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Abstract

Background: Chromothripsis is a recently discovered phenomenon of genomic rearrangement, possibly arising
during a single genome-shattering event. This could provide an alternative paradigm in cancer development,
replacing the gradual accumulation of genomic changes with a “one-off” catastrophic event. However, the term has
been used with varying operational definitions, with the minimal consensus being a large number of locally
clustered copy number aberrations. The mechanisms underlying these chromothripsis-like patterns (CTLP) and their
specific impact on tumorigenesis are still poorly understood.

Results: Here, we identified CTLP in 918 cancer samples, from a dataset of more than 22,000 oncogenomic arrays
covering 132 cancer types. Fragmentation hotspots were found to be located on chromosome 8, 11, 12 and 17. Among
the various cancer types, soft-tissue tumors exhibited particularly high CTLP frequencies. Genomic context analysis
revealed that CTLP rearrangements frequently occurred in genomes that additionally harbored multiple copy number
aberrations (CNAs). An investigation into the affected chromosomal regions showed a large proportion of arm-level
pulverization and telomere related events, which would be compatible to a number of underlying mechanisms. We also
report evidence that these genomic events may be correlated with patient age, stage and survival rate.

Conclusions: Through a large-scale analysis of oncogenomic array data sets, this study characterized features
associated with genomic aberrations patterns, compatible to the spectrum of “chromothripsis”-definitions as
previously used. While quantifying clustered genomic copy number aberrations in cancer samples, our data
indicates an underlying biological heterogeneity behind these chromothripsis-like patterns, beyond a well defined
“chromthripsis” phenomenon.
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Background
One consistent hallmark of human cancer genomes are
somatically acquired genomic rearrangements, which
may result in complex patterns of regional copy number
changes [1,2]. These alterations have the potential to
interrupt or activate multiple genes, and consequently
have been implicated in cancer development [3]. Analysis
of genomic rearrangements is essential for understanding
the biological mechanisms of oncogenesis and to determine
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reproduction in any medium, provided the or
rational points of pharmacological interference [4,5]. Some
large-scale efforts have been undertaken to correlate gen-
omic rearrangements to genome architecture as well as to
the progression dynamics of cancer genomes [6,7]. At the
moment, the stepwise development of cancer with the
gradual accumulation of multiple genetic alterations is the
most widely accepted model [8].
Recently, using state-of-the-art genome analysis tech-

niques, a phenomenon termed “chromothripsis” was char-
acterized in cancer genomes, defined by the occurrence of
tens to hundreds of clustered genomic rearrangements,
having arisen in a single catastrophic event [9]. In this
model, contiguous chromosomal regions are fragmented
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into many pieces, via presently unknown mechanisms.
These segments are then randomly fused together by
the cell’s DNA repair machinery. It has been proposed
that this “shattering” and aberrant repair of a multitude
of DNA fragments could provide an alternative oncoge-
netic route [9], in contrast to the step-by-step paradigm
of cancer development [8-10]. The initial study reported
24 chromothripsis cases, with some evidence of a high
prevalence in bone tumors [9].
Besides human cancers, recent studies have also reported

chromothripsis events in germline and non-human ge-
nomes [11-13]. However, due to the overall low incidence
of this phenomenon, most studies were limited to relatively
small numbers of observed events. For example, in a study
screening 746 multiple myelomas by SNP arrays, only 10
cases with chromothripsis-like genome patterns were
Table 1 Summary of chromothripsis-like cases identified in p

Studya Chromothripsis-like
casesb

Sample
size

Stephens et al. [9] 24 776 Pa

Kloosterman et al.
[13]

1 3c

Le et al. [17] 1 21

Magrangeas et al. [14] 10 764

Bass et al. [18] 3 9

Kloosterman et al. [19] 4 4 M

Zhang et al. [20] 3 12

Kitada et al. [21] 5 150

Poaty et al. [22] 1 14

Rausch et al. [23] 52 605 Who

Jiang et al. [24] 1 4

Molenaar et al. [25] 16 87 Pa

Chiang et al. [11] 2 52 W

Lapuk et al. [26] 1 6
Whole

Berger et al. [27] 2 25

Natrajan et al. [28] 1 2

Nik-Zainal et al. [29] 3 21

Kloosterman et al. [30] 10 10 M

Wu et al. [31] 3 3

Northcott et al. [16] na 1087 SNP

Jones et al. [32] 2 3

Kroef et al. [33] 1 61

Govindan et al. [34] 1 17

Kim et al. [7] 124 8227

Zehentner et al. [35] 1 28

Current study 918 18394
aData up to 21st December, 2012, bna, not available, cFamily trio: father, mother, ch
detected [14]. Larger sample numbers are required to
gain further insights into features and mechanisms of
these events in different cancers.
In contrast to a strict definition of chromothripsis events

relying on sequencing based detection of specific genomic
rearrangements [15], other studies [7,14,16] have described
chromothripsis events based on genomic array analysis
without support from whole genome sequencing data.
Overall, the minimal consensus of array based studies is
the detection of a large number of locally clustered CNA
events. In Table 1, we provide an overview of studies
which so far have reported instances of “chromothripsis”
in human cancers [7,9,11,13,14,16-35].
Here, we present a statistical model for the discovery of

clustered genomic aberration patterns, similar to those
previously labeled as “chromothripsis” events, from
revious and current studies

Techniques Cancer/sample types

ired-end sequencing, SNP array 55 cancer typesd

Mate-pair sequencing Germline, congenital defects

aCGH Chordoma

SNP array Multiple myeloma

Whole-genome sequencing Colorectal adenocarcinoma

ate-pair sequencing, SNP array Colorectal cancer

Whole-genome sequencing Acute lymphoblastic leukaemia

aCGH na

aCGH Gestational choriocarcinoma

le-genome sequencing, SNP array 7 cancer types

Paired-end sequencing Hepatocellular carcinoma

ired-end sequencing, SNP array Neuroblastoma

hole-genome sequencing, aCGH Germline

-genome/transcriptome sequencing,
aCGH

Neuroendocrine prostate
cancer

Whole-genome sequencing Melanoma

Whole-genome sequencing Breast cancer

Whole-genome sequencing Breast cancer

ate-pair sequencing, SNP array Congenital disease

Paired-end sequencing, aCGH Prostate cancer

array, whole-genome sequencing Medulloblastoma

Whole-genome sequencing Medulloblastoma

SNP array Multiple myeloma

Whole-genome sequencing Non-small cell lung cancer

aCGH, SNP array 30 cancer types

aCGH Plasma cell neoplasia

aCGH, SNP array 132 cancer typese

ild, dAccording to site and histology, eClassified by ICD-O code.
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genomic array data sets. For the scope of this article,
we introduce the term “chromothripsis-like patterns”
(CTLP) when discussing those events.
Applying our methodology to 22,347 genomic arrays

from 402 GEO (Gene Expression Omnibus) derived
experimental series [36], we were able to detect 918
chromothripsis-like cases, and to determine the fre-
quency and genomic distribution of CTLP events in this
dataset. Our collection of oncogenomic array data repre-
sents 132 cancer types as defined using the ICD-O 3
(International Classification of Diseases for Oncology)
coding scheme, enabling us to estimate the incidence of
CTLP in diverse tumor types. Among the CTLP cases,
varying distributions of fragmented chromosomal re-
gions as well as an abundance of large non-CTLP copy
number aberrations (CNA) regions were found, and the
genomic context of chromothripsis-like events was in-
vestigated. Finally, we evaluated clinical associations of
CTLP cottoning samples, based on the clinical informa-
tion at hand. Overall, this study characterized heteroge-
neous features of chromothripsis-like events through a
large-scale analysis of oncogenomic array data sets and
provides a better understanding of clustered genomic
copy number patterns in cancer development.

Results
Detection of chromothripsis-like patterns from
oncogenomic arrays
We collected 402 GEO series, encompassing 22,347 high
quality genomic arrays of human cancer samples. A pro-
cedure was employed to detect CTLP from these arrays
(Figure 1A). The annotated information of the arrays, in-
cluding normalized probe intensity, segmentation data
and quality evaluation, was obtained from our arrayMap
database [37] (see Methods for array processing pipeline).
After removing technical repeats (e.g. multiple platforms
Figure 1 Detection of chromothripsis-like patterns from genomic arra
data of 402 GEO series are first collected and re-analyzed, then annotated a
based algorithm was employed to identify CTLP cases. (B) The ROC curve o
copy number status change times and the likelihood ratio. Both predictors
for one sample), a total of 18,394 cases representing 132
cancer types remained. The input data is summarized, at
array and case-level, respectively, in Additional file 1:
Table S1 and Additional file 2: Table S2. The segmentation
data and array profiling can be accessed and visualized
through the arrayMap website (http://www.arraymap.org).
According to previous studies, segmental copy number

status changes and significant breakpoint clustering are
two relevant features of chromothripsis [9,23]. For an
automatic identification of CTLP, we developed a scan-
statistic based algorithm [38]. We employed a maximum
likelihood ratio score, which is commonly used to detect
clusters of events in time and/or space and to determine
their statistical significance [39] (see Methods). For each
chromosome, the algorithm uses a series of sliding win-
dows to identify the genomic region with the highest
likelihood ratio as the CTLP candidate. In order to test
the performance of the algorithm, 23 previously pub-
lished chromothripsis cases with available raw array data
were collected and used as a training set. This data con-
tained 31 chromothriptic and 475 non-chromothriptic
chromosomes that acted as positive and negative con-
trols, respectively (Additional file 3: Table S3). Compari-
son of copy number status change times and likelihood
ratios showed that chromothriptic chromosomes could
reliably be distinguished from non-chromothriptic ones
(Additional file 1: Figure S1). We generated a receiver
operating characteristic (ROC) curve from the training
set results, and selected cutoff values based on this curve
(copy number status switch times ≥ 20 and log10 of like-
lihood ratio ≥ 8) (Figure 1B). Furthermore, the sliding
window scan statistic accurately identified the genomic
regions involved (Additional file 1: Figure S2). Applying
this algorithm to the complete input data set, a total of
1,269 chromosomes from 918 cases passed our thresh-
olds and were marked as CTLP events (Additional file 1:
Figure S3, Additional file 4: Table S4).
ys. (A) Schematic description of the detection procedure. Raw array
nd stored in arrayMap database. For high quality arrays, a scan-statistic
f the training set and selected thresholds. Two predictors were tested,
were integrated into the combined threshold.

http://www.arraymap.org
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Chromothripsis-like patterns across diverse tumor types
When evaluating the 1,269 CTLP events, we found a pro-
nounced preference for some chromosomes; this prefer-
ence showed only limited association with chromosome
size (Figure 2A). CTLP occurred more frequently in
chromosome 17 than in any other chromosome. This
observation is in accordance with data reporting an as-
sociation between chromothripsis and TP53 mutations
in Sonic-Hedgehog medulloblastoma and acute myeloid
leukemia [23]. TP53 is located in the p arm of chromo-
some 17, and is involved in cell cycle control, genome
maintenance and apoptosis [40,41]. Our dataset showed
TP53 losses in 438 out of 918 (~48%) CTLP cases, com-
pared to 3,274 out of 17,476 (~19%) cases in the non-
CTLP group (p < 2.2 × 10-16; two-tailed Fisher’s exact
test; Additional file 2: Table S2). 45 of the 438 TP53 de-
letions were part of a CTLP, confirming TP53 mutation
as a recurring event with possible involvement in CTLP
Figure 2 Frequency and CNA coverage length distribution of CTLP re
in percent of all CTLP and chromosome size in megabases, respectively. (B
row represents a cancer type and each column represents a chromosome.
ranging from lowest to highest, normalized for each row. The numbers in
cases are shown. (C) Distribution of CTLP events as fractions of the affected
fractions for each sample have been calculated as sum of genome bases c
identified through our scanning approach.
formation. Other chromosomes with relatively high in-
cidences of CTLP included chromosomes 8, 11 and 12.
In our study, genomic projection of regional CTLP fre-

quencies revealed their heterogeneous distribution in dif-
ferent cancer types (Figure 2B). The total length of
fragmented genomic regions (CNA level and interspersed
normal segments) accounted for 1%-14% of the corre-
sponding genomes (Figure 2C). The large size of our input
data set, resulting in high number of CTLP cases, permit-
ted an investigation of the frequency and genomic distri-
bution of these patterns in different cancer types. Our
input samples represented 65 “diagnostic groups”, as de-
fined by a combination of ICD-O morphology and topog-
raphy codes. The majority of samples (18,238) came from
50 diagnostic groups, each represented by more than 25
arrays. We observed in total of 918 CTLP events across all
18,394 cases, representing an overall ~ 5% prevalence. The
17 diagnostic groups represented by at least 45 cases, and
gions in the genome. (A) Red and blue bars indicate CTLP frequency
) Local distribution of CTLP regions among diagnostic groups. Each
We use a black-to-yellow gradient for representing CTLP frequencies
brackets indicate the number of cases. Groups with at least 5 CTLP
genomes, represented as density plots for common cancer types. The

hromosomes 1–22, divided by the genomic length of CTLP regions as
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having frequencies higher than 4% (CTLP high) are listed
in Table 2 (full list in Additional file 5: Table S5).
The initial study by Stephens et al. hypothesized that

chromothripsis has a high incidence in bone tumors [9].
Notably, several soft tissue tumor types appeared in our
“CTLP high” frequency set (6 out of 17), including the 3
types with the highest scores. Moreover, the high preva-
lence of CTLP in soft tissue tumors was reflected in the
ICD-O specific frequencies (Additional file 6: Table S6).
The genesis and/or effect of multiple localized chromo-
somal breakage-fusion events may be related to specific
molecular mechanisms in those tumor types. Notably,
gene fusions are well-documented recurring events in
sarcomas [42], in contrast to most other solid tumors,
and a local clustering of genomic re-arrangements had
been previously reported for liposarcomas [43]. So far,
more than 40 fusion genes have been recognized in sar-
comas and treated as potential diagnostic and prognostic
markers [42]. Possibly, the double-strand breaks and
random fragment stitching events in chromothripsis-like
events promote the generation of oncogenic fusion genes
[9]. Further sequencing-based efforts will be needed to
identify the true extent of fusion gene generation and to
elucidate their functional impact in chromothripsis-like
cases.

Genomic context of chromothripsis-like events
It has been hypothesized that chromothripsis is a one-off
cellular crisis generating a malignant clone in a very short
Table 2 Frequency of chromothripsis-like patterns among can

Chromothripsis-like ca

Cancer type Oligo > 200 K Oligo ≤ 200 K BAC

Soft tissue tumors: lipoid 49 12

Soft tissue tumors: fibroid tumors 14 0

Soft tissue tumors: sarcomas, other 9 0

Carcinomas: breast ca. 247 99

Carcinomas: esophagus ca. 13 0

Carcinomas: bronchoalveolar, NSCLC 78 29

Soft tissue tumors: bone tumors 7 3

Carcinomas: bronchoalveolar, SCLC 3 3

Carcinomas: prostate adenoca. 1 40

CNS: CNS PNET 4 0

Carcinomas: melanocytic neoplasias 31 1

Soft tissue tumors: myoepithelial 3 0

Carcinomas: ovarian ca. 31 5

Carcinomas: gastric ca. 1 5

CNS: gliomas 14 13

Soft tissue tumors: stromal tumors 5 1

CNS: medulloblastomas 13 4

Only cancer types with input cases ≥ 45 and frequency ≥ 4% are shown.
time [9,44]. However, in many of the CTLP samples in
our study, highly fragmented chromosomal regions were
embedded in larger CNA regions showing variations in
patterns and overall extent (Figure 3A). To test whether
CTLP generating events are associated with overall gen-
omic instability, we examined the extent of all copy num-
ber imbalances detected in our dataset. Comparing the
918 CTLP positive arrays with the remainder of 17,476
CTLP negative arrays, we found that CTLP samples
tended to have higher proportions of CNA coverage in
their genomes (p < 2.2 × 10-16; Kolmogorov-Smirnov test)
(Figure 3B,C). This indicated that chromothripsis-like
events frequently co-occur with other types of copy num-
ber aberrations. Plausible and non-exclusive explanations
could be that CTLP might frequently arise due to previ-
ously established errors in the maintenance of genomic
stability, or that chromothriptic aberrations involving
genomic maintenance genes may predispose to the
acquisition of additional CNA. For those frequent cases
exhibiting additional non-CTLP CNA events, their pos-
sible contribution to oncogenesis has to be considered
when modeling the role of chromothripsis-like events in
cancer development.

Potential mechanisms for chromosome shattering
While the mechanism(s) responsible for the generation
of chromothripsis remain elusive, a number of studies
have proposed hypotheses including ionizing radiation
[9], DNA replication stress [45], breakage-fusion-bridge
cer types

ses

or cDNA Total Input cases Frequency (95% confidence interval)

0 61 114 53.5% (44%–62.8%)

0 14 59 23.7% (14%–36.9%)

2 11 48 22.9% (12.5%–37.7%)

58 404 3652 11.1% (10.1%–12.1%)

0 13 135 9.6% (5.4%–16.2%)

2 109 1164 9.4% (7.8%–11.2%)

0 10 123 8.1% (4.2%–14.8%)

0 6 90 6.7% (2.7%–14.5%)

0 41 653 6.3% (4.6%–8.5%)

0 4 65 6.2% (2%–15.8%)

6 38 621 6.1% (4.4%–8.4%)

2 5 85 5.9% (2.2%–13.8%)

1 37 801 4.6% (3.3%–6.4%)

1 7 160 4.4% (1.9%–9.2%)

0 27 669 4% (2.7%–5.9%)

0 6 151 4% (1.6%–8.8%)

0 17 430 4% (2.4%–6.4%)



Figure 3 Genomic context of CTLP events. (A) Example copy number profiles of chromosomes with changes suggestive of chromothripsis. In
these examples, chromosomal fragmentation events are related to other types of copy number aberrations, and exhibit different combination
patterns. The x-axis indicates genomic locations in Mb, and the y-axis is the log2 value of probe signal intensity. Yellow and blue lines represent
called genomic gains and losses respectively. (B) Distribution of CNAs as fraction of the genome, compared between CTLP and non-CTLP cases.
CT, chromothripsis-like. (C) Distribution of CNA fractions for individual samples. For the non-CTLP group, 918 samples were randomly chosen from
the total set of 17,476 cases, to generate an equally sized comparison. The p-value, indicating significant difference between the genome fraction
distributions of two groups, is based on a Kolmogorov-Smirnov test. The fractions for each sample have been calculated as sum of genome bases
chromosomes 1–22 divided by the sum of all CNAs in the sample (with and without CTLP regions).
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cycles [9,23,46], premature chromosome compaction [47],
failed apoptosis [48,49] and micronuclei formation [50].
Some of these proposed mechanisms are associated with
features which could be addressed in our study.
In our dataset, although most (76%) CTLP cases pre-

sented single chromosome CTLP events, in approximately
24% CTLP affected at least 2 chromosomes (Figure 4A).
For certain candidate mechanisms, e.g. micro-nucleus for-
mation due to mitotic delay, this observation would imply
more than one event, whereas the observation appears
compatible with e.g. an aborted apoptosis process.
For relating to cytogenetic aberration mechanisms, an

additional parameter explored by us was the extent of
CTLP regions when normalized to their respective chro-
mosomes. Affected regions were classified into the cat-
egories “arm-level” (≥ 90% arm length), “chromosome-level”
(≥ 80% chromosome length) or “localized” (Figure 4B).
Arm-level CTLP events were observed with a relatively high
frequency (~19%). In the arm-level patterns, the CTLP re-
arrangements were concentrated in one chromosome arm,
with the other arm of the same chromosome remaining
normal or showing isolated CNA. Since arm-level events
involve both peri-centromeric and telomeric regions, cyto-
genetic events involving these chromosomal structures
present themselves as possible causative mechanisms.
Notably, one model that closely conforms to this pattern

involves breakage-fusion-bridge cycles [9,23,46,47,51-54].
In general, such cycles start with telomere loss and end-
to-end chromosome fusions. When the dicentric chromo-
somes are formed and pulled to opposite poles during
anaphase, a double-strand DNA break acts as starting
point for the next cycle. Chromosomal rearrangements



Figure 4 The distribution of CTLP regions in terms of chromosome number and length. (A) The number of chromosomes affected by
CTLP per sample. The numbers outside and inside the brackets are number and percentage of CTLP samples respectively. (B) Length distribution
of CTLP regions normalized to chromosome or chromosome arm lengths. For each chromosome, regions restricted on a single arm were
normalized to arm lengths (red bars), otherwise were normalized to chromosome lengths (blue bars). More than 10% of all CTLP events involve
whole chromosome arms.
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would gradually accumulate during the additional cycles,
and should be concentrated in one chromosome arm, par-
ticularly near the affected telomere. In our dataset, up to
44% of all CTLP chromosomes involved telomere regions.
We performed simulations to explore whether this telo-
mere enrichment could be explained by chance. In brief,
for each sample, we retained the location of CTLP region
in the genome and shuffled the telomere position of each
chromosome while keeping the length of each chromo-
some constant. In contrast to the actual observations, the
simulation did not result in telomeric CTLP enrichment
(p < 0.0001; 10,000 simulations; see Methods). CTLP gen-
eration through breakage-fusion-bridge cycles would be a
viable candidate hypothesis compatible both with the sta-
tistically significant telomere enrichment and the high
proportion of arm-level pulverization. However, for arm-
Figure 5 Clinical perspective on CTLP events. (A) Distribution of CTLP p
and source between CTLP and input dataset or non-CTLP cases. p-values a
exact test (source). P, primary tumor; C, cell line. (C) Kaplan-Meier survival c
log-rank test.
level CTLP events centromere-related instability mecha-
nisms should also be considered for future discussions.

Clinical implications
Based on clinical associations of “chromothripsis” pat-
terns, it has been claimed that these events may correlate
with a poor outcome in the context of the respective
tumor type [14,25,55]. In our meta-analysis, we explored a
general relation of CTLP with clinical parameters, across
the wide range of cancer entities reflected in our input
data set. Clinical data was collected from GEO and from
the publications of the respective series (Additional file 2:
Table S2 and Additional file 1: Table S7) and parameters
available for at least 1,000 cases were considered. From
our dataset, CTLP seemed to occur at a more advanced
patient age as compared to non-CTLP samples (Figure 5A)
ercentage versus patient age. (B) Distribution of sample stage, grade
re derived from Chi-square test (stage and grade) or two tailed Fisher’s
urves for CTLP versus non-CTLP cases. The p-value is based on



Figure 6 Platform distribution based on different resolutions
and technology types. Different analysis groups are shown,
including the whole input dataset, inferred CTLP cases and three
cancer types. The larger fraction of high-density oligonucleotide
arrays in samples with CTLP compared to the overall platform
distribution indicates an increased sensitivity of these platforms for
CTLP events. Oligo, oligonucleotide; NSCLC, Non-small cell
lung cancer.
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[23]. CTLP mainly occurred at stage II and III (70%),
which was significantly different from the stage distribu-
tion of total samples (55.2%) (p = 0.0149; Chi-square test)
(Figure 5B). No difference of grade distribution was ob-
served in our dataset (p = 0.425; Chi-square test) where
CTLP samples showed a predominance for grades 2 and
3, similar to the bulk of all samples (~80%). We also found
that CTLP was overrepresented in cell lines compared to
primary tumors (p < 2.2 × 10-16; two-tailed Fisher’s exact test).
For a subset of 1,203 patients, we were able to determine

basic follow-up parameters (follow-up time and survival
status). For 72 of these individuals, CTLP was detected in
their tumor genomes. Notably, patients with CTLP sur-
vived a significantly shorter time than those without this
phenomenon (p = 0.0039; log-rank test; Figure 5C). Note
that this analysis was based on a sample of convenience av-
eraged over cancers, stages and grades. If we break down
this dataset by cancer type, the numbers are not large
enough to provide statistical confidence (Additional file 1:
Figure S4). While the cancer type independent association
of CTLP patterns and poor outcome is intriguing, po-
tential clinical effects of chromothripsis-like genome
disruption should be evaluated in larger and clinically
more homogeneous data sets.

Sensitivity of array platforms for detection of
chromothripsis-like patterns
Presumed chromothripsis events have been reported from
genomic datasets generated through different array and se-
quencing based techniques (see Table 1). We performed an
analysis of the platform distribution of our CTLP samples,
to estimate the detection bias among various genomic
array platforms. As the resolution of a platform depends
both on type and density of the probes on an array, we di-
vided the platforms into 4 groups according to their probe
numbers and techniques (BAC/P1, DNA/cDNA, oligo-
nucleotide ≤ 200 K and oligonucleotide > 200 K). Although
CTLP were detected by all types of genomic arrays, a
higher fraction of CTLP samples was found using data
from high resolution oligonucleotide arrays (Figure 6),
possibly due to increased sensitivity related to higher
probe density. Indeed, when performing platform simula-
tions, the sensitivity of CTLP detection improved with in-
creasing probe numbers (Additional file 1: Figures S5 and
S6; see Methods). According to these simulations, array
platforms consisting of more than 250 k probes should be
preferred when screening for CTLP events. Since our ana-
lysis relied on a variety of array platforms, we can assume
that the overall prevalence of CTLP in cancer is higher
than our reported 5% of samples.

Discussion
The description of the “chromothripsis” phenomenon
has initiated a vital discussion about clustered genomic
aberration events and their role in cancer development
[52,55,56]. While chromothripsis senso stricto has been
characterized as a type of focally clustered genomic ab-
errations generated in a one time cellular event and be-
ing limited to a defined set of copy number states [15],
other operational definitions have been employed based
on clustered aberrations [7,16,23,45,55,57]. It seems
likely that some of the previous discussions of “chromo-
thripsis” referred to a number of underlying event types,
all resulting in localized genome fragmentation and re-
assembly events. For instance, DNA double strand break
and end-joining-mediated repair may result in a re-
stricted number of copy number levels, whereas aber-
rant replication based mechanisms will lead to a more
diverse set of copy number aberrations [45,55]. Here,
we introduce the term “chromothripsis-like patterns”
(CTLP) when referring to clustered genomic events, to
accommodate both common labelling and presumed
biological variability of clustered genomic copy number
aberrations.
At this time, due to the lack of sufficiently large num-

ber of cancer data sets from whole-genome sequencing
analyses, a meta-analysis of “strict” chromothripsis cases
is not feasible. We have followed a pragmatic approach
to quantify the occurrence of CTLP from genomic array
data sets. In our algorithm, we implemented the two
most significant features shared by different operational
chromothripsis definitions, namely copy number status
changes and breakpoints clustering, which can be well
measured by array based technologies. Previous studies
provided various algorithms to detect “chromothripsis”
events [9,15,58]. However, besides its application to an



Cai et al. BMC Genomics 2014, 15:82 Page 9 of 13
http://www.biomedcentral.com/1471-2164/15/82
extensive data set, the specific advantage of our method
presented here is its ability to detect regions of shattering
with limited influence from the varying sizes of affected
chromosomes. Since the step length of our scanning win-
dow is 5 Mb, theoretically the detected CTLP regions are
within an accuracy of ±5 Mb. Note that the performance
of this algorithm may be influenced by poor quality arrays,
especially those with highly scattered and unevenly dis-
tributed probe signal intensities.
In this study, we identified 918 CTLP-containing gen-

ome profiles, based on an analysis of copy number aber-
ration patterns from 22,347 oncogenomic arrays and
representing 132 cancer types. Despite the inherent limi-
tations of such a meta-analysis approach, we were able
to provide several new insights regarding the distribu-
tion of clustered genomic copy number aberrations and
to produce a comprehensive estimate of CTLP incidence
in a large range of cancer entities.
In our analysis, CTLP exhibited an uneven distribu-

tion along tumor genomes, with disease related local
enrichment. These “CTLP dense” chromosomal regions
may reveal associations between disease related cancer
associated genes and molecular mechanisms behind
genome shattering events. This potential correlation is
exemplified by the prevalence of mutant TP53 in “chro-
mothriptic” Li-Fraumeni syndrome associated Sonic-
Hedgehog medulloblastomas [23]. As the extent of CTLP
related deletions of the TP53 locus indicates, CTLP re-
lated gene dosage changes may predispose to double-hit
effects on specific tumor suppressors. In contrast, we
found regional enrichment for CTLP with pre-dominant
copy number gains on chromosomes 8, 11 and 12. In the
initial study, chromosome 8 shattering was found in a
small cell lung cancer cell line [9]. This event contained
the MYC oncogene, which had be shown to be amplified
in 10-20% of small cell lung cancers [59]. Moreover,
strong overexpression of MYC involved in a “chromo-
thripsis” region was also detected in a neuroblastoma
sample [25]. In a study of colorectal tumors, chromo-
somes 8 and 11 were involved in concurrent pulverization
events with generation of fusion genes, involving e.g.
SAPS3 and ZFP91 [18]. In a study on hepatocellular car-
cinoma, CCND1 amplification was embedded within a
“chromothriptic” event on chromosome 11 [24]. There-
fore, the overall uneven distribution of CTLP may point
to specific driver mutations that contribute to CTLP gen-
eration, and/or to a class of cancer promoting mutations
based on regional genome shattering events.
When comparing cancer types, we observed a high

CTLP prevalence in a limited set of entities, particularly
among soft tissue tumors. This finding supports and
improves upon a previous prediction of particularly high
“chromothripsis” rate in bone tumors [9]. Also, the un-
even distribution of CTLP is a strong indicator for a
disease related selection of specific genomic aberrations,
supporting their involvement in the oncogenetic process.
In the initial study, the authors stated that chromothripsis

could be a one-off cataclysmic event that generates multiple
concurrent mutations and rearrangements [9]. However,
the role of chromothripsis in terms of “shortcut” to cancer
genome generation is still elusive. We note that additional
and complex non-CTLP genome re-arrangements exist in
the majority of CTLP samples. The number and uneven
distribution of affected chromosomes in CTLP supports
the biological heterogeneity of cancer samples with CTLP
containing genome profiles. Furthermore, the normalized
spatial distribution of shattered chromosomal regions,
as well as the observed significant overlap between telo-
mere and pulverized regions is supportive of breakage-
fusion-bridge cycles as one of the mechanisms acting in
a subset of samples. Further efforts are needed to in-
vestigate the temporal order of chromothripsis and
non-chromothripsis events in complex samples, and to
substantiate the existence of a dichotomy between “one-
off” chromothripsis and other classes of localized genome
shattering events, all resulting in clustered genomic copy
number aberrations.
In our associated clinical data, CTLP were related to

more advanced tumor stages and overall worse prognosis
when compared to non-CTLP cases. One possible explan-
ation is that the numerous concurrent genetic alterations
induced by genome shattering events disturb a large num-
ber of genes and contribute to more aggressive tumor
phenotypes. By themselves, these observations do not dif-
ferentiate whether CTLP arise as a early events promoting
aggressive tumor behavior with fast growth rates and re-
duced response rates to therapeutic interventions; or
whether this observation relates to underlying primary
mutations predisposing to genomic instability, aggressive
clinical behavior and CTLP as a resulting epiphenomenon.
Interestingly, the high rate of TP53 involvement by itself
would support both possibilities for this gene, i.e. chromo-
thripsis as result of TP53 mutation as well as chromo-
thriptic events with TP53 locus involvement promoting an
aggressive clinical behavior.
From Table 1 we may notice that the array based tech-

nologies are, in general, less sensitive than whole-genome
sequencing data for calling chromothripsis-like events.
This is partly due to the very limited ability of most array
platforms to detect balanced genomic aberrations, such as
inversions and translocation events. In the future, the ac-
cumulation of large-scale sequencing data should be able
to provide further insights into localise genome shattering
events.

Conclusions
CTLP represent a striking feature occurring in a limited
set of cancer genomes, and can be detected from array
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based copy number screening experiments, using bio-
statistical methods. The observed clustered genomic copy
number aberrations may reflect heterogenous biological
phenomena beyond a single class of “chromothripsis”
events, and probably vary in their specific impact on
oncogenesis. Fragmentation hotspots derived from our
large-scale data set could promote the detection of
markers associated with genome shattering, or may be
used for assigning disease related effects to CTLP-
induced genomic events.

Methods
Genome-wide microarrays and data preparation
In this study, we screened 402 GEO series [36], encompass-
ing 22,347 high quality genomic arrays (Additional file 2:
Table S2). All selected arrays were human cancer samples
hybridized onto genome-wide array platforms. The nor-
malized probe intensities, segmented data and quality in-
formation were obtained from the arrayMap database,
which is a publicly available reference database for copy
number profiling data [37]. In brief, the annotated data
was obtained by the following processing pipeline: for
Affymetrix arrays, the aroma.affymetrix R package was
employed to generate log2 scale probe level data [60]; for
non-Affymetrix arrays, available probe intensity files were
processed; CBS (Circular Binary Segmentation) algorithm
[61] was performed to obtain segmented copy number
data. The probe locations were mapped on the human
reference genome (UCSC build hg18). In the case of
technical repeats (e.g. one sample was hybridized on
multiple platforms), only one of the arrays was consid-
ered for analysis (preferably with the highest resolution
and/or best overall quality). The array profiling can be
visualized through the arrayMap website.

Scan-statistic based chromothripsis-like pattern detection
algorithm
To detect chromothripsis-like cases, we formulated an
algorithm identifying clustering of copy number status
changes in the genome. Several parameters were consid-
ered to define the alteration of copy number status:

i) The thresholds of log2 ratio for calling genomic
gains and losses. These values were array specific
and stored in arrayMap database. For each array, the
thresholds were obtained from related publications
or empirically assigned based on the log2 ratio
distribution.

ii) The intensity distance between adjacent segments.
Due to local correlation effects between probes or
the existence of background noise, the segmentation
profiles occasionally exhibit subtle striation patterns.
This pattern is constituted with a large number of
small segments, which is unlikely to be a biological
phenomenon. To reduce artificial copy number
status change, the distance of signal intensity
between adjacent segments was used as a threshold,
and defined here as the sum of the absolute values
to call gains and losses. If the distance of two
adjacent segments differed by less than this
threshold, the copy number status change was not
considered.

iii)Segment size. The resolution of a platform depends
on the density of probes on the array. One of the
platforms with the highest density in our dataset is
Affymetrix SNP6, which contains 1.8 million
polymorphic and non-polymorphic markers with the
mean inter-marker distance of 1.7 kb. It provides a
practical resolution of 10 to 20 kb. Therefore, in this
study, segments smaller than 10 kb were removed.

In order to identify clustering of copy number status
changes, a scan-statistic likelihood ratio based on the
Poisson model was employed [39]. In our implementa-
tion, a fixed-size window was moved along the genome
and for each window the likelihood ratio was computed
from observed and expected copy number status change
times. Let G be the genome represented linearly, and W
is a window with fixed size. As the window W moves
over G, it defines a collection of zones Z, where Z ⊂G.
Let nW denotes the observed copy number status change
times in window W, and nG the total number of observed
status change in G. μW is the expected status change times
in window W, and is calculated as W/G × n. The likeli-
hood function is expressed as

λ ¼
nw
μw

� �nw

1

nG−nw
nG−μw

� �nG−nw

if
nw
μw

>
nG−nw
nG−μw

otherwise

8<
:

This function detects the zone that is most likely to be
a cluster.
Due to lack of prior knowledge about the size of W,

we predefined a series of window sizes from 30 Mb to
247 Mb (Additional file 1: Table S8), which were based
on chromosome sizes. The scanning process was re-
peated for the series of window sizes for each sample.
When W moved over G, the step length was set to
5 Mb, and there was no overlap between different chro-
mosomes in window W. In this way, for each genome,
the collection of Z contained 4,414 windows in various
sizes. The window that maximized the likelihood ratio
defined the most probable CTLP region. Thus it can de-
tect both the location and the size of the cluster. When
analyzing the complete input dataset, the window with
the highest likelihood ratio was selected as a candidate
of chromothripsis for each chromosome of the 22,347
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arrays. The R script for detecting CTLP cases can be
provided upon request.

Analysis of fragment enrichment in telomere region
Telomere positions were simulated to test the DNA frag-
ment enrichment. For each case, the CTLP region was
kept at its location in the genome. Locations of chromo-
some terminals were randomly selected while the length of
each chromosome was kept. A genomic interval of 5 Mb
from the chromosome terminal was considered as the telo-
mere region. The simulation was performed 10,000 times.

Simulation of platform resolution
The 15 Affymetrix SNP6 CTLP chromosomes in the
training set were used for simulation. For each genome, a
certain number of probes were randomly chosen from the
original probe set. These probes generally represented the
profile that the same sample was hybridized on a platform
with corresponding resolution. Then the CTLP pattern
detection algorithm was applied on the simulated arrays,
and the number of cases that passed the thresholds were
recorded.

Statistical testing
The significance in the number of CTLP cases with
TP53 loss in comparison to those in non-CTLP cases
was assessed using two-tailed Fisher's exact test. We per-
formed a Kolmogorov-Smirnov test to compare the dis-
tributions of copy number aberration proportions in the
genome between CTLP and the other cases. The Chi-
square test was used to assess the significance in the dis-
tribution of both patient stage and grade in CTLP and
the whole input dataset. The associations between the
number of cell lines in CTLP and non-CTLP cases were
tested by two-tailed Fisher's exact test. The difference in
the survival curves between two subgroups was evalu-
ated by the log-rank test.
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