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Abstract

sequencing mRNA libraries to generate RNA-seq data.
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Background: Oncogenic fusion genes underlie the mechanism of several common cancers. Next-generation
sequencing based RNA-seq analyses have revealed an increasing number of recurrent fusions in a variety of cancers.
However, absence of a publicly available gene-fusion focused RNA-seq data impedes comparative assessment

and collaborative development of novel gene fusions detection algorithms. We have generated nine synthetic
poly-adenylated RNA transcripts that correspond to previously reported oncogenic gene fusions. These synthetic
RNAs were spiked at known molarity over a wide range into total RNA prior to construction of next-generation

Results: Leveraging a priori knowledge about replicates and molarity of each synthetic fusion transcript, we
demonstrate utility of this dataset to compare multiple gene fusion algorithms’ detection ability. In general, more
fusions are detected at higher molarity, indicating that our constructs performed as expected. However, systematic
detection differences are observed based on molarity or algorithm-specific characteristics. Fusion-sequence specific
detection differences indicate that for applications where specific sequences are being investigated, additional
constructs may be added to provide quantitative data that is specific for the sequence of interest.

Conclusions: To our knowledge, this is the first publicly available synthetic RNA-seq data that specifically leverages
known cancer gene-fusions. The proposed method of designing multiple gene-fusion constructs over a wide range
of molarity allows granular performance analyses of multiple fusion-detection algorithms. The community can
leverage and augment this publicly available data to further collaborative development of analytical tools and
performance assessment frameworks for gene fusions from next-generation sequencing data.

Background

Oncogenic fusion genes underlie the mechanism of se-
veral common cancers and also constitute or encode
important diagnostic and therapeutic targets. Fusions
may drive oncogenic growth by joining a proliferation-
inducing gene to an active promoter, by disrupting the
function of tumor suppressor genes, or by creating novel
functional products that rewire the biochemical pathways
that regulate cellular division [1]. Research has led to
identification of drugs that are currently used to target
fusions in different malignancies. Examples include ima-
tinib, tretinoin, and crizotinib, which target the BCR-ABL,
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PML-RAR, and EMIL4-ALK fusion products associated
with chronic myelogenous leukemia [2,3], acute promye-
locytic leukemia [4-6], and non-small cell lung carcinoma
[7-9], respectively. These established associations and clin-
ical applications underscore the need to comprehensively
and accurately detect fusions in cancer samples.
Next-generation sequencing technologies, particularly
RNA sequencing (RNA-seq), have revealed an increasing
number of recurrent fusions in a variety of cancers, and
it is likely that their detection will have growing diagnostic
and prognostic utility. As such, validating the laboratory
and analysis methods to establish analytical parameters in-
cluding the limit of detection, linearity, sensitivity, and
specificity of fusion detection in tumor RNA specimens is
critical for adoption in clinical research settings. For ex-
ample, does a fusion transcript present at higher molarity
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(higher transcript abundance) correlate with higher num-
ber of fusion-supporting sequencing reads? Are there dif-
ferences in detection algorithms’ efficacy with respect to
specific fusion sequence and independent of abundance?
Answering such questions and establishing robust metrics
is difficult due to the lack of publicly available RNA-seq
data specifically generated to capture gene fusions.

We have developed a set of nine synthetic poly-
adenylated RNA transcripts that correspond to reported
cancer fusion gene sequences (Figure 1 and Additional
file 1: Table S1). These synthetic gene fusion RNA con-
structs (SGFRs) can be spiked at known concentrations
into total RNA prior to mRNA library construction and
barcoded to keep them separate from endogenous fu-
sions. To demonstrate utility of these SGFRs, we per-
formed a series of experiments and data analyses as
described next.

Methods

Generation of synthetic gene fusion RNA (SGFR) constructs
Sequences of nine transcripts containing oncogenic fu-
sions were obtained from GenBank. Degenerate bases in
the sequences were assigned a specific base and the final
sequences can be found in the separate excel sheet. A
T7 promoter sequence and Ascl restriction enzyme site
were added to the 5’ end of the sequence and a T3 and
Notl sequence added to the 3" end of the sequence to
allow for linearization and transcription in both direc-
tions (Figure 2). The sequence was synthesized and
inserted into a pUCIDT vector by IDT (San Diego, CA).
Lyophilized plasmids were resuspended in 40 pL TE.
50 pL aliquots of Transformax™ EC100™ Chemically Com-
petent E. coli (Epicenter, Madison WI) were thawed
on ice and transfected with 1 pL (9.7-83.1 ng) of re-
suspended plasmid per the manufacturer’s suggested
protocols. Transformed cells were plated on prewarmed
100 pg/mL ampicillin plates and incubated at 37°C over-
night (18 hours). One colony from each plate was used
to inoculate 5 mL LB broth (Teknova) containing 1x
carbenicillin. Inoculated tubes were incubated overnight
on a shaker at 37°C. Plasmids were isolated using the
Qiagen Spin Miniprep Kit. The sequence of the purified
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plasmids were validated with Sanger sequencing. Purified
plasmids were quantitated using the UV absorbance, then
linearized with NotI-HF" (New England Biolabs) at 37°C
for 4 hours. Linearized plasmids were gel purified on a
0.8% agarose gel. Linear DNA was excised from the gels
and purified using QIAquick Gel Extraction Kit and etha-
nol precipitated. DNA was transcribed to RNA using
MegaScript® T7 Kit (Invitrogen) followed by poly(A) tail-
ing using the Poly(A) Tailing Kit (Life Technologies) ac-
cording to the manufacturer recommended protocols.
Poly-A tailed RNA was cleaned up using MEGAclear™ Kit
(Life Technologies, cat#AM1908) and ethanol precipitated
in aliquots for long-term storage.

RNA sequencing

RNA aliquots were washed in 70% ice cold ethanol, re-
suspended in 50 puL TE buffer (10 mM Tris—HCI pH 8.0,
1 mM EDTA), then quantitated using UV absorption.
2.2 ng of each RNA spike were pooled in a PCR plate,
and the volume was brought up to 50 pL with RNase
free water. A cDNA library was prepared using TruSeq
Stranded mRNA LT Sample Prep Kit (Illumina®, cat#
RS-122-2101) and sequenced on an Illumina MiSeq to
confirm the sequences of the mRNA transcripts as a
final QC step. Fresh aliquots of RNA were taken from
storage, washed with 70% ice cold ethanol, resuspended
in 1 x TE, and quantitated using RiboGreen (Invitrogen).
RNA spikes were mixed together to create a high con-
centration pool with 40 nM of each spike. This pool was
diluted and titrated into to 1 pg aliquots of COLO-829
total RNA (ATCC 1974). cDNA libraries were prepared
using the TruSeq Stranded mRNA LT Sample Prep Kit
(lumina®, cat# RS-122-2101) following the manufactu-
rer’s protocol. The resulting libraries were sequenced on
the Illumina HiSeq2500 in Rapid Run mode using paired
end reads with 101 cycles in each read.

In summary, equimolar amounts of all nine SGFRs
were pooled together and this pool was titrated into
total RNA from the melanoma cell line COLO-829 [10]
at ten different abundances. Each SGFR abundance
pool was prepared in duplicate. Libraries were prepared
for sequencing using the Illumina TruSeq Stranded

Fusion Sequence 5'gene | 3' gene Total %GC
(5’-3'genes) Source length | length length content
EWS-ATF1 IN624779 (NCBI) 793 305 1098 50.27%
TMPRSS2-ETV1 TGen/lllumina 219 1011 1230 52.03%
EWS-FLI1 TGen/lllumina 793 638 1431 55.56%
NTRK3-ETV6 TGen/lllumina 1009 893 1902 55.47%
CD74-ROS1 EU236945 (NCBI) 625 1487 2112 48.20%
HOOK3-RET DQ104207(NCBI) 1122 1209 2331 48.13%
EML4-ALK AB663645.1 (NCBI) 1731 1659 3390 49.03%
AKAP9-BRAF TGen/lllumina 3318 1161 4479 37.22%
BRD4-NUT AY166680 (NCBI) 534 3383 3917 54.74%
Figure 1 Summary of nine synthetic fusion gene transcripts, excluding the poly-A tail.
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Figure 2 Vector design: the gene sequence was synthesized by IDT and inserted into a pUCIDT vector.

mRNA LT Sample Preparation Kit and sequenced on
an Illumina HiSeq 2500 (2 x 101 cycles).

Bioinformatics

[lumina sequencing data was converted to FASTQ format
using Casava pipeline followed by read quality assessment
using FASTQC tool (http://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). We analyzed the data using three
fusion detection tools: ChimeraScan [11], Tophat-Fusion
[12], and Snowshoes-FTD [13] (hereafter referred as CHS,
THE, and SSH respectively). The command-line parameters
are described in Figure 3. For each analysis tool, we cap-
tured the number of sequencing reads supporting each of
the nine SGFRs at various abundances (Additional file 1:
Table S2), and this table was used for all subsequent ana-
lyses. In addition to the nine SGFRs, fusions endogenous
to COLO829 were also detected by the analyses. We were
able to confirm one endogenous fusion OIP5-NUSAP1

in independent wet-lab validation (Additional file 1:
Table S3), although all callers did not identify it. Since
endogenous fusions are out of scope of this study, they are
not discussed further in this manuscript and we did not
attempt to validate in wet-lab every predicted endogenous
fusion. However, a parallel sample run with no SGFRs
added showed zero reads mapping to the regions of
select fused gene junctions, and therefore the COLO829
can be considered to be a high complexity neutral back-
ground sample for this study.

Results and discussion

Analytically, gene fusions are typically detected from
RNA-seq data by: 1) Aligning reads to a reference genome
or transcriptome assembly; 2) Identifying discordant read
pairs, i.e., pairs for which genomic distance between the
two ends’ alignments is significantly different from the
expected genomic distance based on library preparation;

Tophat-fusion from TopHat v2.0.7

tophat-fusion-post

me'

Chimerascan version 0.4.5

SFASTQ2 $OUTPUT -p 8 -verbose

SnowShoes-FTD

-p 8 --output-dir 'tophat_fusion' --num-fusion-reads 1 -
-num-fusion-pairs 2 --num-fusion-both 5
'/illumina/scratch/iGenomes/Homo sapiens/UCSC/hgl9/Sequence/BowtieIndex/geno

chimerascan run.py /home/hchuang/Bioinfo/Tools/chimerascan index $FASTQ1

Snowshoes 2.0 was executed as described in Snowshoes’ manual. Four perl

scripts have been run sequentially after setting up a configuration file
with the settings: read length=50, distance=5000, lib size=300, minimal=2,
max_fusion isoform=2.

Perl scripts (personal communication with SnowShoes’ author)
0_make_directory_structures

1 _process_sorted SAM to mapped reads

2_Mapped Reads_processed

3_get_fusion transcript_and protein_ results_ NEW

Figure 3 Command-line parameters used for running the three fusion detection tools. Reference genome was GRCh37. In each case,
custom scripts were developed internally to extract statistics about fusion-supporting reads.
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3) Extracting split sections of the same read that align to
different regions of the genome, thereby, indicating a
potential fusion; 4) Algorithm-specific additional steps,
such as contig construction, sequence homology search,
guided analyses based on exon junction annotation
files, etc.

We emphasize here that our focus is to demonstrate util-
ity of the SGER constructs for evaluating assay performance
and to make them available to the clinical and research
communities to further active research in gene-fusion
detection methods. To that end, the choice of three
representative algorithms and the analysis framework is
based on our experience in analyzing such data. Since em-
phasis is on making RNA-seq gene fusion data publically
available, we do not attempt to provide a detailed compa-
rative assessment, pros-cons, or performance characteri-
zation of the growing number of gene fusion detection tools
discussed elsewhere [14,15]. However, to highlight the differ-
ences in the underlying analytical methods in these three
fusion-detection tools, we briefly describe each of the
approaches and direct readers to bibliography [11-13] for
complete details. THF builds on Tophat to align RNA-seq
reads using Bowtie [16] without using any annotation to
independently align paired end reads, followed by segment
mapping of unaligned reads that are used together for
identifying candidate fusion junctions. Next, spliced fusion
contig index is created and read segments are remapped
using BLAST (in the TophatFusionPost step) followed by
stitching all segments together into full read alignments that
are further filtered based on criteria, such as number of
fusion-supporting reads. SSH uses 50-bp reads that are
aligned by BWA [17] guided by customized exon annotation
file to identify potential fusions as well as unmapped reads.
In our SSH analysis, we retained the first 50-bases from
FASTQ files, and SnowShoes-FTD authors provided the
annotation file (personal communication). Subsequent steps
consists of using Megablast and a junction database to iden-
tify overlapping, spanning, and split reads to detect fusions
that are further filtered using SnowShoes-FTD author
provided false positive list. CHS uses known junctions from
an annotation file that guides Bowtie alignment algorithm to
find discordant read pairs and unmapped reads. Trimmed
unmapped reads are aligned and used in conjunction with
previous alignments to identify chimeric events by examin-
ing exon junctions from the annotation file. Thus, the three
methods share an overall approach of identifying fusions
based on aligning paired-end reads and detecting evidence
of fusion junction. However, they are different with respect
to the specific underlying alignment algorithm, read length,
guidance from optionally provided annotation file, post-
alignment processing to assemble fusion contigs, and
parameters used to retain fusions from candidate fusions.

We also verified by running a separate parallel sample that
the COLO-829 cell line provided a neutral background, i.e.,
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it did not contain any of the nine SGFRs. Therefore, SGFRs
in our experiment were not barcoded prior to spiking into
the total RNA. However, barcoded SGFRs should be pre-
ferred in other cell lines to avoid mixing of spiked-in fusions
and potential endogenous fusions.

Figure 4 demonstrates that at higher abundances, the
relationship between number of detected fusions reads and
abundance is linear. At lower abundances, the plateaued
response might indicate high noise to signal ratio. To verify
that fusion reads were present in the original data (true
positive signal), we used GSNAP [18] as an independent
tool to align entire data against a combined concatenated
reference sequence consisting of human genome build
GRCh37 and the nine synthetic fusions transcripts. Figure 5
shows the number of fusion-supporting reads identified by
GSNAP (blue squares) along with those identified by the
three gene fusion detection tools (triangles).

To compare experimental replicates, we calculated the
Pearson correlation between number of fusion-supporting
reads between replicates (Figure 6) by dividing the data into
high read count (>100) and low read count (<=100) groups
chosen based on visual inspection of data for illustration
purposes. For high read-counts, correlation between
replicates’ reads for each tool as well as all reads combined
together was high (CHS: 0.9613, THF: 0.9990, SSH: 0.9986,
All: 0.9955). For low read-counts, corresponding correlation
values were lower (CHS: 0.3209, THF: 0.2577, SSH: 0.7292,
and All: 0.4025). This indicates higher difference between
replicates at lower abundance values that should also trans-
late to more differences in detected fusions at lower abun-
dances. Figure 7 depicts the variability (Y-axis) in number
of fusions reads against various abundances (X-axis). For
each abundance, variance of the fraction of reads support-
ing each fusion from the total number of fusion-supporting
reads was calculated when at least five out of nine, ie,
more than half, fusions had supporting reads. Clearly, at
higher abundances (approximately 6 pMol or higher),
variance is consistently low and replicates have almost
equal variance indicated by overlapping data points.

To observe the effect of changing minimum number of
reads required to call a fusion, Figure 8 depicts the num-
ber of fusions detected for each replicate at different
minimum reads thresholds. Implicitly, Figure 8 also
captures gene-fusion detection sensitivity as the ratio of
number of detected fusions to the nine known fusions at
various abundances for different minimum number of
fusion-supporting reads threshold. For example, at 3.47
pMol, TophatFusion identifies all but the TMPRSS2-
ETV1 fusion, with a sensitivity value of 8/9 = 88.88%.
Sensitivity of replicates is highly similar, except for aber-
rations in the low abundance zones, and it consistently
reaches high values at higher abundance. Since true nega-
tives are unknown, specificity calculation is left as an
open question.
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Figure 4 Three algorithms TopHat-Fusion (THF), ChimeraScan (CHS), and SnowShoes-FTD (SSH) were used to identify and plot the
number of fusion-supporting reads for SGFRs versus experimental input abundance. Triangles correspond to data for sample replicate 1
(R1) and diamonds correspond to data for the second replicate (R2) with. Complete data is included as a table in supplementary materials.
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Figure 5 To independently verify the presence of fusion reads (true positives) in the sequencing data, data was aligned using GSNAP
to a combined reference sequence consisting of the human genome GRCh37 build and nine fusion transcripts. For each fusion, the
number of fusions supporting reads identified by GSNAP (blue squares), THF (purple triangle), CHS (red triangle), and SSH (inverted green
triangle) are plotted for replicates R1 and R2.




Tembe et al. BMC Genomics 2014, 15:824 Page 6 of 9
http://www.biomedcentral.com/1471-2164/15/824

a
A
AA AcHs
A " SSH
ATHF
€
3
8I
: s
91
2
2 v‘
8
R o
o A
' AN
AA“ §
A
Replicate1 read_count
b
: | Lo
A ATHF
A
5 ' §
8.
I v
3 v
e A
v 4y
9 v v
S« A v
a A A
A &, L 2
A v A vV
. A A"y Vv vy A
' A v
A A AV A vY
Ay Ml vV A A Y
S A
* AW Av A ¥ AA A A A A A
- Replicate1 read_count h
Figure 6 Correlation between replicates based on number of fusion supporting reads. Panel (a) shows fusion-supporting reads (X-axis:
Replicate 1, Y-axis: Replicate 2) for high read count (>100). Pearson correlation was CHS: 0.9613, THF: 0.9990, SSH: 0.9986, All: 0.9955. Panel (b)
shows data for low read count (<=100) with Pearson correlation values CHS: 0.3209, THF: 0.2577, SSH: 0.7292, All: 0.4025.




Tembe et al. BMC Genomics 2014, 15:824 Page 7 of 9
http://www.biomedcentral.com/1471-2164/15/824

0.020-
A chs_r1

B cHs_Rr2
£\ SSH_R1

SSH_R2
1013 g A F_R1
B THF_R2

(]|

0.010- ||

Variance

A 2 4 =
N A g h h»

0.000

E3
log10(pmoles)

Figure 7 Variance of fusion supporting reads across molarity. For each fusion-transcript molarity (X-axis), variance of the fraction of fusion-
supporting reads across nine fusions was calculated. Variances for replicates tend to be more similar at higher molarity indicating consistency in
identifying fusion-supporting reads than at lower molarity.

THF
2 5 10 25 50 100
e o 0 o C R ) e 000 e o 0 0 e o o @ C R )

e & o 0 *0 ¢ ¢ 0 ™ o o0 " ¢ 00 % ¢ ¢ o L I
"0 e *e "o L] L

% of fusions detected

2 5
100 L] 0000 & ¢ o . 00000 & & o L] ..“.000 e & o 0 e« o o 0 L

40- R1

100 e 00 & ¢ & "o & ¢ @ *0e ¢ ¢ O * & ¢ 0 ™ & ¢ 0 * ® o0
*e 00

% of fusions detected

80- e e & ¢ O L] 00080 ¢ ¢ ¢ L] 00000 ¢ & & * e & ¢ @ % & ¢ @ ™ ¢ 00

40 s R1

80- e *e & ¢ @ * 00 & 0 @ e & & o °™0e o 0o 0 * & & @ *e o 0 0

% of fusions detected

i ‘ o = S = ; ¢ e o e
9876543 9876543 9876543 0876543 9876-5-4-3-9-8-76-5-4-3
log10(pmoles)

Figure 8 Sensitivity of the three algorithms at various levels of fusion-supporting reads cutoff (2, 5, 10, 25, 50, and 100).




Tembe et al. BMC Genomics 2014, 15:824
http://www.biomedcentral.com/1471-2164/15/824

Figure 9 provides in a matrix form a more granular view
of detected fusions (brown cells) and undetected fusions
(blue cells) at example cut-offs of 2 and 50 fusion-
supporting reads. At the minimum read threshold of 2
(Figure 9, left panel), a fusion was either detected or not
detected in both replicates in 93% of the cases. BRD4-
NUT (undetected in 1.5% cases) and TMPRSS2-ETV1
(undetected in 66% cases) marked the two extremes of
detectability. None of the SGFRs was unambiguously
detected across all molarities by all tools even at an
extremely generous cut-off of minimum two fusion-
supporting reads. This highlights the challenge in asses-
sing performance metrics with a small set of synthetic
constructs—even at the highest abundance in our experi-
ments, 100% concordant results were not obtained for all
of the SFGRs. The data are less reproducible at lower
abundances. This indicates that for applications where
specific fusion sequences are being investigated, additional
constructs may be added to provide quantitative data that
is specific for the sequence of interest.

Notably, some fusions were not detected by one or more
tool(s) irrespective of molarity as shown by the points on
X-axis in Figure 4. As shown in Figure 5, irrespective of
the fusion transcript abundance all three tools detected
EWS-ATF1, two tools detected EML4-ALK, and only one
tool detected TMPRSS2-ETV1. On further investigation
of SSH workflow, we discovered that fusion-supporting
reads for both EML4-ALK and TMPRSS2-ETV1 were
present in the initial candidate fusion list. However, these
fusions were subsequently discarded by the SSH workflow
when final list of fusions was reported. As end-users of
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the tool, we could not precisely identify specific reasons
for this filtering out and a detailed investigation of SSH
algorithm implementation is out of scope of this study. To
explore why THF did not report TMPRSS2-ETV1 fusion,
we extracted known fusion-supporting reads from
GSNAP alignments and searched for those in the
alignment files (generally known as accepted_hits.bam)
generated by THF. We discovered that several fusion-
supporting reads were aligned against TMPRSS2
(chr21:42.84-42.9 mb) and ETV1 (chr7:13.93-14.03 mb)
loci across various molarities as shown in Additional file
1: Table S4. However, TMPRSS2-ETV1 fusion was not
reported in the final list of fusions after the Tophat-
FusionPost step was executed. A detailed investigation
of actual THF algorithm implementation and specific
reasons behind filtering out the fusion is out of scope of
this study. However, observations based on additional
investigation of unreported fusions highlight the critical
importance of tool-specific criteria and parameters that
might lead to false negatives or false positives—evidence
for fusions from alignment data was processed differ-
ently by different tools yielding different results.

For the sake of completeness, we also note that each
detection tool has a large number of input parameters that
significantly affect its detection ability. Figure 4 depicts
overall trend in capturing fusion-supporting reads based
on our experimental design and chosen parameters. How-
ever, assessing the dynamic range and limits of detection
for analytical tools will require extensive combinatorial
selection of parameters, an in-depth analysis of algorithm
implementation, and a much larger number of SGFRs
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Minimun fusion-supporting read cut off = 50
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TMPRSS2-ETV1 was detected least frequently (20/60 times).

Figure 9 Fusions detected by each algorithm. For two example thresholds of 2 (left matrix) and 50 (right matrix) on minimum number of
fusion-supporting reads, number of fusions detected at different concentrations for two replicates R1 and R2 are shown. Brown cell: fusion
detected. Blue cell: fusion missed. For example, at minimum threshold of 2, BRD4-NUT was positively identified most frequently (59/60 times) and
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across wide range of transcript abundance as part of test-
ing and validation. These are out of scope of this study
that is primarily focused on making available a publically
available data for collaborative research and highlighting
some of the issues in RNA-seq based gene fusion detec-
tion based on our analysis framework.

Conclusion

The key contribution of this work is the first publicly avail-
able gene fusion RNA-seq data that specifically targets
known oncogenic gene fusions that are gaining increasing
importance in clinical genomics based on next-generation
sequencing. The community can augment this dataset and
the proposed analytical framework to further collaborative
development of advanced analytical tools for gene fusion
detection from RNA-seq data.

Data availability
All sequencing data is available in FASTQ format from the
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