 Setaria genotypes, based on Nei's genetic distance of
the SSR data, showed that these SSR markers are highly polymorphic and effective.

Conclusions: A large set of highly polymorphic SSR markers were successfully and efficiently developed based on
genomic sequence comparison between different genotypes of the genus Setaria. The large number of new SSR
markers and their placement on the physical map represent a valuable resource for studying diversity, constructing
genetic maps, functional gene mapping, QTL exploration and molecular breeding in foxtail millet and its closely
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Background

Foxtail millet (Setaria italica) is an ancient crop that is
grown worldwide in arid regions, especially in East and
South Asia, Africa and Europe [1-3]. According to data
from the Food and Agriculture Organization, about 30 mil-
lion tons (Mt) of millet grain are produced annually
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(http://faostat.fao.org/). In China, the current annual gro-
wing area of foxtail millet is over 2 million hectares, with a
grain yield of 6 Mt [4]. As a drought-tolerant crop, foxtail
millet has the potential to become more important, espe-
cially as the climate is becoming warmer and dryer [4-6].
Its small diploid genome (~515 Mb) and inbreeding
nature has led to foxtail millet becoming a model for
grass functional genomics, especially in investigating plant
architecture, drought tolerance, crop domestication, C,
photosynthesis and the physiology of bioenergy crops
[7-9]. The release of the genome sequence [10,11] and a
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haplotype map [12] have made the use of foxtail millet as a
model species more attractive.

Simple sequence repeats (SSRs), also known as micro-
satellites, are tandem repeats of 1 to 6 nucleotides that
are present in both coding and non-coding regions
[13,14]. SSRs have become a marker of choice in geno-
typing because of their high abundance, high level of al-
lelic variation, co-dominant inheritance and analytical
simplicity. Moreover, microsatellite markers could be
effectively applied in phylogenetically related species ac-
cording to their conserved sequences among diverse
organisms, which will greatly benefit genetic studies of
related species [15]. However, despite the use of both
genomic [16-19] and transcriptional [20] sequences for
generating SSRs, the number of SSR markers in foxtail
millet is still not adequate for efficient genetic analyses
and gene mapping studies.

The level of polymorphism of SSRs is a key factor for
their efficient application, and can be affected by a number
of factors, including the nucleotide motif and repeat
number. SSR polymorphisms are positively correlated with
the number of repeat units [21]. As reported in humans
[22], rice [23,24] and Medicago truncatula Gaertn [25],
SSRs with higher numbers of repeats tend to be more
polymorphic.

The availability of the completed genome sequence of
foxtail millet [10,11] provides an ideal resource for
genome-wide identification of SSRs in silico and the de-
velopment of locus-specific SSR markers in this species.
Taking advantage of this resource, we identified a large
number of highly polymorphic SSRs by scanning for
microsatellite units with relatively higher repeat num-
bers in the foxtail millet genome, and then assessed the
efficiency of their application as developed SSR markers.
The polymorphism information content (PIC) values of
the SSR markers were also characterized by amplifying
genotypes of a set of Setaria accessions from diverse
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geographic origins. These SSR markers could signifi-
cantly stimulate genetic and genomic studies of foxtail
millet and related species, further promoting it as a
novel model system for genomic study.

Results

Identification of microsatellite motifs in the foxtail millet
genome and polymorphic SSRs determination

A total of 5,020 microsatellite fragments were character-
ized in the released “Yugul’ genomic sequences (Table 1).
Chromosome 9 contained the largest number of SSRs
(826), followed by chromosomes 2 (612) and 1 (607).
Chromosome 7 has the least number of SSRs (372). Fur-
thermore, the ‘Di’ type of SSRs constituted the majority
of microsatellites detected in “Yugul’ (Additional file 1:
Table S1). Biased distributions of the amount of each
kind of SSR motifs were detected among all nine chro-
mosomes. For example, more dinucleotide microsatel-
lite fragments containing AT & TA, AG & GA and CT
& TC units were isolated, compared with other kinds of
dinucleotide repeats. Sequences containing CG & GC mo-
tifs were rarely observed according to the rigorous scan-
ning criteria conducted in this study (Additional file 2:
Figure S1).

For the efficient development of highly polymorphic SSR
markers, sequence variants among ‘Yugul, ‘Daqingjie’ and
‘N10’" were systematically analyzed (Table 1). The percent-
age of polymorphic SSRs between foxtail millet “Yugul’
and green foxtail ‘N10" was 40.9%, which is much higher
than that between the two foxtail millet cultivars of “Yugul’
and ‘Daqingjie’ (24.3%), indicating a higher level of poly-
morphism between the species (S. italica and S. viridis). In
terms of diverse types of SSRs developed in this trial, a
higher level of genomic variants was detected among the
‘Di’ types (Figure 1A). Among the nine chromosomes of
foxtail millet, the levels of SSR polymorphism and genomic
variants were higher on chromosomes 9 and 6 than on the

Table 1 Number of polymorphic SSRs among ‘Yugu1’, ‘Daqingjie’ (DQJ) and ‘N10’, and designed primers

Chromosome Number of Polymorphic vs. DQJ Polymorphic vs. N10 SSR primer Number of Percentage of

SSR sequences Number % Number % design Polysrgg;phic polymorphisms
Chr.1 607 108 17.8% 354% 72 67 93.1%
Chr2 612 121 19.8% 38.9% 86 85 98.8%
Chr3 542 159 29.3% 37.6% 90 85 94.4%
Chr4 39 82 20.7% 39.6% 65 62 95.4%
Chr5 604 158 26.2% 44.4% 90 88 97.8%
Chré 568 158 27.8% 46.0% 123 110 89.4%
Chr.7 372 86 23.1% 46.5% 94 86 91.5%
Chr8 493 153 31.0% 37.9% 35 34 97.1%
Chr9 826 194 23.5% 424% 133 116 87.2%
Total 5020 1219 24.3% 2053 40.9% 788 733 93.0%
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Figure 1 PIC variations among SSR motifs (A) and chromosomes (B).
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other chromosomes, although a clear difference was also
observed between foxtail millet and the wild green foxtail
(Figure 1B).

Based on the polymorphic microsatellite sequences iden-
tified above, 788 pairs of SSR primers were designed. Their
distributions among the different chromosomes were
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different. The largest number was located on chromosome
9 (133), followed by chromosomes 6 (123) and 7 (94). Al-
though there were many microsatellites in chromosome 8,
only 35 pairs of SSR primers was designed because of the
fewer genomic variants detected in chromosome 8 com-
pared with the other chromosomes (Table 1).

The amplification efficiency and polymorphic perform-
ance of the 788 pairs of SSR primers were assessed. The
majority of the primer pairs (93.0%) produced clear and
polymorphic amplicons of the expected size (Table 1;
Figure 2). The number of alleles per polymorphic locus
ranged from 2 to 16 (Additional file 3: Figure S2), with a
median of 7. The PIC value for each locus ranged from
0.0739 to 0.9024, with a mean of 0.6687. In terms of di-
verse kinds of SSR motif, using the ‘Di’ type of SSR as an
example, GA & CT motif-containing markers gave the
highest PIC value, while the CG & GC motif-containing
markers showed the lowest genetic diversity among the ac-
cessions sampled in this study (Additional file 4: Table S2,
Additional file 2: Figure S1).

Validation of application efficiency and transferability of
SSRs among related species of foxtail millet

The majority of the SSR markers (89.4%) developed from
the sequence of the foxtail millet cultivar “Yugul’ could
be effectively used in green foxtail (Figure 3), which is
the wild ancestor of foxtail millet [26], implying that
they share nearly identical genomes. Most of these SSRs
could be used in S. faberii (89.6%) and S. verticillata
(87.5%). However, only 44.7% of the SSRs could be used
in S. glauca and S. adhaerans, indicating that foxtail
millet is evolutionarily more distant from S. glauca and
S. adhaerans.

A dendrogram of the 28 Setaria accessions was con-
structed based on the polymorphic SSR data obtained
in this study (Figure 4), which illustrates the phylogen-
etic relationships among the samples. Cluster I com-
prised all accessions of foxtail millet landraces. Cluster
II comprised all foxtail millet cultivars sampled in this
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Figure 2 Representative electrophoresis gel showing the PCR amplification of newly developed SSR markers.
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study. Cluster III comprised all other Setaria acces-
sions. The genetic relationships in the dendrogram
correlated well with the known Setaria evolutionary re-
lationships, which indicated the value of the developed
SSR markers.

Construction of a physical map of the novel SSR markers

A physical map of the newly developed SSR markers was
constructed based on the physical distance between each
pair of SSR primers (Figure 5). These markers covered the
whole genome of foxtail millet, with an average distance
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Figure 5 Physical map of 733 highly polymorphic SSR markers developed in foxtail millet. The nine chromosomes of foxtail millet are
arranged from left to right, the name of each marker is shown on the right and the number on the left indicates the physical distance between

of 550 K. Among the nine chromosomes, chromosome 6
possessed the highest density of polymorphic SSR markers
(110), while chromosome 8 contained the least number of
markers (34). Within each chromosome, fewer markers
were found around the centromeres; most of the poly-
morphic markers were distally distributed on each of the
chromosomes.

Discussion

A foxtail millet SSRs database enriched with 733 pairs of
novel polymorphic SSR markers

SSRs have become a powerful marker system for genotype
analysis, diversity estimation, QTL mapping and other
related genetic and genomic studies [15]. However, the
number of highly polymorphic SSR markers developed for

foxtail millet was limited. The first set of 26 expressed se-
quence tag (EST)-SSRs in foxtail millet was developed in
2007 [20], which was followed by four sets of genomic
SSR studies that developed 190, 45, 170, and 21,294
SSRs, respectively, using microsatellites enriched librar-
ies [16-18] and released reference genome sequences
[19]. Thus, a large set of SSRs was available for foxtail
millet, which had the potential to meet the requirement
of constructing high-resolution genetic maps for this
model crop. However, only a small set of about 160
SSRs were evaluated for their PIC values in the Setaria
genus in those works [16-20]. In the present study, 788
pairs SSRs were developed and all those markers were
characterized based on 28 Setaria samples for their
amplification efficiencies and polymorphism contents.
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Among them, 733 showed stable amplification and were
highly polymorphic, with clear and available PIC values,
allowing them to be anchored in the foxtail millet physical
map. This large set of highly polymorphic SSR markers,
combined with their corresponding physical locations,
represent a valuable resource for genetic linkage map con-
struction, QTL exploration, map based gene cloning and
marker-assisted trait selection in this species. Further-
more, genome variant analysis could also be applied in
studies of development of practical markers in other
crop species.

Polymorphic performance of the newly developed SSR
markers

According to the polymorphism evaluation of SSRs in
rice [27] and maize [28], dinucleotide repeat unit micro-
satellites always have larger repeat numbers and show
high level of polymorphisms. Correspondingly, the di-
nucleotide type of SSRs developed in this study had a
high average PIC value of 0.68, which was the same as
that reported by Jia [16]. These values are significantly
higher than those reported by others in foxtail millet
[17,18,20]. This higher polymorphism performance im-
plied that these markers could be used efficiently in fox-
tail millet genetic studies.

The frequency polymorphisms in GC & CG dinucleo-
tide repeats detected in this study were low (Additional
file 2: Figure S1), and similar to those reported in other
crops [24,29,30]. This might be because GC-rich regions
are relatively stable, resulting in less replication slippage,
which generates the repeated motifs of SSRs [31], or be-
cause GC motifs are usually distributed in exons, where
polymorphisms occur less frequently [29].

The majority of the highly polymorphic SSRs identified
in this study were distributed in the non-coding regions
of the foxtail millet genome (Additional file 5: Figure S3A,
S3B). This might be a specific characteristic of highly poly-
morphic markers. Surprisingly, a larger proportion of the
“Tri’ type of SSRs was identified in coding regions, imply-
ing that three nucleotide insertions/deletions might be
more acceptable for organisms to maintain regular growth
under pressure from genomic variants occurring in coding
regions. However, this hypothesis needs to be verified.

Transferability of the developed SSRs to related species

Most of the SSR markers developed from the genome
sequence of the foxtail millet cultivar “Yugul’ could be
used in green foxtail. As the latter is the wild ancestor of
domesticated foxtail millet [26], the transferability of the
SSRs indicates that they share a very similar genome, al-
though they are classified as different species botanically
[5]. The phylogenetic analysis of the diverse Setaria acces-
sions identified three gene pools, implying that the wild
ancestor, domesticated landraces and improved cultivars
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of S. italica are distinct gene resources for breeding pro-
grams of foxtail millet. This observation is similar to that
made in rice [32] and maize [33]. Previous studies of the
molecular diversity of Chinese foxtail millet [34] and green
foxtail [35] also support this conjecture. A large propor-
tion of the SSRs developed in this study could also be used
in S. faberii and S. verticillata, probably because these two
species share the AA genome with foxtail millet. Only
44.7% of the SSRs developed in this trial could be used
in S. adhaerans and S. glauca, indicating their genetic
distinction from the foxtail millet AA genome. These
results were consistent with those from genomic in situ
hybridization analysis of the Setaria genomes [36]. Thus,
the SSR markers developed in this study could be effi-
ciently used in other closely related Setaria species.

Conclusions

This work represents a major advance in the identification
and confirmation of SSR markers for Setaria. A large set
of 733 highly polymorphic SSR loci, with an average PIC
value of 0.67, were identified by genome variants analysis
based on second-generation resequencing technology.

Methods

Microsatellite identification

The reference genome sequence of the foxtail millet
genotype ‘Yugul’ was retrieved from phytozome (http://
www.phytozome.net/). SSRHunter [37] and MicroSAtel-
lite (MISA) were used to identify microsatellite motifs
(http://pgrc.ipk-gatersleben.de/misa), with the following
search criteria: twenty repeat units for mononucleotide
(Mono) repeats, eight (five for chromosome 6) for di-
nucleotide (Di) repeats, eight for trinucleotide (Tri) repeats
and tetranucleotide (Tetra) repeats, and six for pentanu-
cleotide repeats (Penta) and hexanucleotide repeats (Hexa).
All selected microsatellites containing fragments were vali-
dated using the BLASTN tool in the software package
ncbi-blast-2.2.25 + —~win32.exe (downloaded from http://
www.ncbi.nlm.nih.gov/guide/). According to the scores of
all alignments for each query, a single copy was defined as
the query with a top score significantly higher (at least five
fold higher) than the second one. Only single copy se-
quences were selected for further analysis.

Selection of polymorphic SSRs

The S. italica accession ‘Daqingjie’ (DQJ) and the S. viridis
accession ‘N10" were resequenced using second-generation
sequencing technology with high level coverage, and the
sequences obtained were de novo assembled [12]. The diff-
seq program (with default parameters) in the EMBOSS
package [38] was used to compare sequence variants be-
tween the two de movo assemblies against the SSR se-
quences identified from the reference genome of ‘Yugul’.
MUMmer3.22 (http://mummer.sourceforge.net/) was used
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to align all SSR-containing sequences with assemblies of
‘DQJ" and ‘N10; respectively, and a Perl Script was used to
list the length polymorphisms. SSR containing sequences
that showed polymorphisms among these genotypes were
selected for primer design. Those primers that amplified
a fragment between 100 bp and 300 bp were selected for
further validation. Primer 3.0 (http://frodo.wi.mit.edu/)
was used to design primers flanking the sequences of
each unique SSR.

Amplification efficiency and polymorphism
characterization

Amplification efficiency and the level of polymorphism
of the developed SSRs were assessed using 28 Setaria ac-
cessions originating from different parts of the world, in-
cluding eight landraces of foxtail millet, ten foxtail millet
cultivars, six accessions of green foxtail (S. viridis), and
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one each of S. glauca, S. adhaerans, S. verticillata and S.
faberii (Table 2). The purpose of using these closely re-
lated species was to test the transferability of the devel-
oped markers. Genomic DNA from each of the accessions
was extracted using a previously described method [39].
The PCR reaction mixtures comprised 1 x Taq reaction
buffer (Takara, with Mg®*), 125 uM each of the nucleotide
dATP, dGTP, dCTP, and dTTP, 0.2 puM primers, 1 unit of
Taq DNA polymerase and 50 ng of template DNA. The
PCR products were initially assessed for size poly-
morphisms on 6% (w/w) denaturing polyacrylamide gels
and visualized by silver nitrate staining. A 20 bp ladder
(Takara) was used to estimate the lengths of the ampli-
cons. The genotype data was subsequently used to deter-
mine the genetic relationships among these 28 Setaria
accessions. PowerMarker2.5 [40] was used to construct
a neighbor-joining tree based on Nei’s genetic distance

Table 2 Sampled accessions for SSRs characterization in Setaria

Trial No. Accession no. or cultivar Species Haploid genome® Origin Group
1 Krust Born S. italica Holland
2 Chuang229 S. italica A Missouri, US
3 00021281 S. italica A Gansu, China
4 00011036 S. italica A Shandong, China
5 00021406 S. italica A Heilongjiang, China Fodall millet, landraces
6 00003114 S. italica A Inner Mongolia, China
7 00022330 S. italica A Tibet, China
8 00026459 S. italica A Guangxi, China
9 Yugul S. italica A Henan, China
10 Jigu31 S. italica A Hebei, China
11 Lugu10 S. italica A Shandong, China
12 Mengfenggu? S. italica A Inner Mongolia, China
13 Yangul1 S. italica A Shanxi, China
14 Longgu10 S. italica A Gansu, China Fodall millet, culivars
15 Changnong35 S. italica A Shanxi, China
16 Gonggué1 S. italica A Jilin, China
17 Chaogu14 S. italica A Liaoning, China
18 Longgu30 S. italica A Heilongjiang, China
19 Q24 S. viridis A Shijiazhuang, China
20 N10 S. viridis A Gansu, China
21 W60 S. viridis A Japan
22 W57 S. viridis A France Green foxtal
23 W58 S. viridis A Oklahoma, US
24 W53 S. viridis A Uzbekistan
25 W5 S. faberii AB Russia
26 W10 S. glauca D Japan
27 W42 S. verticillata AB France Other setaria species
28 W94 S. adhaerans B Spain

a: Genome type defined in previously published works based on genomic in situ hybridization analysis [36].


http://frodo.wi.mit.edu/

Zhang et al. BMC Genomics 2014, 15:78
http://www.biomedcentral.com/1471-2164/15/78

(1983) [41], and the MEGA4.0 [42] was used to draw
the dendrogram. The polymorphism information content
(PIC) value is often used to measure the informativeness
of a genetic marker [43], therefore, PowerMarker was used
to evaluate the PIC value for each marker.

Physical map construction

BLASTN online (http://www.phytozome.net/search.php)
was used to determine the physical position of each of
the polymorphic SSR primers on the ‘Yugul’ genome,
and the physical distances between adjacent SSRs were
calculated manually. MapDraw [44] was used to con-
struct a physical map including all the developed poly-
morphic SSRs.

Additional files

Additional file 1: Table S1. Number of diverse types of polymorphic
(among "Yugu?1’, ‘Dagingjie’ and ‘N10) SSRs developed in foxtail millet.

Additional file 2: Figure S1. Numbers and polymorphisms of SSRs

derived from diverse types of repeat units. (A) Mononucleotide SSRs;

(B) Dinucleotide SSRs; (C) Trinucleotide SSRs; (D) Tetranucleotide SSRs;
(E) Pentanucleotide SSRs; (F) Hexanucleotide SSRs.

Additional file 3: Figure S2. Distribution of allele numbers for each of
the polymorphic loci. The left Y-axis represents the number of markers,
and the right Y-axis represents normal distributing probabilities.

Additional file 4: Table S2. Sequences and polymorphism information
for SSR primers confirmed in Setaria accessions.

Additional file 5: Figure S3. Distributions of SSR motifs in coding and
non-coding regions of the foxtail millet genome among motif types (A)

and chromosomes (B).
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