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Abstract

Background: Gene expression regulation is one of the fundamental mechanisms of phenotypic plasticity and

is expected to respond to selection in conditions favoring phenotypic response. The observation that many
organisms increase their stress tolerance after acclimation to moderate levels of stress is an example of plasticity
which has been long hypothesized to be based on adaptive changes in gene expression. We report genome-wide
patterns of gene expression in two heat-tolerant and two heat-sensitive parthenogenetic clones of the zooplankton
crustacean Daphnia pulex exposed for three generations to either optimal (18°C) or substressful (28°C) temperature.

Results: A large number of genes responded to temperature and many demonstrated a significant genotype-by-
environment (GxE) interaction. Among genes with a significant GxE there were approximately equally frequent
instances of canalization, i.e. stronger plasticity in heat-sensitive than in heat-tolerant clones, and of enhancement
of plasticity along the evolutionary vector toward heat tolerance. The strongest response observed is the
across-the-board down-regulation of a variety of genes occurring in heat-tolerant, but not in heat-sensitive clones.
This response is particularly obvious among genes involved in core metabolic pathways and those responsible for

transcription, translation and DNA repair.

long-term costs of accelerated mutation accumulation.

Conclusions: The observed down-regulation of metabolism, consistent with previous findings in yeast and
Drosophila, may reflect a general compensatory stress response. The associated down-regulation of DNA repair
pathways potentially creates a trade-off between short-term benefits of survival at high temperature and
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Background

Organisms respond to environmental changes by adjusting
their physiology, biochemistry, behavior, and sometimes,
morphology. The ability of a single genotype to generate
a variety of phenotypes in response to environmental
changes is termed phenotypic plasticity and the resulting
increase of tolerance to stressful levels of environmental
parameters is known as acclimation. One of the central
goals in the study of adaptive phenotypic plasticity has
been the analysis of reaction norms in ancestral and
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evolved populations [1-3]. In the postgenomic era such
analysis is a necessary condition for answering one of the
major emerging questions in evolutionary and ecological
genomics: are the genes involved in plastic responses
the same as those underlying adaptive differentiation
[4]? Using the emerging model organism Daphnia, we ad-
dress this question by analyzing the differential expression
patterns of heat-tolerant and heat-sensitive genotypes that
have been acclimated to either optimal or stressfully high
temperature.

One fundamental molecular mechanism of phenotypic
plasticity acclimation is up- or down-regulation of the ex-
pression of individual genes to meet the organism’s needs
prescribed by the changing environment [5,6]. Phenotypic
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plasticity is easy to observe but difficult to interpret.
In particular, it can be difficult to untangle plasticity
and adaptation, as adaptation may be achieved by the
evolution of plasticity rather than by the evolution of a
constitutive tolerance mechanism.

A further complication is that it may be difficult to
demonstrate that phenotypic plasticity at the level of
gene regulation is causative of higher fitness in the indu-
cing environment. Correlated patterns of expression due
to regulatory or developmental constraints [1,7] may
cause cascades of genes to respond in a concordant man-
ner, seemingly to match the environmental demand. For
example, among the large number of genes responding to
early exposure to ethanol in Drosophila embryos [8] there
are genes that are likely downstream responses to ethanol
presence and thus non-adaptive in the sense of increased
ethanol tolerance. Similarly, if genes respond to the same
transcriptional regulators with the causative, adaptively
plastic genes, the correlated response will make it difficult
to single out the causative genes. In cases where a small
number of candidate genes are implicated in adaptive
plastic responses it is possible to employ direct gene-
specific manipulative fitness-measuring approaches. How-
ever, when a significant portion of the genome responds
to a specific environmental cue testing the fitness effect
of each instance of differential expression becomes im-
practical. Validating the relationship between regulatory
plasticity and adaptive value is particularly difficult in
non-model systems lacking well-established reverse genetic
approaches. In addition, the lack of functional annotations
for many genes in non-model species complicates estab-
lishing the relationship between genes and phenotypes.

One plausible approach is the measurement of gene
expression rates in a common-garden experiment in which
stress-tolerant and stress-sensitive genotypes are exposed
to the same level of stress. While this approach is still
subject to the difficulties caused by correlated responses it
allows the identification of groups of co-regulated genes
whose regulation is likely to be adaptive. Expression re-
sponses to the environment observed in stress-tolerant,
but not stress-sensitive genotypes, are likely to represent
an evolved mechanism rather than be a product of a
regulatory constraint. Likewise, genes that are plastic in
sensitive genotypes, but constitutive in tolerant ones,
are likely to demonstrate adaptive elimination of misa-
daptive environmental response, i.e., canalization. Surpris-
ingly, such common-garden experiments are scarce both
in model [8-10] and non-model organisms [11,12]. To the
best of our knowledge, here we report the first study of
transcriptome response to temperature in Daphnia, a
classic model for studies of phenotypic plasticity, and the
first such study in the context of heat tolerance.

Facing stressful environmental conditions an organism
can respond either by minimizing damage, by reducing
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demand/increasing efficiency of the consumption of re-
sources related to stress-tolerance, or by escaping the
stressful environments. Investigations of the plasticity of
heat tolerance in aquatic ectotherms have provided exam-
ples of all these response mechanisms. For example, ther-
mal damage can be minimized by the chaperoning activity
of heat shock proteins [13] or by activation of P450 cyto-
chromes, recently implicated in a variety of heat-tolerance
responses, possibly through their involvement in oxidative
stress metabolic pathways [14,15]. Organisms in stressful
low or high temperature environments can also imple-
ment membrane restructuring to achieve sufficient mem-
brane fluidity at low temperatures without sacrificing
structural stability, or suffering too much ion leakage at
high temperatures [16,17]. Transcriptional responses of
some of these specific heat response genes will be reported
elsewhere (in preparation); here we will focus on genome-
wide patterns of response.

In aquatic organisms high-temperature tolerance is
often constrained by the mismatch between metabolic
oxygen demand and oxygen availability. Indeed, meta-
bolic demands typically increase exponentially with
temperature, while oxygen availability is reduced by
the lower solubility of oxygen in water at higher tempera-
tures [18-21]. Numerous aquatic ectotherms are known to
respond to elevated temperature by over expressing hae-
moglobins, which allows them to more efficiently trans-
port and store oxygen [21-24]. In Daphnia haemoglobins
are particularly interesting since they likely play a role in
protecting tissues from oxidative damage [21] and are
known to be co-expressed with the male-inducing hormo-
nal pathway. The production of males and a transition
to sexual reproduction is a possible mechanism to es-
cape unfavorably high temperatures through shifting
the reproductive effort to sexually produced diapausing
eggs [25].

Another well-documented response of a variety of
aquatic organisms to the dilemma posed by metabolic
oxygen demand is temperature-induced metabolic com-
pensation [26-28]. This compensatory response is charac-
terized by the across-the-board reduction of metabolic
activity at temperatures close to the upper tolerance limit.
The protein-level mechanisms of this plastic response
have attracted a great deal of attention [29], while com-
parable data on transcriptional response to temperature
indicative of the metabolic compensation response are
scarce [9,30].

In this paper we ask the following questions:

1) What is the generalized transcriptome response in
Daphnia to long-term exposure to near-lethal temperature?
2) Are specific metabolic pathways up- or down-regulated
during such acclimation? If so, can these pathways be
identified as transcriptional manifestations of known tem-
perature acclimation mechanisms such as metabolic
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compensation? 3) Are the observed patterns of gene
regulation different in a small sample of temperature-
sensitive vs. temperature-resistant genotypes? and 4) For
genes showing a significant genotype-by-environment
interaction, is the magnitude of differential expression in
response to temperature greater or less in heat-tolerant or
heat-sensitive genotypes? If differential expression is adap-
tive, and if local adaptation occurs through evolution of
plasticity, we expect to observe an increase in plasticity in
heat-tolerant compared to heat-sensitive genotypes. An
adaptive expansion of plasticity is often described as the
initial phase of the Baldwin effect [31,32]. Conversely,
greater plasticity in heat-sensitive compared to heat-
tolerant genotypes would be indicative of canalization
playing a role in adaptive changes in gene regulation.

To summarize, we are reporting a genome-wide ana-
lysis of evolutionary patterns of transcriptional response
during acclimation to high temperature in Daphnia, an
emerging model system for ecological genomics.

Results

Methodology overview

We analyzed the transcriptional profiles of four Daphnia
genotypes, previously classified as either “heat tolerant”
or “heat sensitive”, at two temperatures using microarray
technology. For each gene the difference in mean expres-
sion between the two temperatures is a proxy for the
phenotypic plasticity of this gene’s expression. The differ-
ence in the mean expression levels observed in heat toler-
ant and heat sensitive genotypes is, with reservations, a
proxy for the constitutive adaptation of a gene’s expression
level. Expression values were obtained for 29212 protein-
coding genes annotated in the Daphnia pulex genome.
No filtering for genes with expression level significantly
higher than the background was employed to keep mul-
tiple test corrections conservative. A False Discovery Rate
(FDR [33]) cut-off of 0.05 was used throughout the ana-
lysis. Functional gene annotations, including memberships
in clusters of eukaryotic orthologous groups (KOGs [34];
see Methods for details), a widely used orthology-based
functional classification were obtained from the Daphnia
genome database (wfleabase.org).

Overall response to temperature

The predominant genome-wide transcriptional responses
occurring after 3 generations of acclimation to 28°C were
the down-regulation of significant portions of metabolic
and regulatory pathways. When all four clones are con-
sidered together, 892 KOGs were found to contain sig-
nificantly down-regulated genes, while only 295 KOGs
contained up-regulated genes. The same numbers for
individual genes were 1549 genes down-regulated and 907
genes up-regulated. When northern and southern clones
are considered separately (Table 1, Figure 1), the number
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Table 1 Numbers of differentially expressed (FDR < 0.05)
genes in Northern (N, sensitive) and Southern (S, tolerant)
genotypes (ns = non-significant)

N, ns N, up N, down Total
S, ns 27315 54 13 27482
S, up 719 46 0 765
S, down 942 0 23 965
Total 28976 100 136 29212

For example, 46 genes were found to be up-regulated in both N and S
populations.

of significantly up- and down-regulated pathways and in-
dividual genes were more similar, but still, down-regulated
genes outnumbered the up-regulated ones.

Numerous down-regulated KOGs included proteins
participating in fatty acid and amino acid metabolism
pathways (Figure 2A). There were three standouts among
the largely down-regulated lipid metabolism pathways
steps (green elements in Figure 2A). One such standout
was the step leading to palmitoil-coA, which contains an
up-regulated enzyme described as very-long-chain specific
acyl-coA dehydrogenase, possibly indicating a shift in the
spectrum of lipids produced. Two other up-regulated lipid
metabolism pathways were the steroid hormones biosyn-
thesis pathway and terpenoid (steroid hormone precursor)
metabolism pathway.

Similarly, although many steps of some amino acid me-
tabolism were down-regulated, some were up-regulated
(Ala, Asp, Glu, Arg, Trp and Pro) and some parts of Val,
Leu and Ile degradation pathways were up-, while others
were down-regulated. The nucleotide metabolism pathway
showed a patchwork of up- and down-regulated steps.

A clear pattern emerged for regulatory pathways gene
expression (Figure 1B, D). The experimental group accli-
mated to 28°C showed across the board down-regulation
of nearly all KOGs participating in DNA replication (ex-
cept Ribonuclease H, which is up-regulated), transcription
(except the large subunit of RNA polymerase II and the
subunit E), splicing (except splicing factors from RRM and
SR superfamilies) and translation, including both the
expression of ribosomal proteins and aminoacyl-tRNA
synthetases. Interestingly, the aminoacyl-tRNA syn-
thetases that showed a significant down-regulation
(specifically, alanyl-, asparagyl-, leucyl-, isoleucyl- and
tryptophanyl-tRNA synthetases) serve the amino acids
that showed either up-regulated metabolism or a down-
regulated degradation pathway (Figure 2A). Degradation
pathways that were down-regulated included ubiquitin-
mediated proteolysis (except E3 ubiquitin ligase, which
was up-regulated), proteosome protein degradation and
RNA degradation (except 5'-3" exonuclease HKE1/RAT1,
which was up-regulated). Another pathway showing a
mixed up- and down regulatory pattern was the ABC
superfamily of heavy metal exporter proteins. Uniformly
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Figure 1 iPATH representation of differentially expressed genes in either Southern (A,B) or Northern (C,D) genotypes. A, C: metabolic
pathways. B, D: regulatory pathways. Compare to Figure 2 for annotations of major pathways.

down-regulated genes included genes participating in
homologous recombination as well as mismatch, nucleo-
tide excision and base excision DNA repair.

The fact that some pathways were highlighted on the
iPATH map while others were not is not necessarily
indicative of significant up- or down-regulation of the en-
tire pathways or overrepresentation of members of such
pathways among differentially expressed genes. It may ra-
ther be a manifestation of the large number of different
KOGs participating in a given pathway. None of the path-
ways highlighted on Figure 2 (out of the total of 125 meta-
bolic pathways) were significantly (after FDR correction)
enriched in differentially expressed genes as indicated by
Fisher’s Exact Test (data not reported). Thus, the compari-
son between highlighted and non-highlighted pathways is
not meaningful. However, meaningful comparisons are
between pathways that contain up- vs. down-regulated
elements, and between pathways whose elements are dif-
ferentially expressed in some, but not other genotypes.

Indeed, the observed patterns were drastically different
when the two heat-tolerant southern genotypes and the
two heat-sensitive northern genotypes are considered
separately (Figure 1). While some parts of metabolism
were regulated in these two types of clones similarly

(e.g., fatty acid metabolism), others were not. The complex
up- and down-regulation of nucleotide metabolism was
seen in heat-tolerant, but not in heat-sensitive genoptypes,
as were the down-regulation of N-glycan synthesis and the
up-regulation of steroid hormone biosynthesis pathway.
Several steps of ubiquinone and other terpenoid-quinone
biosynthesis were up-regulated in heat-tolerant, but not in
heat-sensitive genotypes (Figure 1A,C). Intriguingly,
retinol metabolism was up-regulated in heat-tolerant,
but (non-significantly) down-regulated in heat-sensitive
genotypes.

Finally, a discrepancy was observed between the analysis
of terpenoid backbone biosynthesis pathway using both
Northern and Southern genotypes in the complete model
(Figure 2A) and the patterns that were observed in
Northern and Southern genotypes considered separ-
ately. The complete model indicated that this pathway
contained an up-regulated enzyme, trans-pentaprenyl
transferase (EC:2.5.1.33), which was not significantly
up- or down-regulated in either the Northern or Southern
genotypes analyzed separately. In contrast, geranyl pyro-
phosphate synthase, an enzyme catalyzing a neighboring
pathway step, was significantly down-regulated in Southern,
but not the Northern genotypes (Figure 1A,C).
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An even more striking pattern of differences between
Northern and Southern genotypes was observed in the
gene expression of regulatory genes. Many more regula-
tory genes were down-regulated in heat-resistant than in
heat-sensitive genotypes (Figure 1C,D). Heat-sensitive ge-
notypes completely lack the characteristic down-regulation

of DNA replication and repair genes, and genes responsible
for transcription and splicing observed in heat-tolerant
genotypes. If this observation is correct, it indicates that
acclimation to stressful subleathal elevated tempera-
tures in Daphnia may be accompanied by systemic
down-regulation of DNA replication and gene expression



Yampolsky et al. BMC Genomics 2014, 15:859
http://www.biomedcentral.com/1471-2164/15/859

machineries and that this pattern is associated with the in-
creased tolerance to thermal stress found in the Southern

genotypes.

Canalization vs. enhancement of plasticity in heat
adaptation

The presence of genotype-by-environment interaction in
the comparison of geographically distinct genotypes may
indicate the evolution of plasticity, including plasticity of
gene expression. Assuming that heat-sensitive Northern
genotypes represent the ancestral state and the heat-
tolerant Southern genotypes represent the derived state,
one may test whether this local differentiation occurred
through genetic canalization (i.e., a reduction of plasticity
where the inducible phenotype becomes constitutive) or
an expansion of plasticity (i.e., Baldwin effect). Although
the results in Figure 1 and Table 1 might indicate a wide-
spread Baldwin effect (tolerant genotypes show differential
expression, while sensitive clones do not), in reality there
are nearly as many cases among genes with a significant
(FDR q <0.05) T*geo effect in which the Southern (heat
tolerant) genotypes show a greater plasticity of expression
than the Northern (sensitive) ones (Figure 3).

Genome-wide principal component analysis

Figure 4 represents the principal component analysis of
RNA samples in the space of transcript abundance values
of the 29,212 genes represented on the array. There is a
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Figure 3 Genes with significant T*geo interaction (tested
against the pooled random MS; FDR ¢ < 0.05), for which the
Southern (heat-tolerant) genotypes show greater absolute
difference in expression at two temperatures (green symbols,
Baldwin effect) or smaller absolute difference in expression at
the two temperatures (red symbols, canalization) than the
Northern (heat sensitive) genotypes.
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clear separation between the Northern and Southern sam-
ples (open and solid symbols) and well as between the
samples obtained from Daphnia acclimated to 18°C vs.
28°C (blue and red symbols; Figure 4A). A more detailed
representation on pair-wise planes of the first three princi-
pal components (Figure 4B-D) shows a clear separation of
biological replicates corresponding to each of the four
clones. One exception is the Northern genotype C with
three replicates (2 in 28°C and one in 18°C) located far
from the other three replicates of this genotype and within
the cloud of the Southern genotypes.

Discussion
We analyzed the genome-wide transcription profiles of
two Northern, heat-sensitive and two Southern, heat-
tolerant genotypes of D. pulex that were acclimated to
either 18°C or 28°C. We observed a widespread down-
regulation of expression in a variety of metabolic and
regulatory pathways. This pattern of down-regulation
was more pronounced in heat-tolerant genotypes. Because
stressfully-high temperatures in aquatic ectotherms ex-
acerbate the discordance between metabolic oxygen de-
mand and oxygen solubility [18-20], we hypothesize that
the observed down-regulation may be the molecular
mechanism of metabolic compensatory reaction [28] to
nearly lethal temperature. This finding is consistent
with the growing body of evidence from yeast [30] and
Drosophila [9] indicting that high temperature (as well
as other stressors) can elicit genome-wide down-regulatory
responses. The fact that this reaction is observed in heat-
tolerant, but not in heat-sensitive genotypes suggests that
it may be the causative mechanism of heat tolerance and
not a direct non-adaptive effect of high temperature. This
finding is in a striking disagreement with the results of a
recent study on Drosophila suggesting that tropical (i.e.,
adapted) populations are more likely to exhibit up-
regulation of genes at 30°C than temperate populations
[9]. Levine et al. [9] argued that this result suggests higher
genome-wide levels of gene expression at temperatures
most commonly experienced in the region of origin. The
difference between our study and Levine et al. [9] may
reflect real biological and ecological differences between
the study organisms. Perhaps since Drosophila can escape
overheating by behavioral thermal regulation they may
show a different transcriptional response to stressful ele-
vated temperature than do Daphnia from small ponds.
The aquatic thermal environment is variable through
time, but at any particular time point it is homogeneous
compared to the terrestrial environment

How confident can we be that the observed differences
between the two Northern, heat-sensitive and the two
Southern, heat-tolerant genotypes are indeed functionally
related to the evolutionary history of temperature adap-
tation in these spatially distinct populations? Certainly a
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gradient arrows) or the centroids of all replicates at each of the two temperatures (thick blue-red gradient arrows) or at each of the two geographic
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larger sample size (feasible with RNAseq approaches,
but logistically difficult within the microarray approach
employed here) could have provided stronger evidence.
There are two arguments that provide some support for
the conclusion that the observed patterns are not inde-
pendent from the evolutionary history of the populations
used in this study. First, local populations of D. pulex in
North America have long been known to show a high
degree of populations subdivision, swamping the north—
south differentiation [35]. This observation suggests that it
is not likely that the two Southern or the two Northern
genotypes, each derived from different local populations,
have a recent common origin. Thus, the potentially con-
founding factor of phylogenetic relationship is likely min-
imal and our sample size is two per geographic region.
Second, heat tolerance has been shown to be highly corre-
lated with the climatic conditions and/or latitude, using a

larger number of clones, both in N. American D. pulex
[36] and on world-wide sample in a congeneric D. magna
[37]. Still, given the low number of replicates, the geo-
graphic patterns described here should be treated as a
suggestion, not a solid proof of local adaptation to thermal
environment.

The fact that DNA repair pathways appeared to be
down-regulated, opens an intriguing possibility of a mu-
tagenic effect of high temperatures in those genotypes
that demonstrate such down-regulation. The rate of
spontaneous mutation is likely to be higher at elevated
temperatures for thermodynamic reasons and the down-
regulation of DNA repair should exacerbate this effect.
As a consequence genotypes down-regulating DNA repair
pathways in response to elevated temperatures may
survive periods of high temperature at a cost to a greater
mutational pressure.
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In a recent study, DNA repair in Daphnia has been
shown to be much less effective at 20°C than at 10°C [38].
It is, however, not obvious that the down-regulation of
DNA repair pathways observed in this study is a manifest-
ation of the same phenomenon. Firstly, in [38] photo-
reactivation repair of UV damage was measured, while
differential expression of photoreactivation pathway has
not been detected here. More importantly, the cited study
detected the decrease in DNA repair efficiency at the
temperature (20°C) that is close to the optimum and far
below the substressful temperature at which the down-
regulation of DNA repair pathways has been observed in
this study.

Several a priori expected signals of acclimation to higher
temperature are apparent in either all genotypes or in the
heat-tolerant genotypes only. These signatures include
changes in lipid metabolism potentially indicative of the
change in membrane and storage lipid composition — a
possibility that warrants a joint transcriptome and lipi-
dome analysis in heat-acclimated Daphnia. Another such
pathway related to lipid metabolism is the terpenoid-
quinone biosynthesis pathway. Unlike many differentially
expressed pathways, this pathway was found to be up-
regulated when all clones were considered together. Yet,
in the separate analysis of Northern and Southern geno-
types, this pathway was found to be down-regulated in
Northern, but not in Southern genotypes through differ-
ential expression of a different enzyme. This observation
seems to indicate that during acclimation to high tem-
perature Daphnia regulate the terpenoid biosynthesis
pathway in a complex way. Both reactions with detected
differential expression feed into the sesquiterpenoid
biosynthesis pathway leading to methyl farnesoate hor-
mone — a signal molecule known to induce male pro-
duction [39] as well as regulating the production of
haemoglobin in Daphnia [25,40]. How this rearrange-
ment of the terpenoid biosynthesis pathway may fine-
tune methyl farnesoate is unknown, but it is quite
possible that such a rearrangement may play an im-
portant role in temperature dependent haemoglobin
expression regulation and the reproductive switch to male
production.

A recent study [8] of adaptation and plasticity of gene
expression in response to alcohol stress in Drosophila
reported canalization of gene expression for practically
all instances of significant GXE interactions. In contrast,
in this study we found approximately equal number of
significant T*geo interactions in which the “evolved”
(heat-tolerant) genotypes had stronger transcriptional
plasticity than the “naive” (heat-sensitive) genotypes and
vise versa. We have previously noted gene specific vari-
ation in the pattern of expansion and reduction in the
plasticity of gene regulation in the context of pigmen-
tation genes in Daphnia [2]. In our current study it
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appears that temperature-specific differential expression
in Daphnia may be evolving through both canalization
of plasticity and through an adaptive increase of plas-
ticity. It should be noted that it may be hard to detect
enhanced plasticity in selected phenotypes because of
the ‘Fry conjecture’: selected genotypes are better at
handling stress, thus the “internal” stress indicators may
not be sufficient to induce expression changes, thus cre-
ating a false indication of canalization. This conjecture
was proposed by J. Fry to explain lower transcriptional
responses to ethanol exposure in ethanol-selected popula-
tions than in the controls [8]: ethanol-tolerant genotypes
have a higher ethanol-detoxifying ability and thus experi-
ence lower internal concentration of ethanol and acetalde-
hyde, resulting in weaker transcriptional response in other
genes. While plausible for xenobiotic stressors (such as
alcohol), this mechanism can also work for temperature:
certainly heat-tolerant genotypes experience the same
temperature, but they may experience a milder level of
any downstream parameters (oxygen concentration in
tissues, degree of oxidative damage etc.) that may act as
transcriptional triggers than the heat-sensitive genotypes.
Thus, the question about canalization vs. expansion of
plasticity in response to selection will remain not fully
resolved until specific trigger mechanisms measurable
in ancestral and evolved genotypes can be identified.

In our genome-wide analysis, the samples clearly form
four separate clouds in the space of the first three princi-
pal components. These four clouds correspond to the
two temperatures and two geographic origins (North vs.
South), with a few exceptions (Figure 4A). The separ-
ation of points corresponding to the two temperatures
appears to be stronger in the Southern (tolerant) than in
the Northern (sensitive) clones, suggesting overall ex-
panded expression plasticity, i.e., Baldwin effect. One of
the genotypes (C) stands out by having three of its
biological replicates located in the “wrong” (Southern)
cloud. Barring a possibility of mislabeling (unlikely, as
only PC2 is affected), this placement may indicate that
there are two distinct syndromes, or patterns of gene
expression, one typical for the two southern clones and
the other typical for the two northern clones, with some
clones switching between the two modes haphazardly,
with no relation to current temperature. With this single
exception, genotype-specific points (biological replicates)
cluster together and the arrows connecting 18°C and 28°C
centroids are remarkably parallel. In contrast, the sum-
mary 18-28°C arrows representing acclimation and the
black-and-white arrows representing divergence and pos-
sible prior local adaptation (Northern vs. Southern) are
not parallel, particularly on the plane of the first two
principal components, indicating that selection operating
on gene expression in nature may be orthogonal to
the plastic response observed during acclimation. One
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possible explanation of for this is that the plastic genes,
due to their plasticity, are shielded from the natural selec-
tion operating on the adaptation to elevated temperatures.

Conclusion

Numerous metabolic and regulatory pathways are regu-
lated during long-term acclimation to high temperature
in D. pulex. More genes are down-regulated than up-
regulated and this effect is stronger in the two Southern,
heat tolerant genotypes than in the two Northern, heat
sensitive genotypes, suggesting metabolic compensation
as a possible acclimation mechanism. Widespread down-
regulation of gene expression and DNA repair pathways
may represent a “last-resort” survival tactic in organisms
facing a trade-off between long-term and short-term
survival. Finally, there was a mixture of genes showing
reduced plasticity (i.e., canalization) of gene expression in
response to temperature and genes that exhibit increased
plasticity.

Methods
Genotype provenance and acclimation experiment
We chose four genotypes representing two extremes of
the heat tolerance gradient measured in [36]: heat tolerant
genotypes BW102 (hereafter B) and KSP3 (hereafter K),
originated from Illinois and heat sensitive clones EB1
(hereafter E) and CHQ3 (hereafter C), originated from
Minnesota and Wisconsin, respectively. These two pairs
of genotypes will be hereafter referred to as “Northern”
(N) and “Southern” (S) clones. Although the latitudinal
difference between N and S clones is only 4—6 degrees,
and the difference in average July temperatures is only
2-5°C, there is a significant difference in temperature
tolerance between the two pairs of genotypes (Table 2).
This difference is likely associated with the microcli-
mate difference between their habitats of origin. Northern
ponds are located in wooded areas and are likely to re-
main cooler during the summer months than the smaller,
shallower and more exposed ponds in prairie zone, from
which the Southern clones were sampled [36].

Three replicates of each of the four genotypes were
maintained by parthenogenetic reproduction for two
generations at either 18°C or 28°C in 150 ml bottles

Table 2 Genotype origin and characteristics
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containing COMBO water medium [41] under a 12 L:12D
photoperiod. It is worth mentioning that the 28°C treat-
ment is not lethal. While this temperature is detrimental
to survival it still allows continuous maintainance and
reproduction of organisms allowing for multigenerational
acclimation. Food in the form of Scenedesmus acutus cul-
ture was added daily to the final concentration of 200,000
cells/ml. The medium was replaced and neonates removed
twice weekly. To establish the experimental generation,
20-30 second or third clutch offspring of the second-
generation females were collected within 48 hours of
birth and placed in bottles containing 150 ml of COMBO
medium. These third generation individuals were screened
after reaching the age of 12-15 days and females with
early development stage clutches (round uniformly dark
eggs with smooth edges; <24 hours after clutch depos-
ition) were selected for the microarray experiment and
stored in liquid nitrogen.

RNA extraction, reverse transcription, labeling and array
hybridization

To assess patterns of gene expression, we used the Nimble-
Gen D. pulex Expression Array 12x135k (GEO Accession
GPL11278; [42]). Briefly, this platform is a high-density
NimbleGen (Roche-NimbleGen, Inc., Madison, WI, USA)
gene expression microarray of 12 identical arrays pre-
pared by Maskless Array Synthesizer. Each array contains
137,000 isothermal probes interrogating 35,665 genes.
Each predicted and experimentally validated gene is
represented by as many as three unique probes, while
the remaining probes are designed from transcription-
ally active regions (TARs) whose gene models are not
yet known.

Third-generation acclimated adult females (10 — 12
individuals) with early stage clutches were homoge-
nized in TRIZOL Reagent (Invitrogen, Carlsbad, CA).
The homogenate was purified using Qiagen’s RNeasy
Mini Kit (Qiagen,Venlo, Netherlands) with on-column
DNAse treatment to isolate total RNA. Beginning
with 1.0 pg of total RNA, a single round of amplification
using MessageAmpTM II aRNA kit (Ambion, Austin, TX)
was performed for each RNA sample. cRNA (10 pg) was
converted to double strand cDNA with random primers

Genotype ID Pond/Lake State Lat °N Long °W July °T Performance at 37°C

Timm SE M
BW102 Busey Woods lllinois 40°07" 88°12’ 24.0 2.53 0.053 0.50
KSP3 Kickapond lllinois 40°06’ 88°14/ 240 252 0.054 0.28
CHQ3 Chequamegon Wisconsin 46°19 90°54/ 19.0 1.89 0.069 0.66
EB1 Eloise Butler Minnesota 44°59" 93°19/ 222 197 0.046 0.82

Average July temperature: long-term average from the nearest weather station.

Time until immobilization in hours (Tinm) and mortality (M, loss of heartbeat after 3 hours of exposure) were measured at 37°C in Daphnia acclimauted to 24°C.

See [36] for details.
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using the Invitrogen SuperScript Double-Stranded ¢cDNA
Synthesis kit (Invitrogen, Carlsbad, CA). From 1 pg
double-stranded cDNA, labeled cDNA was generated
with NimbleGen’s Dual-colour Labeling Kit (Roche
NimbleGen, Inc., Madison, WI). The replicates of each
treatment (28°C) and control (18°C) for each geographic
origin (Northern and Southern) were alternatively labeled
and a dye swap was included among the replicate expe-
riments. Dual-colour hybridization, post-hybridization
washing and scanning were done according to the Roche
NimbleGen’s instructions. Images were acquired using a
GenePix 4200A scanner, 5 pm resolution, and GenePix
6.0 software (Molecular Devices, Sunnyvale, CA). The
data from these arrays were extracted using the software
NimbleScan 2.4 (Roche NimbleGen, Inc., Madison, WT).
Because we were interested in the expression patterns that
describe the adaptive differences between the genotypes
and the plastic differences within a genotype, we used
four competitive hybridizations that define these axes
(Northern at 18°C vs. Southern at 18°C; Northern at 28°C
vs. Southern at 28°C; Northern at 18°C vs. Northern at
28°C; Southern at 18°C vs. Southern at 28°C) in a loop
design where each hybridization was replicated three
times with one dye-swap nested in each set of replicates.

Statistical analysis

The NimbleGen array image data were processed using
NimbleScan version 2.5 to extract probe intensity values.
Gene expression values (i.e., gene intensity value) were
obtained from a summarization of intensity values of all
corresponding probes using the RMA (Robust Multi-array
Average) method. The pre-processed microarray data were
imported into an in-house analysis pipeline using Biocon-
ductor for normalization and analysis [43]. All genes were
quantile-normalized across arrays, samples, and replicates
[44]. Differential expression was assessed using LIMMA
and EBarrays [45,46] using the median signal of probes
representing genes. EBarrays uses a parametric mixture
model to calculate the posterior probability of differential
expression for arbitrarily complex experimental designs.
To determine the significance of expression differences,
and adjust for multiple testing, we calculated the False
Discovery Rate (FDR; [33] for each gene using the Biocon-
ductor LIMMA package.

The following general linear model was utilized to test
for the significance of acclimation temperature (T, 18°C
vs.28°C, d.f. = 1), geographic origin (geo, N vs. S, d.f. =1)
and clones (nested within geo, d.f. = 2) on expression (E):

E =T + geo + clone(geo) + T*geo + T*clone(geo) + €;
clone(geo) and T*clone(geo) were treated as random
effects. T effect and T*geo interaction were tested against
the T*clone(geo) interaction term. Whenever the T*clone
(geo) interaction did not approach significance (P >0.2)
the mean squares (MS) associated with it were pooled
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together with the residual MS and the T effect was tested
against the pooled MS [47].

To test for the differential expression present within
the N and S clones separately, the MS associated with
the T effect were tested against the T*clone interaction
within each geographic region. As before, non-significant
T*clone MS were pooled with the error MS. Alternatively,
paired t-tests were used to compare expression levels in
both clones at one temperature to those at the other
(equivalent to pooling both the clone MS and the inter-
action MS with the error MS). The results were remark-
ably similar; t-tests results are not reported, as they are
less conservative. In all cases the results were screened
by the False Discovery Rate correction for multiple
testing [33].

Lists of differentially expressed genes, in the form of
their clusters of orthologous groups (KOG) IDs [34]
were submitted to the iPATH web server [48] to gener-
ate maps of metabolic and regulatory pathways affected
by the differential expression. Fisher’s exact test was used
to determine whether a particular pathway was overrepre-
sented among the differentially expressed genes (with
the number of non-differentially expressed genes im-
plicated in the given pathway, among total number of
non-differentially expressed genes in the dataset as the
reference).

All analyses were conducted using JMP 9.0 and JMP
Genomics 3.0 (SAS Institute, Gary, NC, USA).

Availability of supporting data

The data set(s) supporting the results of this article
are available as the Additional file 1 included with the art-
icle (the list of genes with at least one test significant
(FDR < 0.05), including expression data and annotations);
expression data are available at GEO (http://www.ncbi.
nlm.nih.gov/geo; Accession number GSE53692); gene an-
notations can be downloaded from wfleabase.org.

Additional file

Additional file 1: Expression data and genomic annotation for
genes with at least one significant test. Complete data in http//www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53692. Columns: 1 - Gene ID;
2-25 - expression data (log2 transformed); 26-44 - genomic annotation;
45-57 Data analysis (See Header tab for details).
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