
Kumari et al. BMC Genomics 2014, 15:871
http://www.biomedcentral.com/1471-2164/15/871
RESEARCH ARTICLE Open Access
Transcriptome sequencing of rhizome tissue of
Sinopodophyllum hexandrum at two temperatures
Anita Kumari1,3†, Heikham Russiachand Singh2†, Ashwani Jha2,3, Mohit Kumar Swarnkar1, Ravi Shankar2*

and Sanjay Kumar1*
Abstract

Background: Sinopodophyllum hexandrum is an endangered medicinal herb, which is commonly present in
elevations ranging between 2,400–4,500 m and is sensitive to temperature. Medicinal property of the species is
attributed to the presence of podophyllotoxin in the rhizome tissue. The present work analyzed transcriptome of
rhizome tissue of S. hexandrum exposed to 15°C and 25°C to understand the temperature mediated molecular
responses including those associated with podophyllotoxin biosynthesis.

Results: Deep sequencing of transcriptome with an average coverage of 88.34X yielded 60,089 assembled
transcript sequences representing 20,387 unique genes having homology to known genes. Fragments per kilobase
of exon per million fragments mapped (FPKM) based expression analysis revealed genes related to growth and
development were over-expressed at 15°C, whereas genes involved in stress response were over-expressed at 25°C.
There was a decreasing trend of podophyllotoxin accumulation at 25°C; data was well supported by the expression
of corresponding genes of the pathway. FPKM data was validated by quantitative real-time polymerase chain
reaction data using a total of thirty four genes and a positive correlation between the two platforms of gene
expression was obtained. Also, detailed analyses yielded cytochrome P450s, methyltransferases and glycosyltransferases
which could be the potential candidate hitherto unidentified genes of podophyllotoxin biosynthesis pathway.

Conclusions: The present work revealed temperature responsive transcriptome of S. hexandrum on Illumina
platform. Data suggested expression of genes for growth and development and podophyllotoxin biosynthesis at
15°C, and prevalence of those associated with stress response at 25°C.

Keywords: Below ground, Deep sequencing, Development, Gene expression, Growth, Next generation sequencing,
Podophyllotoxin, RNA-seq, Stress
Background
Sinopodophyllum hexandrum (Royle) T.S. Ying, commonly
known as Himalayan Mayapple, is an alpine herb of family
Berberidaceae that grows on altitudes ranging between
2,400–4,500 m above mean sea level [1]. The species is a
perennial, erect, and unbranched herb reaching to a height
of 40–50 cm; rhizome gives rise to multiple stems. Rhizome
is non-edible, but is the source of a cytotoxic compound
podophyllotoxin which is an aryltetralin lignan. Cytotoxicity
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of the compound is reduced for safe clinical use through its
transformation into several derivatives. Some of the deriva-
tives such as etoposide (VP-16) and teniposide (VM-26)
have anti-cancerous activities and hence podophyllotoxin is
in much demand in pharmaceutical industry [2]. Extensive
harvesting of the species from nature to meet the require-
ment of rhizome for podophyllotoxin extraction has led S.
hexandrum to be listed as endangered species (Appendix II
of convention for international trade in endangered species;
www.cites.org/eng/app/appendices.php).
Several studies have reported on propagation and con-

servation of the species [3], podophyllotoxin biosynthesis
[4], derivatization of podophyllotoxin, and their mode of
action [5]. Also, a few studies have been carried out on
plant response to environmental cues. Like other alpine
plant species [6], S. hexandrum has been reported to be
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sensitive to high temperature [7]. S. hexandrum consumed
more starch at 25°C as compared to at 10°C leading to
poor root growth at the former temperature [7]. Also, the
rate of photosynthesis was reported to be lower at 30°C as
compared to at 20°C. Higher temperature was also reported
to increase the transpiration rate and reduce water use
efficiency indicating the species to be sensitive at high
temperature [8]. We conducted a preliminary experiment
to observe the growth of S. hexandrum at four different
temperatures. S. hexandrum showed partial leaf folding and
leaf drooping at 10°C and 35°C, respectively within a span
of 3 weeks of temperature exposure, whereas the species did
not exhibit such symptoms at 15°C and 25°C; though after
2–3 weeks of temperature, leaves lost shine and developed
violet coloured spots at 25°C (Additional file 1). The species
did not survive for long at 10°C and 35°C.
The objective of the present work was to study the

molecular processes at 15°C and 25°C in commercially
important organ rhizome to understand why the species
performed better at 15°C. Transcriptome analysis offers
a convenient route to understand molecular processes of
the tissue in question. For example, analysis of populus
(Populus tremula) transcriptome showed the importance
of auxin and gibberellins signaling, and starch metabolism
during winters [9]; in sessile oaks [Quercus petraea (Matt.)
Liebl.], transcriptome analysis suggested the importance
of cell rescue and defense during bud burst after dor-
mancy [10]; subtracted transcriptome analysis in tea
[Camellia sinensis (L.) O. Kuntze] identified the sig-
nificance of genes involved in cell cycle/cell division
and stress-inducible genes including those encoding
chaperons during winter dormancy [11]. Next generation
sequencing has eased transcriptome analysis, and the tech-
nology has been successively used to study the transcrip-
tome of several plant species including Himalayan plant
species Picrorhiza kurrooa ([12] and the references men-
tioned therein) to discover genes and markers vis-à-vis to
gain insight to important biological and molecular pro-
cesses. More so, temperature responsive transcriptome of
S. hexandrum rhizome is not yet reported.

Methods
Plant material
Plants of S. hexandrum were collected from Parashar lake,
Mandi (2,730 m above sea level; 30°12′ N 77°47′ E, India)
and maintained at the institute in Palampur (1,300 m
altitude; 32°06′ N, 76°33′ E, India) for one year in a
polyhouse. During the collection procedure, the plants
with rhizome of the similar size were selected for various
experiments (India’s Biological Diversity Act 2002 permits
access of biological resources to bonafide Indians for
scientific research [13]). Plants from the polyhouse
were shifted to two separate plant growth chambers
(Percival Scientific, USA) maintained at 15°C and 25°C
with 16 h photoperiod at a photosynthetic photon flux
density of 200 μmol m−2 s−1. Plants were irrigated ad-
equately and the rhizome tissue was harvested at day 0,
14, and 21 of transfer, cut quickly into smaller pieces using
a sharp razor, mixed the cut pieces, frozen in liquid nitro-
gen and stored at -80°C for further analyses.

Extraction and estimation of podophyllotoxin
Frozen samples were ground to fine powder in liquid
nitrogen using pestle and mortar followed by addition of
700 μl of 70% methanol for 100 mg tissue with intermit-
tent grinding [14-17]. Extract was transferred to a centri-
fuge tube and the pestle and mortar was rinsed with
300 μl of 70% methanol to recover the left over sample.
Extracts were pooled, vortexed for 5 minutes, sonicated
(Ultrasonic Cleaner, MC-109-MP, Oscar, India) for
10 minutes at 25°C and centrifuged at 14,000 rpm for
5 minutes to collect supernatant for podophyllotoxin
estimation. Supernatant was filtered through 0.22 μm
filter (Millipore, USA) to estimate podophyllotoxin on an
Ultra Performance Liquid Chromatography (UPLC) system.
The system consisted of Acquity UPLC (Waters, Millford,
USA) equipped with binary solvent manager, sample man-
ager, photodiode array detector and a bridged ethyl hybrid
workflow shield C18 (1.7 μm particles, 2.1 × 100 mm)
analytical column (Waters Corp., Manchester, UK). Mobile
phase consisted of methanol and water in a ratio of
60:40. Isocratic elution was carried out at a flow rate of
0.250 ml min-1 with injection volume of 5 μl. Podophyl-
lotoxin was monitored at 240 nm and quantified using
standard podophyllotoxin (Sigma, USA). Three separate
biological replicates were used for each estimation. Signifi-
cant difference in podophyllotoxin content at 15°C and
25°C was calculated using Completely Randomized Design
to obtain p-value at different sampling times.

RNA extraction, cDNA preparation and
transcriptome sequencing
Various protocols were followed essentially as described
previously [12]. In brief, total RNA was extracted from
rhizome tissue as described by Muoki et al. [18]. Nanodrop
1000 (NanoDrop Technologies, USA) and a Bioanalyzer
Chip RNA 7500 series II (Agilent Technologies, USA) were
used to determine quality and quantity of RNA. Oligotex
mRNA Midi Kit (Qiagen, Germany) was used to purify
mRNA from total RNA, and non-directional Illumina RNA
sequencing library was prepared with mRNA-Seq 8 Sample
Prep Kit (Illumina, USA) using random primers. Library
had an average insert size of 200 bp and eight picomoles of
the library [quantified using a Bioanalyzer Chip DNA
12000 series II (Agilent Technologies, USA)] was used
for cluster generation. Paired end (PE) 36 × 2 bp sequen-
cing was carried out on Illumina Genome Analyzer IIx
(Illumina, USA) as per the manufacturer’s instructions.
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Expression analysis and validation with quantitative
real-time reverse transcriptase mediated polymerase
chain reaction (qRT-PCR)
Total RNA was isolated as described previously [18]. RNA
was pretreated with RNase-free DNase I (Invitrogen, USA)
and reverse transcribed with 1 μg of total RNA using
Superscript III (Invitrogen, USA) according to the manu-
facturer’s instructions. Gene specific expression primers
for qRT-PCR were designed using GenScript Real-time
PCR Primer Design tool [19]. qRT-PCR was performed
with three separate biological replicates on a Stratagene
Mx3000P System (Agilent Technologies, USA) using 2×
Brilliant II SYBRW Green QPCR Master Mix (Agilent
Technologies, USA). PCR was conducted under the
following conditions: 10 min at 95°C (enzyme activation),
40 cycles each of 30s at 95°C, 30s at desired Tm
(Additional file 2 has details), and 72°C for 30s. A final
melting curve analysis was performed (55°C to 95°C) to ver-
ify specificity of amplicons. Transcript level of all the genes
was normalized to an internal reference actin. Expression
was estimated using Relative Expression Software Tool
[20]. Expression values were transformed (log2) to generate
expression profiles. All primers used in this study are listed
in Additional file 2.

De novo assembly and sequence clustering
PE sequence reads were generated in FASTq format using
CASAVA package GERALD tool provided by Illumina.
Our previous publication by Gahlan et al. [12] described
strategies and various protocols used for assembly and
clustering. 36 × 2 bp PE reads were generated for individual
sample in each lane. The last three bases from the 3′ end
of each read were removed to minimize the sequencing
error, which is usually higher in the 3′ end of reads. An
in-house developed tool, filteR [12], was used to filter out
the poor quality reads as well as adapter contaminated
reads. De novo assembling of high quality reads was
performed using SOAPdenovo tool [21]. A k-mer size of
23 was opted for assembling which yielded high quality
PE reads (Additional file 3). PE option of assembling with
spacing distance of 200 bp between the PE read was ap-
plied to achieve more effective assembling using fragment
library size information of PE reads. The same information
was also used to build the scaffold sequences by merging
two contigs into single scaffold sequence, sharing the read
pairs. Figure 1 shows the protocol used in de novo assem-
bling and transcript analysis of assembled sequences for
a given sample. Sequence redundancy was removed by
searching for similar sequences, keeping minimum similar-
ity cut-off of 95% for CD-HIT-EST [22]. CD-HIT-EST
was used for further clustering with 90% similarity cut-
off. This clustering step was followed by overlap based
assembling/clustering, using TGICL-CAP3. It was run
with parameters like terminal overlap for at least 40 bp
and 90% identity. The resulting singletons and consen-
sus contigs were merged to get the final list of assem-
bled transcripts. A de-Bruijn graph building approach
was used for primary assembling in the initial stage of
assembling, which provided long assembled sequences.
These long assembled sequences were further taken for
redundancy removal and assembling using approaches
based on overlap layout consensus and compositional
similarity based redundancy crunching. A set of scripts
was developed to detect contigs/scaffolds having no se-
quence similarity but belonged to same gene’s different
regions. Such sequences were clustered together to
represent as a single transcript or unigene. The highest
scoring BLASTX hit for all contigs were analyzed for
common Non Redundant (NR) ID for a particular
gene. All associated contigs showing highest similarity
to the same gene but different locations were assigned
a single common unigene identification. This approach
of Dissimilar Sequence (DS) clustering minimizes the
inflated reporting of total unique genes [12].
Information regarding the assembled transcript sequences,

associated filtered read data and transcript grouping for uni-
genes, is available at http://scbb.ihbt.res.in/Podo-12-12-11/.
Entire computational analysis was carried out on CentOS
Linux based 48 cores 2.2 Ghz AMD processors server with
256 GB random access memory.

Assembly validation
To validate assembled transcripts, BLASTN of 1,463 ESTs,
downloaded from National Centre for Biotechnology
Information (NCBI) dbEST, was performed against tran-
scriptome of S. hexandrum using E-value cut-off of 1e-05.
Also, selected unigenes involved in podophyllotoxin biosyn-
thesis were validated after DS clustering against complete
coding sequences of corresponding genes of S. hexandrum
submitted in GenBank.

Sequence annotation
Assembled transcripts of S. hexandrum were searched
against UniProt database [23], Gene Ontology (GO) [24],
Kyoto Encyclopedia of Genes and Genomes (KEGG) [25]
and Enzyme Commission number (EC) [26], using BLASTX
with a cut-off E-value of 10-1. Lower cut-off during annota-
tion facilitates annotation even for instances that display
only small region matching for some functional domain,
which could be missed otherwise with higher cut-off values.
Associated GO term was assigned for each assembled tran-
script by analyzing the GO term for the Uniprot sequence,
which returned the highest scoring hit. Similar approach
was followed for KEGG and EC classification and annota-
tion for the assembled transcripts. Majority of GO, EC and
KEGG based annotations and statistics were done using
annotation tool, Annot8r [27] and an in-house developed
scripts. Plant Transcription Factor Database (PlnTFDB) [28]

http://scbb.ihbt.res.in/Podo-12-12-11/


Figure 1 Computational pipeline for analyzing transcriptome of S. hexandrum. Methods section has details for various steps.
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hosts large number of plant specific transcription factors
(TFs), their classification, corresponding nucleic acids and
protein sequences. Data for all TFs reported in PlnTFDB,
version 3.0, were downloaded for the current study. The
assembled transcript sequences were searched against this
database using BLASTX with an E-value threshold of 10-5.
Top scoring homologous sequences from PlnTFDBs
were used to annotate the assembled transcripts displaying
highest similarity.
S. hexandrum transcript sequences were searched against

MIPS Functional Catalogue (FunCat) [29] database to
classify transcripts based on functional categories
classified at MIPS. FunCat hierarchy is based on the
Arabidopsis thaliana transcriptome. Therefore, BLASTX
search was performed against the Arabidopsis transcrip-
tome (downloaded from TAIR 10 [30]). The IDs from top
scoring Arabidopsis gene hits were extracted and mapped
to the S. hexandrum transcript sequences to categorize
them into various FunCat categories.

Functional domain search for unknown sequences
The assembled sequences which did not return any
homologous sequence hit during BLASTX search were
converted into six longest ORFs. These ORFs were
scanned against the functional domain databases like
Conserved Domain Database (CDD) [31], using RPS-
BLAST UNIX version.

Read mapping and transcript expression abundance
measurement
Since a reference genome was not available in the
present study, the filtered reads were mapped to the
assembled transcripts. This was followed by estimation
of total mapped reads. Uniquely mapped reads assigned to
each assembled transcript with maximum two mismatches
were allowed. Read mapping was done using TopHat which
uses Bowtie to map the reads on transcripts [32] while dif-
ferential abundance in terms of FPKM was measured using
Cuffdiff [33] which deploys t-test and Benjamini-Hochberg
correction to compute significance difference between sam-
ples and adjusts the p-value after false discovery rate for
multiple hypothesis testing. Using the reads from 15°C and
25°C experiments, the relative abundance of transcripts was
estimated for each unigene for the two temperatures for
the sequence clusters generated following the DS clustering
[12]. DS clustering reduced the inflation of unique genes
representation and mapped that information on every part
of the study. The read data obtained for the two tempera-
tures were mapped on the assembled transcripts separately.
Care was taken to ensure that only those lanes and reads



Figure 2 Effect of temperature on accumulation of
podophyllotoxin content in rhizome tissue of S. hexandrum.
Rhizome tissue was harvested at day 0, 14 and 21 from plants kept
at 15°C and 25°C to measure podophyllotoxin content. Difference in
the podophyllotoxin content at two temperatures was statistically
insignificant as analyzed by Completely Randomized Design (CRD);
though a decreasing trend of accumulation was observed at 25°C.
Each value is a mean of three separate biological replicates. Error
bars are standard error of the mean of three biological replicates.
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were considered for both the temperatures which had
equal sample concentration and produced almost equal
percentage of reads qualifying the filtering cut-off, en-
suring that experimental conditions do not skew the
read representation and analysis.
The associated GO terms (GO terms are derived from

dynamic controlled vocabularies or ontologies that can be
used to describe the function of genes and gene products)
and IDs were mapped to each of these unique transcripts
and genes, providing single stop complete information re-
garding their related expressions at the two temperatures
and their corresponding annotations.

Guanine-cytosine (GC) content analysis and simple
sequence repeats (SSRs) identification
GC content of the sequences was measured using Emboss
GeeCee tool, while sequences were scanned for SSR markers
using MISA [34].

Metabolic networks and pathways analysis
Sequences were scanned against KEGG using BLAST.
FPKM was considered for all the assembled sequences.
Plant Metabolic Network (PMN) database [35] was searched
for all the significantly up-regulated genes using an in-house
developed network running script. Using the same script,
pathways network images were generated and correspond-
ing transcript, expression and other associated information
were incorporated into the files.

Results and discussion
Rhizome biology for S. hexandrum is of interest not only
that rhizome is the source of medicinally important
compound podophyllotoxin, but also it allows plant to
survive the unfavorable environment of winters when aerial
portion of the plant dies. Plant regenerates from the
rhizome upon arrival of the growing season. Availability of
vast genomic and transcriptomic data in the public domain
coupled with next generation sequencing platforms made it
possible to understand temperature responsive biology of
rhizome of S. hexandrum. Since plants appeared healthier
at 15°C as compared to at 25°C (Additional file 1), the
present work analyzed transcriptome in the rhizome tissue
at the two temperatures vis-à-vis podophyllotoxin content.

Podophyllotoxin accumulation at two temperatures
Several studies showed modulation of secondary metab-
olism in response to external cues [36,37]. In the present
work podophyllotoxin content did exhibit a decreasing
trend of accumulation, from day 14 and onwards of the
exposure of plants to 25°C as compared to those at 15°C
(p-values for day 14 and 21 were 0.393 and 0.686, respect-
ively; F values for day 14 and 21 were 1.196 and 0.393,
respectively) (Figure 2). Though there is no report on the
effect of temperature on podophyllotoxin accumulation,
one group [38] did report decreased accumulation of podo-
phyllotoxin content at low (1,500 m) as compared to at
high altitude (3,000 m) [38], where temperature is one
of the major cues which is higher at lower altitude [39].
A decreasing trend of podophyllotoxin accumulation
at higher temperature did suggest modulation of rhizome
biology of S. hexandrum by temperature.

Reads generation and de novo sequence assembly
A total of 146,304,154 PE reads were obtained at 15°C
while a total of 54,176,602 PE reads were obtained at
25°C. By deploying a read filtering tool, FilteR [12], a
total of 125,957,408 and 44,346,624 high quality PE
reads were obtained for 15°C and 25°C, respectively
(total 170,304,032 PE reads). Selection of appropriate
k-mer size is an important step in de novo assembly,
since it varies for species and data type. SOAPdenovo
was run to assemble transcripts of S. hexandrum from
high quality reads at different k-mer size ranging from
19 to 29. K-mer size of 23 mer was chosen for de novo
assembly as it displayed a balance between over- and
under-represented transcript numbers, coverage of reads
on transcripts, maximum length of transcript, percentage
of transcripts having length higher than 1,000 bp and
average transcript length (Additional file 3). Number
of transcripts decreased linearly with increasing k-mer
size suggesting under-representation at high k-mers
and over-representation at lower k-mer length. Simi-
larly, at high k-mer higher coverage or higher expres-
sion was observed for the assembled sequences. These
steps were taken for evaluating the quality of assembled
transcripts. Gap filling produced longer scaffolds from the
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PE reads data which mapped into the contigs as well as
gapped regions. Collective assembly of the filtered reads
yielded a total of 60,089 transcripts, 15.57% of which were
above 1 kb, with a coverage of 88.34X, average length of
543.11 bp and maximum length of 14,390 bp (Table 1).

Homology search, sequence clustering, validation of
assembled transcripts and general traits of the transcriptome
The number of unique assembled transcripts reduced from
60,089 to 59,244 sequences after removing the redundan-
cies. These were clustered together under a common Uni-
gene group, and BLASTX [40] with cut-off E-value of 10-5

showed that a total 25,395 sequences had significant
BLAST hit. Remaining 33,849 sequences without significant
BLAST hit did show conserved domains in 761 sequences
(Additional file 4), suggesting a possible function for these
unknown sequences. DS clustering [12] further reduced the
total sequences from 25,395 to 20,387 (Additional file 5;
URL: http://scbb.ihbt.res.in/Podo-12-12-11/).
A total of 1,463 ESTs of S. hexandrum were reported in

NCBI dbEST, out of which BLAST hits were found for 975
ESTs (66.64%) when searched against the transcriptome.
These ESTs showed an average identity of ~93.50% indi-
cating good quality of assembled transcripts. Of the total,
19.69% of ESTs (192/975) had coverage greater than
90% whereas 52.82% ESTs (515/975) showed coverage
of 50% or more. To evaluate correct assembly of unigenes,
coding sequences of five selected genes (accession numbers
GU324975.1, EU240218.2, GU196273.1, KF170372.1
and GU228507.1) involved in podophyllotoxin biosyn-
thesis pathway were searched against unigenes using
BLASTN. Analysis yielded average coverage of 95.05%
(Additional file 6), suggesting that the unigenes were
correctly assembled.
Average GC content of S. hexandrum transcripts was

found to be around 44.59% out of which 80% of transcripts
had the content in the range of 40-49%, a range comparable
to that reported for dicots (44-47%) [41] (Additional file 7).
GC content of genome indicates several features including
genome stability and possible repeats dynamics [42].
Assembled transcript sequences of S. hexandrum iden-
tified a total of 3,226 SSRs. Most abundant SSR group
was of tri-nucleotide (54.40%) with GAA, TTC, TCT,
CAC and CCA as predominant repeats, followed by
di-nucleotide (36.38%) with prevalent occurrence of
Table 1 Summary of transcriptome data generated on Illumina

Total number of paired end reads

Number of reads obtained after quality filtering

Number of primary assembled transcripts of pooled data No

Average length of transcripts (bp) of pooled data No

Average coverage (X) of pooled data No
poly-CT (261), and mono-nucleotide (19.36%) SSRs
represented by Poly-T (272) as a dominant repeat.
Only a small fraction of tetra (32) and hexa (3) SSRs
contributed to the pool (Additional file 7). SSRs are
used in production and control of strains as well as
dissemination of important genes apart from being the
source of polymorphism and marker of genome [43].

Functional annotation and classification of the
S. hexandrum transcriptome
Annotation of 20,387 assembled sequences against GO
database yielded significant annotation for 15,810 unique
transcripts that were classified into biological processes,
molecular functions and cellular component using plant
specific GO slims. Functional classification in biological
process category (Additional file 8) revealed that meta-
bolic process, response to stimulus, cellular process and
multicellular organismal development were among the
highly represented groups, suggesting tissue to be meta-
bolically active. Genes involved in DNA binding, cata-
lytic and transferase activity were highly represented in
molecular function category (Additional file 8), indicat-
ing dominance of gene regulation, signal transduction
and enzymatically active processes. Among the cellular
components (Additional file 8), genes for intracellular
location and those encoding for membrane localized
protein were most represented, which is a typical char-
acter of a eukaryotic cell.
Best EC classification was obtained for 8,172 assembled se-

quences after DS clustering. An analysis of top 50 abundant
enzyme classes showed predominance of serine/threonine
protein kinase enzyme (21.73%; Additional file 9A), which is
known to be involved in regulation of cell proliferation, pro-
grammed cell death (apoptosis) and cell differentiation [44].
Associated KEGG classification could be obtained for 8,759
assembled sequences. An analysis of top 50 KEGG pathways
showed that plant hormone signal transduction pathways
(5.74%) dominated the group (Additional file 9B), followed
by plant-pathogen interaction. GO, EC and KEGG analysis
showed rhizome to be a metabolically active tissue.

Global analysis of transcript abundance in response
to temperature
Read mapping-based method of estimation of transcript
abundance offers high throughput gene expression data,
Genome Analyzer IIx for rhizome tissue of S. hexandrum

15°C 25°C Total

146,304,154 54,176,602 200,480,756

125,957,408 44,346,624 170,304,032

t applicable Not applicable 60,089

t applicable Not applicable 543.11

t applicable Not applicable 88.34

http://scbb.ihbt.res.in/Podo-12-12-11/
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especially for those organism whose genome/transcriptome
is not sequenced [12,45]. GO annotation was obtained for
15,708 unique genes along with their FPKM values at the
two different temperatures. Distribution of S. hexandrum
unigenes across various molecular function categories
(Figure 3) revealed prominent up-regulation of several
genes including for protein kinase activity, and calcium ion
binding at 15°C. While genes associated with monoxygen-
ase activity, peptidase activity, galactinol-sucrose galactosyl-
transferase activity were over-expressed at 25°C. Of the
various biological process categories (Figure 4), hydrogen
peroxide catabolic process, and response to biotic stimulus
were prominent at 15°C, whereas response to stress, and
auxin mediated signaling pathway exhibited significant over
expression at 25°C.
KEGG identified pathways for 8,711 representative

sequences, which were mapped for abundance and an-
alyzed for their behavior at the two temperatures. Some
of the pathways that exhibited significant over-expression
at 15°C included those associated with citrate cycle and me-
tabolism of ascorbate, sucrose and glutathione (Figure 5).
Glutathione has been shown to have implications in heat,
drought and cold responses [46]. An interesting feature
was over-expression of phenylpropanoid (PP) biosynthesis
pathway at 15°C, the pathway that supplies precursor for
podophyllotoxin biosynthesis.
FunCat analysis (Figure 6; Additional file 10) revealed

up-regulation at 25°C of genes involved in cell rescue, cell
fate, cell cycle and DNA processing, apart from other genes.
GO and FunCat analysis revealed that the genes associated
with growth and development were over-expressed at 15°C.
Whereas, genes involved in stress response, cell rescue and
cell fate were expressed at 25°C.
Figure 3 Percent transcripts in transcriptome characterized for molec
at 15°C and 25°C as compared to those at 25°C and 15°C, respectively
PMN analysis using homologous genes exhibiting
2-fold or higher expression at 15°C is mentioned at
http://scbb.ihbt.res.in/Podo-12-12-11/podo_pathway_go/
Genes_at_15_degree_having_expression_2_fold_or_above/.
Every network diagram contains the pathway information,
associated homologous gene, transcript ID, and expression/
abundance in terms of FPKM; each file name con-
tains the associated transcript’s scaffold/contig ID in
its prefix to make the browsing job easier. The file
“podophyllum_analysis.doc” in the parent directory of the
above link contains tabular representation and details about
all such assembled transcripts, associated homologue
reported in PMN, associated gene and associated PMN
metabolic pathway/network.
Data showed up-regulation of pathways for respiration,

photosynthesis, and phenylpropanoid biosynthesis at 15°C.
These are fundamental pathways that would be crucial
for growth and survival of plants at 15°C. Data showed
up-regulation of ABA biosynthesis, ethylene and jasmonic
acid, and is suggestive of their roles in plant growth and
development at 15°C through functioning as signal
molecule [47]. Up-regulation of phenylalanine metab-
olism, fatty acid biosynthesis, starch and sucrose me-
tabolism and PP pathway at low temperature is also
reported in cassava (Manihot esculenta) transcriptome
[48]. This global analysis of gene expression provided a
comprehensive data-set with each gene represented by
its absolute expression level at two temperatures.

Validation of FPKM-based analysis by quantitative
real-time polymerase chain reaction (qRT-PCR)
FPKM based expression values were validated by qRT-PCR
using sixteen genes related to growth and development
ular function category which exhibit significant over-expression
.

http://scbb.ihbt.res.in/Podo-12-12-11/podo_pathway_go/Genes_at_15_degree_having_expression_2_fold_or_above/
http://scbb.ihbt.res.in/Podo-12-12-11/podo_pathway_go/Genes_at_15_degree_having_expression_2_fold_or_above/


Figure 4 Percent transcripts in transcriptome characterized for biological process category which exhibit significant over-expression at
15°C and 25°C as compared to those at 25°C and 15°C, respectively.
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and stress response. These genes were NEDD8, CTPS,
ATHB-14, ABTB2, AP2, CO, CSLA, CPN60, ZFP, AOX1a,
STK, HSP60, HSP, AP2D, FRO and TINY. Cullin-associated
NEDD8-dissociated protein 1 regulates cell division, stress
responses and hormonal signaling [49]. CTP synthase is
involved in embryo development [50]. Homeobox-leucine
zipper protein ATHB-14 (HDZip) family of TFs acts in
developmental processes and in the mediation of exter-
nal signals to regulate plant growth [51]. ABTB2, AP2
and CO were reported to play a role in morphogenesis in
Arabidopsis [52-54]. CSLA is required for synthesis of cell
wall polysaccharide mannan which serves as storage reserve
during plant growth and development [55]. CPN60 was
essential for development of embryo and seedling [56].
ZFP plays an important role in stress signaling in

Arabidopsis [57]. AOX1a was reported to prevent forma-
tion of excessive reactive oxygen species under stress condi-
tion [58]. STK is expressed in response to biotic and abiotic
stress [59]. HSP60 and HSPs encode proteins that prevent
damage to cellular protein in response to heat stress [60].
AP2D is involved in abiotic stress [61]. FRO is required for
iron transport across membranes for efficient photosyn-
thesis [62]. TINY is associated with both abiotic and biotic
stress signalling pathway and its over-expression suppressed
cell proliferation [63]. FPKM and qRT-PCR based ex-
pression data were in accordance with each other with
a correlation coefficient of 0.811 (p-value = 7.86 e-05)
(Figure 7; Additional file 2). These values are considered
significant [64,65] and offer confidence to use FPKM based
expression values to represent change in gene expression.

Transcription factor and expression enrichment
TFs are sequence specific DNA-binding proteins that
interact with the promoter regions of target genes and
modulate gene expression. These proteins regulate gene
transcription depending upon tissue type and in response
to internal signals, for example, plant hormones, and to
external signals such as temperature, UV light, pathogen
attack and drought. Coordinated transcriptional control
of genes is one of the major mechanisms regulating
various processes [12]. In S. hexandrum 16,473 transcript
sequences exhibited homology with TF families, which was
reduced to 7,853 after DS clustering. The most abundant
TF families observed were those encoding for C3H, bHLH,
PHD, C2H2, AP2-EREBP and MYB (Additional file 11). Of
the 7,853 TFs, 0.44% were found to be significantly over
expressed at 15°C (Additional file 12). The most abundant
TFs in this group were WRKY, HB, SET, Orphans, MYB,
GRAS and bHLH. A total of 0.41% TFs exhibited significant
abundance increment at 25°C, and these were C3H, C2H2,
bZIP and AP2-EREBP. These TFs have been reported to
play a role in stress response. The median fold expression
was found higher for several TF families at 15°C (Table 2).
TF bHLH is regulatory component involved in many de-
velopmental pathways as well as in plants metabolism
[66]. MYB is implicated in response to development and
metabolism [67]. TF PHD is a transcriptional regulator
[68], and NAC regulates cell division and senescence [69].
C2H2 is associated with RNA metabolism and chromatin
remodeling [70]. TF data showed operation of various
cascades associated with growth and development at low
temperature, while stress-responsive TFs were operative at
high temperature (Table 2).
Thus, transcriptome analysis including TF, GO, FunCat,

EC and PMN data (Figures 3, 4, 5 and 6) suggested that 15°C
favored growth and development, whereas 25°C imposed
stress on S. hexandrum; and also supported the observation
of better growth of plant at 15°C (Additional file 1).



Figure 5 Top 50 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of significantly over- and under-expressed transcripts at
15°C as compared to at 25°C.
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Expression of genes involved in podophyllotoxin
biosynthesis at the two temperatures
Transcriptome data was used to identify various genes
involved in the biosynthesis of podophyllotoxin, a lignan
moiety. Glucose-6-phosphate is the central precursor for
synthesis of a range of compounds in a living cell. The
molecule produces phosphoenolpyruvate through glycolysis
and erythrose-4-phosphate by oxidative pentose phosphate
pathway. These two molecules synthesize chorismate
through shikimate pathway. Chorismate synthesizes
three aromatic amino acids tryptophan, phenylalanine
and tyrosine out of which phenylalanine enters the PP
pathway to synthesize p-coumaroyl-CoA (Figure 8).
Bioconversion studies of radioactive precursors suggested
coniferyl alcohol, a monolignol, to be the key precursor
in the biosynthesis of podophyllotoxin [71]. Synthesis of
coniferyl alcohol is achieved through several reactions
starting from p-coumaroyl-CoA. One of the first enzymes
in the sequence is p-hydroxycinnamoyl-CoA: quinate
shikimate p-hydroxycinnamoyl transferase (HCT), which is
known to catalyze two different steps. HCT catalyzes trans-
fer of the p-coumaroyl group to shikimate [72] leading
to formation of p-coumaroyl shikimate which in turn is
hydroxylated by p-coumarate 3-hydroxylase (C3H) to



Figure 6 Number of transcripts under various Functional Catalogue (FunCat) categories. FunCat analysis was performed for significantly
over-expressed transcripts at 15°C and 25°C as compared to those at 25°C and 15°C, respectively.
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produce caffeoyl shikimate [73]. Following the formation of
caffeoyl shikimate, HCT also catalyzes transfer of caffeoyl
moiety back to Coenzyme A yielding caffeoyl-CoA.
Caffeoyl-CoA O-methyltransferase (CCoAOMT) methylates
caffeoyl-CoA and synthesizes feruloyl-CoA followed by
its reduction to synthesize coniferaldehyde by involving
the action of cinnamoyl-CoA reductase (CCR). Last step
in biosynthesis of lignin monomer is catalyzed by cin-
namyl alcohol dehydrogenase (CAD), which catalyzes
Figure 7 Relative expression of sixteen genes associated with growth
those at 25°C based upon the data obtained by fragments per kiloba
validated by quantitative reverse transcriptase-polymerase chain reac
for Sinopodophyllum hexandrum. Correlation coefficient of FPKM and qRT-P
primers and qRT-PCR condition are given in Additional file 2, Sheet 1.
NADPH-dependent reduction of coniferaldehyde to
coniferyl alcohol [74].
Studies on biosynthetic pathway of podophyllotoxin in

Podophyllum peltatum and Linum flavum established
occurrence of dirigent protein mediated coupling of
coniferyl alcohol to get pinoresinol by involving the ac-
tion of dirigent protein oxidase (DPO) [75]. Sequential
conversion of pinoresinol to lariciresinol and secoiso-
lariciresinol by the action of pinoresinol–lariciresinol
and development and stress response at 15°C as compared to
se of exon per million fragments mapped (FPKM) values and
tion (qRT-PCR). Name of each gene starts with a prefix Sh that stands
CR was 0.811 (p-value = 7.86 e-05). Full name of genes, FPKM data,



Table 2 Transcription factor families exhibiting significant
difference in expression (based upon FPKM values) at 15°C
and 25°C in rhizome of S. hexandrum

TF Name Median fold enrichment
[15°C/25°C]

Median fold enrichment
[25°C/15°C]

ABI3VP1 11.8496004672 0.084391031

AP2-EREBP 0.0993436445 10.0700936999

ARF 251.2693584621 0.0039797929

BBR/BPC 0.0222768823 44.8895849311

bHLH 34.9929358021 0.0285771964

bZIP 0.0168311473 59.6713654895

C2H2 0.0608432609 19.5386817714

C3H 0.0503718206 19.8523695815

CCAAT 0.0840696948 11.8948927191

CSD 0.0625543682 15.9860938481

FAR1 0.0644243725 15.5220759063

FHA 0.0438438485 22.8082167472

G2-like 83.8294374002 0.0119289838

GRAS 56.8761946615 0.0178378292

HB 24.9465837862 0.0409371239

HMG 271.7954207871 0.0036792379

Jumonji 6.002434472 13.3464369086

LOB 33.1564538771 0.0301600407

MADS 13.3186291414 0.0750828024

MYB 18.2000355303 0.0549449477

MYB-related 17.0809876818 0.0585446239

NAC 0.1193331901 8.3798983242

Orphans 45.9958631506 8.7044704786

PHD 0.0087271093 114.6268134388

SET 41.296776066 0.0341751871

SNF2 8.4420467469 26.9126761966

SRS 12.9995925944 0.0769254877

Trihelix 27.1957822459 0.0367704077

VARL 250.1042595646 0.0039983325

WRKY 17.1515127277 0.0583038952
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reductase (PLR) was revealed by radiolabeled substrate
study [76,77]. Secoisolariciresinol is dehydrogenated to
matairesinol by action of secoisolariciresinol dehydrogenase
(SLD) [78]. The enzymatic reactions between matairesi-
nol to deoxypodophyllotoxin are not well characterized.
A direct pathway from matairesinol to yatein is pro-
posed by tracer experiments in Anthriscus sylvestris [79]
and pathway from yatein to podophyllotoxin via deoxy-
podophyllotoxin was suggested by feeding experiment
[80], but not yet deciphered. Deoxypodophyllotoxin is
considered as the precursor for biosynthesis of podo-
phyllotoxin [81] as supported by feeding experiment in
S. hexandrum [82] and Linum flavum [83,84]. Hydroxylation
of deoxypodophyllotoxin by deoxypodophyllotoxin
7-hydroxylase (DOP7H) involved in the biosynthesis of
podophyllotoxin is yet to be characterized [85] (Figure 8).
Starting from phenylalanine, there are twelve known

genes involved in the biosynthesis of podophyllotoxin
(Figure 8). Transcriptome data identified all these twelve
genes. FPKM showed up-regulation of eight genes namely,
phenylalanine ammonia lyase (ShPAL), 4-coumarate: CoA
ligase (Sh4CL), caffeic acid 3-O-methyltransferase
(ShCOMT), ShCCR, ShPLR, ShSLD, ShCAD and diri-
gent protein oxidase (ShDPO) at 15°C as compared to
at 25°C. Whereas, expression of ShC4H, ShHCT,
ShC3H and ShCCoAOMT showed down-regulation at
15°C. Validation of gene expression by qRT-PCR showed
similar trend of gene expression as obtained by FPKM, with
correlation coefficient of 0.740 (p-value = 0.009) between
the two platforms for gene expression (Figure 9). Interest-
ingly, the trend of podophyllotoxin content accumulation
was higher at 15°C as compared to those at 25°C
(Figure 2). Thus the results were in accordance with previ-
ous reports where gene expression and the metabolite
concentration were positively correlated with each other.
For example, catechins content in Camellia sinensis
was positively correlated with the expression of genes
of its biosynthetic pathway [86] and similar were the
conclusions for picrosides content in P. kurrooa [87],
steviosides content in Stevia rebaudiana [88] and
shikonins content in Arnebia euchroma [89].

Transcriptome data identified cytochrome P450 (CYPs),
methyltransferases (MTs) and UDP- glycosyltransferases
(UGTs), possibly associated with the biosynthesis of
podophyllotoxin
CYPs are membrane bound heme proteins, which catalyze
hydroxylation, epioxidation, dealkylation and oxidation reac-
tions. CYPs constitute the third known largest family of
plant genes involved in numerous biosynthetic reactions
resulting in production of plant hormones, defensive com-
pounds, and secondary metabolites [90]. In podophyllotoxin
biosynthetic pathway, hydroxylation at position 7 of deoxy-
podophyllotoxin by deoxypodophyllotoxin 7-hydroxylase
(DOP7H) leads to the synthesis of podophyllotoxin, but the
enzyme and the gene are yet to be characterized [82,91].
Therefore, detailed analysis of CYPs was important.
Transcriptome data identified 116 CYPs based on

highest bit score and significant E-value. CYP-39
(scaffold11394_153.2) was found to be significantly
up-regulated at 25°C by cuffdiff (Additional file 13).
Fifteen CYPs showed more than two fold up-regulation,
while 24 showed down-regulation at 15°C as compared to
at 25°C (Additional file 14). These 39 CYPs could be the
potential candidates for detailed analysis to identify the
putative ShDOP7H.



Figure 8 Putative podophyllotoxin biosynthetic pathway in S. hexandrum (adapted from [85,91]). Solid arrow indicates known step
whereas broken arrow indicates putative reaction; *shows uncharacterised step. Enzyme abbreviations are as follows: PAL, phenylalanine ammonia
lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; HCT, p-hydroxycinnamoyl-CoA: quinate shikimate p-hydroxycinnamoyl transferase;
C3H, p-coumarate 3-hydroxylase; CCoAOMT, caffeoyl-CoA O-methyltransferase; COMT: caffeic acid 3-O-methyltransferase; CCR, cinnamoyl-CoA reductase;
CAD, cinnamyl alcohol dehydrogenase; DPO, dirigent protein oxidase; PLR, pinoresinol–lariciresinol reductase; SLD, secoisolariciresinol dehydrogenase;
DOP7H, deoxypodophyllotoxin 7-hydroxylase.
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MTs are transferase enzymes that participate in
transfer of a methyl group from a donor to an acceptor.
O-methylation plays important role in biosynthesis of
lignan including podophyllotoxin [92]. Ferulic acid and
sinapic acid are methylated compounds and are pre-
cursor of monolignols (coniferyl and sinapyl alcohols),
the moieties involved in lignin biosynthesis [93]. MTs
are essential in PP pathway: activity of CCoAOMT is
essential for coniferyl and sinapyl alcohols biosynthesis
[94]; and COMT is the key enzyme involved in methylation
using hydroxycinnamates as substrates [95]. Tracer stud-
ies in Anthriscus sylvestris revealed that conversion of
matairesinol to yatein involves four steps that include hy-
droxylation, dual methylation and methylenedioxy bridge
formation [79]. Of the total 63 MTs identified, 18 MTs
exhibited differential modulation by two fold and above
(Additional file 13) wherein 2 MTs showed up-regulation,
and 16 showed down-regulation at 15°C as compared to
at 25°C (Additional file 15). Deeper analysis of these MTs
could be promising to identify the genes associated with
podophyllotoxin biosynthesis.
Glycosyltransferases (GTs) are super family of enzymes

that catalyze transfer of sugars to a wide range of acceptor
molecules. Glycosylation of natural products is generally
catalyzed by UGTs of family 1 GTs [96]. In higher plants,
UGT superfamily glycosylates a broad array of aglycones
including plant hormones, plant secondary metabolites
and xenobiotics such as herbicides [97]. Glycosylation
contributes to increased water solubility, chemical stability
and reduced chemical activity and thus plays a role in cell
homeostasis, plant growth, development and in response
to abiotic stress. Hydroxylated molecules are the common
acceptors, while UDP-glucose is the most common donor
in the GT catalyzed glycosyl group transferring reaction.
In the lignin biosynthesis pathway, lignin monomers

like coumaryl, coniferyl alcohol and sinapyl alcohol are
translocated in the form of glucosides from cytosol to cell
wall. Involvement of UGTs in the biosynthesis of lignin
was also reported [98]. Enzyme activity is expected to be
essential for vacuolar storage of otherwise toxic lignans
and is shown to be correlated with lignan glucoside ac-
cumulation. A podophyllotoxin-glucose glucosidase has
been isolated from Podophyllum peltatum [99]. Thus it
would be relevant to identify the UGTs involved in en-
zymatic synthesis of valuable glycoconjugates. BLAST
search identified 35 unigenes encoding GTs. A total of
10 UGTs (Additional file 16) exhibited modulation by
two fold and above at the two temperatures as analysed
through FPKM (Additional file 13), of which 8 UGTs were
down-regulated while 2 UGTs showed up-regulation at
15°C as compared to 25°C. In depth analysis of these
modulated UGTs would be needed to identify the possible
candidates associated with podophyllotoxin biosynthesis.
FPKM based expression values of the selected genes

were also validated by qRT-PCR. These genes were
ShCYP-7, ShCYP-15, ShCYP-23, ShMTS-6, ShMTS-9



Figure 9 Relative expression of genes associated with podophyllotoxin biosynthesis at 15°C relative to at 25°C. Changes in the
abundance of transcripts were analyzed by fragments per kilobase of exon per million fragments mapped (FPKM) as well as quantitative reverse
transcriptase-polymerase chain reaction (qRT-PCR). Name of each gene starts with a prefix Sh that stands for Sinopodophyllum hexandrum.
Correlation coefficient of FPKM and qRT-PCR was 0.740 (p-value = 0.009). Actin was used as an internal control and each value represents average
of three separate biological replicates. Full name of genes, FPKM data, primers and qRT-PCR condition are given in Additional file 2, Sheet 2.

Figure 10 Relative expression of selected cytochrome P450
(CYPs), methyltransferases (MTs) and UDP- glycosyltransferase
(UGT) at 15°C as compared to at 25°C based upon the data
obtained by fragments per kilobase of exon per million
fragments mapped (FPKM) values and validated by quantitative
reverse transcriptase-polymerase chain reaction (qRT-PCR). Name
of each gene starts with a prefix Sh that stands for Sinopodophyllum
hexandrum. Correlation coefficient of FPKM and qRT-PCR was 0.884
(p-value = 0.0194). Actin was used as an internal control and each
value represents average of three separate biological replicates.
Name of genes, FPKM data, primers and qRT-PCR condition are
given in Additional file 2, Sheet 3.
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and ShUGT-6 (Additional file 2). ShCYP-7, and ShCYP-15
were up-regulated, whereas ShCYP-23, ShMTS-6, ShMTS-9;
and ShUGT-6 were down-regulated at 15°C over 25°C.
FPKM and qRT-PCR based expression data was in ac-
cordance with each other (Figure 10) with correlation
coefficient of 0.884 (p-value = 0.0194) suggesting a signifi-
cant agreement between the expression patterns observed
through the two different platforms [64,65].

Conclusion
The present work analysed temperature (15°C and 25°C)
responsive transcriptome of rhizomatous tissue of medicin-
ally important endangered species S. hexandrum. A total of
60,089 assembled sequences, representing 20,387 unique
genes were obtained on Illumina platform. Assembly of
unigenes was validated by full-length sequence data of
the available genes of S. hexandrum, which showed correct
assembly. Transcriptome had an average coverage of
88.34X, average length of 543.11 bp, average GC content
of 44.59% and abundance of trinucleotide SSR (54.40%).
Functional annotation and classification of the S.

hexandrum transcriptome revealed metabolic process,
response to stimulus, cellular process and multicellular or-
ganismal development to be the highly represented groups,
suggesting rhizome to be metabolically active tissue.
FPKM data was validated by qRT-PCR data and the two

platforms of gene expression showed significantly positive
correlation emphasizing the confidence in the two different
methods of gene expression. Data showed over-expression
of genes and TFs associated with growth and develop-
ment at 15°C, whereas those associated with stress tolerance
over-expressed at 25°C. Also, various genes involved in
podophyllotoxin biosynthesis were identified and their
expression both by FPKM and the qRT-PCR showed
up-regulation of eight out of twelve genes at 15°C.
Interestingly, podophyllotoxin accumulation also showed
increased trend of accumulation at 15°C. In-depth analyses
of CYPs, MTs and UGTs yielded the potential candidate
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hitherto unidentified genes of podophyllotoxin biosynthesis.
Data generated in the present work will contribute to future
studies in the field of functional genomics and metabolic
engineering for this important plant species. It will also
be worthwhile to analyse microRNAs (miRNAs) be-
cause of their role in regulating gene expression either
by blocking the process of translation or breaking the
target transcripts [100]. MiRNAs are core regulatory
component defining spatio-temporal states and are in-
volved in stress responses as well. Challenge would be
to analyse miRNAs in this species since its genome se-
quence is not yet reported [101].

Availability of supporting data
Raw read files used for assembly were submitted to
Short Read Archive (SRA) at NCBI under the acces-
sion ID SRX682844 (http://www.ncbi.nlm.nih.gov/sra/
?term=SRX682844). Transcriptome sequences were sub-
mitted to Transcriptome Shotgun Assembly (TSA) project
and deposited at DDBJ/EMBL/GenBank under the accession
ID GBJY00000000 [http://www.ncbi.nlm.nih.gov/nuccore/
GBJY00000000. The version described in this paper is
the first version, GBJY01000000 (http://www.ncbi.nlm.
nih.gov/Traces/wgs/?val=GBJY01)]. Sequences, which
were less than 200 bp long or had a long stretch of “N”
(>14 nucleotides) were not accepted by TSA. These se-
quences along with submitted sequences can be accessed
at http://scbb.ihbt.res.in/Podo-12-12-11/.
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Additional file 1: Leaf morphology of S. hexandrum grown at 10°C,
15°C, 25°C and 35°C for 21 days.

Additional file 2: Details on fragments per kilobase of exon per
million fragments mapped (FPKM) values, and oligonucleotide
sequences/primers, reaction conditions used in quantitative
real-time polymerase chain reaction (qRT-PCR) for genes involved in
growth, development and stress response (Sheet 1), podophyllotxin
biosynthesis (Sheet 2), and selected cytochrome P450 (CYPs),
methyltransferases (MTs) and UDP- glycosyltransferase (UGT) (Sheet 3).

Additional file 3: Effect of k-mer size on assembling performance
of transcriptome.

Additional file 4: Top 15 conserved domains identified by
RPS-BLAST in S. hexandrum transcriptome.

Additional file 5: List of scaffolds belonging to the different groups
after dissimilar clustering step.

Additional file 6: Blast hit of unigenes involved in podophyllotoxin
biosynthesis pathway against already submitted coding sequences
in GenBank.

Additional file 7: Guanine-cytosine (GC) content (A) and simple
sequence repeats (SSRs) (B) identified in transcriptome of
S. hexandrum.

Additional file 8: Gene Ontology (GO) classification for
S. hexandrum transcripts in cellular component, molecular function
and biological process categories.

Additional file 9: Functional characterization and abundance of
S. hexandrum transcriptome for enzyme classes (A), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways (B).
S. hexandrum transcripts were classified in top 50 abundant enzyme
classes and KEGG pathways.

Additional file 10: Number of contigs in different Functional
Catalogue (FunCat) categories at 15°C and 25°C.

Additional file 11: Transcription factor (TF) families identified in
S. hexandrum transcriptome.

Additional file 12: Fragments per kilobase of exon per million
fragments mapped (FPKM) based expression of transcription factors
(TFs) identified in S. hexandrum transcriptome at 15°C and 25°C.

Additional file 13: Fragments per kilobase of exon per million
fragments mapped (FPKM) based expression analysis of cytochrome
P450s (CYPs, Sheet 1), methyltransferases (MTs, Sheet 2) and uridine
diphosphate glycosyltransferases (UGTs, Sheet 3) in S. hexandrum
transcriptome.

Additional file 14: Fragments per kilobase of exon per million
fragments mapped (FPKM) based expression analysis of cytochrome
P450s (CYPs) in S. hexandrum transcriptome. Expression of 39 CYPs
was studied at 15°C and 25°C. Details of the corresponding contigs listed
in Additional file 13.

Additional file 15: Fragments per kilobase of exon per million
fragments mapped (FPKM) based expression analysis of
methyltransferases (MTs) in S. hexandrum transcriptome. Expression
of 18 MTs was studied at 15°C and 25°C. Details of the corresponding
contigs are listed in Additional file 13.

Additional file 16: Fragments per kilobase of exon per million
fragments mapped (FPKM) based expression analysis of uridine
diphosphate glycosyltransferases (UGTs) in S. hexandrum
transcriptome. Expression of 10 UGTs was studied at 15°C and 25°C.
Details of the corresponding contigs are listed in Additional file 13.
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