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Abstract

Background: A great number of studies have investigated changes induced by morphine exposure in gene
expression using several experimental models. In this study, we examined gene expression changes during chronic
exposure to morphine during maturation and differentiation of zebrafish CNS.

Results: Microarray analysis showed 254 genes whose expression was identified as different by at least 1.3 fold
change following chronic morphine exposure as compared to controls. Of these, several novel genes (grb2, copb2,
otpb, magilb, grik-l, bnip4 and sox19b) have been detected for the first time in an experimental animal model
treated with morphine. We have also identified a subset of genes (dao.1, wis, bnip4 and camklyb) differentially
expressed by chronic morphine exposure whose expression is related to mu opioid receptor gene expression.
Altered expression of copb?2, bnip4, sox19b, otpb, dao.1, grik-I and wis is indicative of modified neuronal
development, CNS patterning processes, differentiation and dopaminergic neurotransmission, serotonergic signaling
pathway, and glutamatergic neurotransmission. The deregulation of camklyb signaling genes suggests an activation
of axonogenesis and dendritogenesis.

Conclusions: Our study identified different functional classes of genes and individual candidates involved in the
mechanisms underlying susceptibility to morphine actions related to CNS development. These results open new
lines to study the treatment of pain and the molecular mechanisms involved in addiction. We also found a set of
zebrafish-specific morphine-induced genes, which may be putative targets in human models for addiction and pain
processes.
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Background

Morphine, the most widely known opioid agent, has
been largely used for pain management. Besides non-
analgesic uses of this drug, including experimental de-
pression treatments as a control for opium addiction,
has been developed [1,2]. Despite these common uses,
morphine produces disruptive negative secondary effects
including sleepiness, drowsiness, blurred vision, con-
stipation, and a decrease in blood pressure and appetite.
With continuous use, morphine produces physical tole-
rance and addiction [1,2]. At present, it is widely known
that there are genetic components in the susceptibility
to addiction [3,4], but the specific genes that are in-
volved in this process are scarcely known.

Opioids modify the expression profile of certain
mRNAs in many tissues, including central nervous sys-
tem (CNS), the main target of drugs of abuse [5]. With
the use of microarray analysis, extensive studies have
been focused on identifying morphine-induced changes
in gene expression [6-19]. Other opioid agonist as oxy-
codone [20] and other drugs of abuse, such as cocaine,
cannabis, methamphetamine, amphetamine, ecstasy, al-
cohol, heroin and nicotine [14,21-25], have also been
studied. Up to now, all microarray studies reporting gene
expression changes in response to morphine have been
conducted in rodents and humans. In particular, these
studies were performed in whole tissues (mainly brain),
distinct components of the nervous system (nucleus ac-
cumbens, striatum, hippocampus, frontal cortex, spinal
cord), or cell cultures (primary and cell lines).

Zebrafish (Danio rerio) has been used in research re-
lated to drugs of abuse, studying the changes of gene ex-
pression produced by nicotine [26], amphetamine [27],
and alcohol [28]. In addition, this teleost exhibits con-
ditioned place preference (CPP), a technique used as
a measure of drug reward or reinforcement [29], as
responses to amphetamine and opiates like morphine
[30-32]. These research works demonstrate the existence
of a conserved drug-responsive ‘reward’ or reinforcement
pathway in this teleost (as in all vertebrates), suggesting
that this species may show adaptive changes and beha-
vioural correlates of addiction after prolonged exposure to
addictive drugs.

Zebrafish has also been used to study human disease-
related pathways [33,34], given this organism displays
many benefits in comparison to other vertebrate animal
models: small size, low cost, rapid development, trans-
parency of the embryos, permeability to drugs, high fe-
cundity, and transient genetic manipulation [35,36]. In
this sense, zebrafish is an important tool to analyze
in vivo the molecular mechanisms related to the neu-
robiology of drug addiction, withdrawal and reward
[31,37-39] that cannot be fully established in other ani-
mals models. In contrast to mammalian embryos that
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develop in the uterus and are influenced by maternal
biochemical processes, zebrafish embryos develop exter-
nally, avoiding the maternal effect on the embryos. This
is essential when dealing with drug exposure, as the
effects observed in mammalian embryos might be due to
the susceptibility of the mother and not the embryo per
se. The study of the direct effects of morphine in the
embryos will provide a better understanding of the mo-
lecular mechanisms that underlie the physical and neu-
robehavioral defects shown in fetuses and offsprings
after maternal morphine consumption [40,41].

Therefore, we used microarray technology to obtain a
profile of genes that are regulated by chronic morphine
exposure on whole zebrafish embryos at 24 h post-
fertilization (hpf), at the end of the segmentation period,
during which the CNS is being formed and differentiated
[37,42,43]. We have shown that zebrafish has endogenous
opioids and opioid receptors with high homology with
other species [44,45]. The effects of morphine on embryos
are probably mediated by the zebrafish mu opioid receptor
(opioid receptor, mul; oprml), which exhibits highest
affinity toward morphine from the known opioid recep-
tors [46], and is the opioid receptor essential to mediate
rewarding properties of most drugs of abuse [47,48]. Our
previous studies indicate that at 24 hpf, the expression of
oprml is higher than at other stages of development [49].
Therefore, the use of 24 hpf zebrafish embryos treated
with morphine can provide information on the impli-
cation of the opioid system in the maturation and dif-
ferentiation of CNS compared to any other stages of
development. Our goal in this research was to differentiate
functional classes of genes and individual candidates in-
volved in the endogenous systems underlying suscepti-
bility to morphine actions; hence, our efforts were focused
on elucidating the functional significance of sets of dif-
ferentially expressed genes related in some way to neu-
ronal function and/or CNS development. To verify the
results obtained by microarray, 12 selected genes were an-
alyzed by quantitative reverse transcription real-time PCR
(RT-qPCR). After “silencing” (knocking-down; KD) the
oprml gene expression by morpholino oligonucleotide in-
jection, we identified a subset of genes that are regulated
by morphine and are related to oprmI expression.

Our results show that morphine produces changes in
gene expression in zebrafish embryos as has been ob-
tained in rodents and humans [6-19]. Thus, our data, be-
sides being analyzed independently, was also compared
to previous studies, in an effort to determine which
alterations in gene expression are species-specific (zebra-
fish vs. mammalians) and which may be common to all
species in relation to addiction and pain studies. These
results are important since several morphine-induced
genes detected in zebrafish embryos may be putative tar-
gets in human models for addiction and pain processes.



Herrero-Turrién et al. BUIC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

Results

Microarrays analysis

To examine the global transcriptional profiles of zebrafish
embryos, RNAs generated from six pools of control zebra-
fish embryos and six pools of zebrafish embryos exposed
to morphine were individually hybridized to Affymetrix
Zebrafish Genome Arrays. A set of gene products corre-
sponding to a total of approximately 14900 probes on the
arrays were confidently detected, based on signal intensity
at a fixed value above background levels. Differentially
expressed genes were identified through the Significance
Analysis of Microarrays (SAM) method. As shown in
Figure 1, we identified a total of 1023 gene expression
changes in the above mentioned comparison (representing
1076 probe sets; Figure 1A-C). Of these, 955 genes were
identified as known genes; 401 genes were significantly
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up-regulated and 561 down-regulated (Figure 1C-D).
Moreover, as shown in Figure 1D, seven genes regulated,
after chronic exposure to morphine, are represented by
more than one probe set in the zebrafish microarray,
and each of the probe set is differently deregulated (up-
or down-regulated); for example: acireductone dioxy-
genase 1 (adil; Dr.20538.1.A1, +1.15 fold change (FC) and
Dr.9210.2.S1, —1.23 FC) and selenoprotein X, 1la (sepxla;
Dr.147.1.A1, +1.43 FC; Dr.24956.1.S1, -1.27 FC; and
Dr.16417.1.A1; —1.46 FC). Therefore, distinct gene expres-
sion changes obtained for each one of the probe sets of
each gene might mean that these genes show alternative
splicing and each one of them has at least two isoforms
that are differently regulated by exposure to morphine.
Finally, we specifically identified 255 genes (representing
265 probe sets) showing differential expression with a FC

A Probe sets
Identified

1076; \
7,22%

C 1023 genes
unknown __
68;
6,65%

known;
955;
93,35%

of probe-set/genes, see Additional file 1.

E  255genes (-1.32FC21.3)

Figure 1 Probe-sets and genes differentially expressed by chronic morphine treatment in zebrafish embryos. Identified probe sets in
comparison with total probes on the microarray (A) and detail of identified probe sets up- and down-regulated (B). (C): Number of identified
genes (known and unknown). (D) Number of known genes and detail of genes up-, down- and up-/down-regulated. (E): Number of identified
genes with a fold change (FC) of at least 1.3. Numbers following the category names indicate the number of probe-set or genes. For the full list

~

B Identified probe sets

955 known genes
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\~up-/down-
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of at least 1.3: 121 genes (126 probe sets) were up-
regulated and 134 genes (140 probe sets) were down-
regulated by chronic morphine treatment (Figure 1E; see
complete list of differentially expressed genes in Additional
file 1).

Gene ontology analysis

To enhance biological interpretation of the differentially
expressed genes from our microarray studies, we sought if
any of the biological processes or molecular functions were
over-represented by these genes. Therefore we performed
a function enrichment analyses for the differentially
expressed genes using the functional classification tool
DAVID Bioinformatics resources. A representative selection
of meaningful categories is illustrated in Figure 2 and
Table 1. This analysis shows that some categories are spe-
cifically enriched in either up- or down-regulated genes,
whereas other categories show both types of regulation.
Genes involved in oxidation-reduction processes (Gene
Ontology (GO):0055114), proteolysis (GO:0006508), mono-
saccharide metabolic processes (GO:0005996), macromo-
lecular complex assembly (GO:0065003) and generation of
precursor metabolites and energy (GO:0006091) represent
an important part of both up- and down-regulated genes.
Macromolecule catabolic processes (GO:0009057), DNA
metabolic process (GO:0006259), protein catabolic process
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(GO:0030163), homeostatic process (GO:0042592), protein
complex assembly (GO:0006461), proteasome complex
(GO:0000502), and in general, post-translational modi-
fication, protein turnover, chaperones, mainly include
down-regulated genes. There is an over-representation of
up-regulated transcripts associated with secondary metabo-
lites biosynthesis, transport, and catabolism (for complete
details, see supplementary Additional files 2 and 3).

For our study, the different categories within Gene Ontol-
ogy Biological Process can be classified in other “functional”
categories according to databases and consulted publica-
tions (see Discussion section). As shown in Figure 3, more
than one fourth of differentially expressed genes are re-
lated to signal transduction and other biological processes,
including energy metabolism, transcription, protein mo-
dification and degradation, neuronal function, transport,
development, cell structure and organization, apoptosis,
amino acid and protein metabolism, replication and stress
(see Table 2, and for complete list also see supplementary
Additional file 4). In particular, the genes related to
neuronal function are shown in a hierarchical cluster in
Figure 4 and listed in Table 3. These genes were further
investigated in this study resulting in the following
categories of GO Biological Process (Additional file 4):
regulation of transcription [GO:0045449; as for example,
cAMP responsive element binding protein 3-like 3
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Figure 2 Gene ontology analysis of zebrafish embryos gene collection. Genes were categorized with the Biological Process domain.
Significantly enriched GO terms have a probability lower than 0.01 (P value) and include at least three genes. GO terms are shown for both
up- (in red) and down-regulated (in blue) groups if they are significantly enriched in at least one of them. Significantly enriched GO terms are
indicated as full bars whereas non-significantly enriched terms are displayed as empty bars. Bars represent the number of genes assigned with
the corresponding GO term. For the full list of represent genes in each category, see Additional file 3.




Table 1 Examples of significantly enriched GO annotation for the list of morphine-responsive genes

Enriched GO annotation

De-regulation

Up-regulation

Down-regulation

No. genes P value No. genes P value Genes No. genes P value Genes
Oxidation-reduction process 52 34E+10 18 0.013 acox1, cyplial, cyp26bl, 34 37E+10 adh8b, aldh18a1, cp, cyp2aa4, dao.1, dhfr,
(GO:0055114) cyp27al.4, d2hgdh, gapdhs, dhrs13b, mdh1b, phyhd1, ptarl, sepxla
Proteolysis (GO:0006508) 37 0.049 11 ube2d? 27 0.036 f7, rad23b, spcs2, uchl5, vsgl
Macromolecule catabolic 23 0.003 4 ube2d2 19 43E+12 ctbs. LOC553461, rad23b, uvsg1
process (GO:0009057)
Monosaccharide metabolic 18 6.8E + 08 11 3.8E+09 aldocb,galk, gapdhs, gpia 7 0.050 mdh1b, pkir
process (GO:0005996)
DNA metabolic process 17 0.080 5 mif1, mphosph8 12 0.054 orc4, rad23b
(GO:0006259)
Protein catabolic process 16 0.002 16 0.002 LOC553461, rad23b, uchl5, vsg1
(GO:0030163)
Macromolecular complex 16 0.003 7 0.044 h1fx 9 0.065 fgg, tubbs
assembly (GO:0065003)
Generation of precursor 15 0.012 9 0.006 aldocb, gapdhs, gpia 6 mdh1b, pkir
metabolites and energy
(GO:0006091)
Homeostatic process 15 0.025 5 fth1 10 0.060
(GO:0042592)
Posttranslational 13 0.005 1 12 19E+12
modification. protein
turnover. chaperones
Protein complex assembly 12 0.005 4 8 0.024 fgg, tubbs
(GO:0006461)
Lipid metabolism 9 0.005 4 0.087 acsl1, acsl5 5 0.072
Response to wounding 9 0.010 3 cxcl12a 6 0.042 f7, fgg
(GO:0009611)
Proteasome complex 8 51E+ 11 8 S5TE+ 11
(GO:0000502)
Blood coagulation 7 7IE+11 2 tfpia 5 0.005 f7f9g
(GO:0007596)
Positive regulation of 7 0.010 3 bnip4 4
apoptosis (GO:0043065)
Striated muscle cell 6 0.060 3 cxcll2a 3 tnnt2a
development (GO:0055002)
Intermediate filament 5 0.043 1 cyp27al4 4 0.043 krt23

cytoskeleton (GO:0045111)
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Table 1 Examples of significantly enriched GO annotation for the list of morphine-responsive genes (Continued)

Notch signaling pathway 5
(GO:0007219)
ribosomic RNA processing 5
(GO:0006364)
Secondary metabolites 5

biosynthesis. transport.
and catabolism

protein processing 4
(GO:0016485)

serine family amino acid 4
metabolic process

(GO:0009069)
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The complete results of the Gene Ontology (GO) analysis are presented in Additional file 3.
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Figure 3 Functional categories and number of genes found to be modified by morphine in each category. (A) Functional categories of
genes found to be associated with the exposure to morphine in zebrafish embryos. Numbers following the category names indicate the number
of genes in the category, and those in parentheses are the corresponding percentages. (B) Number of genes (up-, in blue, and down-regulated,

in red) by functional category. For the full list of genes, see Table 2 and Additional file 4.

(creb313), developing brain homeobox 1b (dbx1b), distal-
less homeobox protein 5a (dlx5a), c-fos FB] murine os-
teosarcoma viral oncogene (c-fos), hairy-related 4.2-like
(her4.2), jun B proto-oncogene and b (juna and junb),
neurogenic differentiation factor 6-B (neurod6b), ortho-
pedia b (otpb), SRY-box containing gene 19b (sox19b), and
sox21b], neuron differentiation [GO:0030182; v-erb-b2
erythroblastic leukemia viral oncogene homolog 2
(erbb2), otpb, N-ethylmaleimide-sensitive factor a (nsfa),
delta-like protein C Precursor (dlc)], somitogenesis
(GO:0001756; dIb, dic, her4.2) and glutamine biosynthetic
process [GO:0006542; solute carrier family 1 (glutamate/
neutral amino acid transporter), member 4 (slcla4) and
solute carrier family 1 (glial high affinity glutamate trans-
porter), member 3a (slcla3a)].

Validation of microarray data by quantitative reverse
transcription real-time PCR (RT-qPCR)

RT-qPCR analysis was used to confirm a set of gene
expression changes observed in the microarray analysis.
Chosen genes for RT-qPCR confirmation were mainly
selected based on ontological categories with potential
roles in the nervous system.

To choose the most stable genes as internal references
for RT-qPCR data normalization, four candidates [3-actin
(B-act), ribosomal protein L13a (rpl13a), 5-2-microglobu-
lin (82 mg) and elongation factor-la (efla)] were selected
according to their expression levels detected in the micro-
array studied. The expression of these four genes was also
measured by RT-qPCR. The NormFinder software [50]
was used to calculate the intra- and inter-group variations
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Table 2 Functional categories and number of genes found to be modified by morphine in each category

Functional N genes Up-regulation Down-regulation
categories
Signal transduction 311 152 ppplridab, camklyb, grb2, sept9a, itih3, 159 LOC566752, a2ml, sh3bp5la, fam115, txndc9,
ahnak, hrc, sesn3, megf6, btr22, tmem101, tctex1d2, rcan2, rnf220b, hspb§, slc1a4*, wis*, grik-1*
magilb, vidir*, hspb1*, plg*
Energy metabolism 190 85 itih3, acox1, soatl, cyp17a2, cyp51, cox4.2, 105 aldh8af, pkir, mpdulb, mdh1b, phyhd1, hrasls,
alpp, aldocb, pcmt*, plg* glb1l, glud1b*
Transcription 109 35 dcps, zbtb16, creb3I3*, junb*, dIx5a*, fos*, 74 sox19b, mettl11a, noc2l, dbx1b, junbb, her4.2, otpb*,
dix4a* sox11b*, sox21b*, hdac6*, dnmt3b*, sox19a*, sox11b*,
mir429b
Protein modification 94 31 ube2d2, hspb1*, plg* 63 pcmt, rad23b, foxo25, hspb8
and degradation
Transport 90 43 slc31al, abcal2, apoea, abcbb, ctssb.2%, 47 a2ml, bcap31, agp12, agp3a, vamp5, slc1ad*, vamp4*,
slc3a2*, abt4*, slc1a3a*, slc7a8* hiat1b*, apolV*, brp44*, kctd12.2*
Neuronal function 95 36 bnip4, ppp1ri4ab, acox1, serinc5, maptb, 59 pcmt, dao.1, sox19b, a2ml, mettl11a, astn1, noc2l,
magilb, hspb1*, plg*, aplp*, slc1a3a*, creb3I3*, copb?2, dbx1b, junbb, her4.2, slc1a4*, her3*, wis¥,
hsp90a.1*, junba*, dIx5a*, fos*, glula grik-like*, otpb*, cyrano*, sox11b*, sr*, sox21b*, glulb*,
glud1b*, dnmt3b*, kctd12.2%, sox11b*, mir429b*
Development 80 36 bnip4, ppp1ridab, camklyb, acox1, ahnak, 44 sox19b, a2ml, hspb8, noc2l, copb2, dbx1b, her4.2,
maptb, zbtb16, cypl1al, magilb, hspb1*, plg*, her3*, wis*, otpb*, cyrano*, sox11b*, sox21b*, hoxb8a*,
dIx5a*, dIx4a* dnmt3b*, kctd12.2%, sox11b*
Cell structure and 56 27 mybpc2b, maptb, col5al 29 mylz2, krt1-19d
organization
Apoptosis 42 19 bnip4, hspb1*, bbc3* 23 hspb8, noc2l, bcap31, casp9*, mir429b*
Cell cycle 31 15 sept9a, sesn3, ccntl, hsp90a.1*, ccnd1* 16 ccnb3*
Immune response 30 12 ccl-c11b, cxcl12a, ctssh.2¥, plg* 18 crfb6
Amino acid and 28 11 hnmt, eif4a2, eif3hb, eif2c2, slc3a2*, slc7a8* 17 fah, dao.1, aldn18a1, iars, eif4g2b*, sr*, eif4g2a*,
protein metabolism eif2s11*
Replication 25 5 h1fx 20 rad23b, mettl11a, noc2l, h2afx*, dnmt3b*
Ribosomal 17 7 rpf2 10 nobT, fcfl
Response to 9 3 hspb1*, hsp90a.1* 6 hspb8
chemical stimulus
Translation 8 2 genih 6 hbs1l*
Blood Coagulation 8 3 serping 5 fgg
Stress 7 3 sesn3, hspb1*, hsp90a.1* 4 hspb8
Reproduction 4 3 1

Some up-regulated genes with FC > 1.0 and down-regulated genes FC < —1.0 are marked with an asterisk (¥).

in their expression. Our results indicate that S-act is the
most stable gene, whereas rpl13a, 2 mg and efla are less
stable (data not shown). Thus, the mean of threshold cycle
(Ct) value and primer efficiency value of B-act was used
for normalization.

As shown in Table 4 and Figure 4, we examined a total
of 12 regulated genes after chronic morphine exposure
on zebrafish embryos (represented by 14 probe sets in
the microarray system studied) using RT-qPCR tech-
nique. The up-regulated genes include: acyl-Coenzyme
A oxidase 1, palmitoyl (acoxl), growth factor receptor-
bound protein 2 (grb2), and Ca**/calmodulin-dependent
protein kinase Iyb (camklyb). The group of down-
regulated genes is formed by the transcription factor
sox19b (also named sox31) and wntless (wls, also known

as gprl77).

It is of interest that the probe set that presents the
highest gene expression (Dr.26538.1.A1; +4.73 FC), puta-
tively identified by Affymetrix as wls, do not aligned to
wis genomic locus. Our in silico analyses demonstrated
that when performing a Blastn in the Ensembl site, using
as query an unique sequence of 59 nucleotides formed
by the overlapping of 16 probes which constitute this
probe set, the query sequence is aligned in two unidenti-
fied non-coding regions (on chromosomes 6 and 8) that
do not belong to wis genomic locus located on chro-
mosome 2. Therefore, Dr.26538.1.A1 probe set cannot
be identified as wis gene (see other genes differentially
expressed by morphine validation by our in silico studies
in Additional file 5). Concerning the wis gene, we have
detected that uniquely the Dr.3546.1.S1 probe set is
complementary to this gene (Table 4).
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sets) chosen for validation of microarray data by RT-gPCR are listed (right hand side of the figure).

We also analyzed four genes regulated by chronic mor-
phine treatment involved specifically in dopaminergic and
serotonergic neurotransmission. A gene putatively related
to serotonergic neurotransmission is BCL2/adenovirus
E1B interacting protein 4 (bnip4). Three genes involved in
dopaminergic neurotransmission are the plasminogen
(plg), coatomer protein complex subunit beta 2 (copb2),
and the transcription factor otpb. Furthermore, we in-
cluded in our study three genes related to glutamatergic
neurotransmission: one up-regulated (membrane associ-
ated guanylate kinase, WW and PDZ domain containing

1b, magilb) and two down-regulated (D-amino-acid
oxidase 1, dao.1, and a kainate-like receptor, grik-I).

We showed that two regulated genes, after chronic mor-
phine exposure, are represented by more than one probe set
in the zebrafish microarray (bnip4 and grb2; Table 4). Dis-
tinct gene expression changes obtained for each one of the
probe sets for each gene might mean that these genes show
alternative splicing and each one of them has at least two iso-
forms that are differently regulated by exposure to morphine.

All genes chosen for RT-qPCR confirmation and in-
volved in neuronal functions are also related to other
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Table 3 Genes involved in neuronal function with —1.30 >R fold > 1.30
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Gene symbol Gene description R.fold Probeset ID
UP-REGULATION
bnip4 BCL2/adenovirus E1B interacting protein 4 2357  Dr24320.151_at
ppplri4ab Protein phosphatase 1, regulatory (inhibitor) subunit 14Ab 2,239  Dr.19567.1.51_at
camklyb Calcium/calmodulin-dependent protein kinase lyb 2,164 Dr.9852.1.A1_at
acox1 Acyl-Coenzyme A oxidase 1, palmitoyl 1,741 Dr3576.1.A1_at
serinch Serine incorporator 5 1,480 Dr.7467.1.51_at
mapthb Microtubule-associated protein tau b 1,462 Dr.16118.1.A1_at
dlc Delta-like protein C Precursor 1,375 Dr.16183.1.51_at
dmx|2 Dmx-like 2 (rabconnectin-3) 1,367 Dr.12467.1.A1_at
Imbr1l limb region 1 like 1,346 Dr.19947.151_at
fam120c Family with sequence similarity 120C (constitutive coactivator of PPAR-gamma-like protein 2) 1334  Dr.18209.1.A1_at
magilb Membrane associated guanylate kinase, WW and PDZ domain containing 1b (BAl1-associated protein 1) 1,300 Dr4477.1.A1_at
DOWN-REGULATION
dao.1 D-amino-acid oxidase 1 —1,943 Dr.3663.1.A1_at
sox19b SRY-box containing gene 19b —1,802  Dr.25405.1.A1_at
a2ml Alpha-2-macroglobulin protein-like —1,801 Dr.3025.1.A1_at
astn1 Astrotactin 1 —1,484  Dr.14729.2.A1_at
encl Ectodermal-neural cortex (with BTB-like domain) —1466  Dr9565.151_at
copb2 Coatomer protein complex, subunit beta 2 —1393 Dr.14687.1.A1_at
mchrib Concentrating hormone receptor 1b —1,387  Dr.24966.1.51_at
dbx1b Developing brain homeobox 1b -1364  Dr8072.151_at
junbb Jun B proto-oncogene b —1,356 Dr.737.1.A1_at
her4.2 Hairy-related 4.2 —1324  Dr.20386.1.51_at
Irrn1 Leucine rich repeat neuronal 1 —1,309 Dr.242923.A1_a_at

Genes were identified as being differentially regulated (up- and down-regulated) in embryos zebrafish by morphine treatment.

functional categories according to databases and consulted
publications, such as development (acoxl, camklyb,
sox19b, plg, otpb, copb2, wis, bnip4 and magilb), signal
transduction (camklyb, grb2, plg, wis, grik-l and magilb),
transcription (sox19b and otpb), apoptosis (bnip4), energy
metabolism (acoxI and plg) and, specifically, amino acid
and protein metabolism (dao.1) (see details in Table 2). It
should be emphasized that among all genes confirmed by
RT-qPCR some have previously been identified in distinct
studies with mammals, such as Camkly, Plg Dao and Wis
[10,12,15,51,52] (Table 5).

For our RT-qPCR analysis, we used the same RNA sam-
ples as those used for the microarray hybridization experi-
ment, and additionally, samples from eight independent
chronic morphine treatments were also used. Results from
all the RT-qPCR experiments are summarized in Table 4
and Figure 5: acoxl, bnip4, camklyb, magilb, and grb2
appeared as the most up-regulated transcripts with 2.03 +
0.43, 1.90 £ 0.41, 1.90 + 0.57, 1.55 £ 0.12, and 1.27 £ 0.15
EC, respectively. We also clearly confirmed down-
regulation of sox19b, grik-1, dao.1, copb2, wis and otpb
transcripts (-3.31 £ 0.11, -2.94 + 0.21, -2.09 + 0.19, -1.69 +

0.19, -1.67 + 0.16, —1.64 + 0.23 FC, respectively). However,
the up-regulation of plg was not confirmed by RT-qPCR
since the result showed no significant deregulation. Dif-
ferences between RT-qPCR and microarray experiments
occur for several reasons, including the fact that different
probes are used for the microarray and RT-qPCR experi-
ments (which can capture differential expression in splice
variants), differences in the methods for normalization
of expression data and possible false-positive expression
changes. In addition, lower correlations between RT-
qPCR and microarray results, such as for plg gene (+1.26
EC), were consistently reported for genes exhibiting small
degrees of changes, generally less than 1.4 FC [53].
Correlation between the microarray and RT-qPCR re-
sults for the 12 selected genes was then performed and
the statistical significance of the correlation determined.
As Morey et al. [53] suggest, prior to performing corre-
lation analysis, the dataset should be tested for normality
using the Shapiro-Wilk test; our data points were not nor-
mally distributed and therefore Spearman’s rho test was
used. This test is the rank-based non-parametric equiva-
lent of the more commonly used Pearson’s correlation
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Table 4 Comparison between microarray and RT-qPCR
data for selected genes

Transcripts Gene Microarray RT-qPCR data
cluster Id names  data R.fold Fold change  P-value
Up-regulation
Dr.24320.1.51_at bnip4 2.36/1.23 190 £041* 742 E-05
Dr21771.1.51_at
Dr9852.1.A1_at  camklyb 2.16 190+ 057* 141 E-05
Dr.7717.2.A1_at grb2 2.02/1.58 1.27 +£0.15*% 8.98 E-04
Dr.7717.1.A1_at
Dr.3576.1.A1_at acox1 1.74 203 +043* 2.04 E-05
Dr4477.1.A1_at magilb 1.30 1.55+0.12*% 543 E-05
Dr.3645.1.51_at plg 1.26 -1.06+0.21 0.299
Down-regulation

Dr.3663.1.A1_at dao.1 -1.94 -331+£0.11* 359 E-08
Dr.25405.1.A1_at  sox19b —-1.80 —-209+0.19% 0.001
Dr.14687.1.A1_at copb? -1.39 -1.69+0.19% 0.004
Dr.3546.1.51_at wls -1.25 -1.67 £0.16* 0.006
Dr3211.1.A1_at grik-1 -1.23 —-294+021* 253 E-04
Dr8118.1.A1_at otpb -1.22 —1.64 +0.23* 0.004

Values of fold change by RT-gPCR are given as mean of fold change + standard
deviation. The study includes samples used for microarray hybridization and
samples from independent treatments; a total of n = 8. For better comparison of
the results obtained with both techniques, microarray and RT-gPCR, Morphine vs.
Control fold changes are indicated with positive and negative values for up- and
down-regulations, respectively. A one-way t-test was performed to determine
whether fold changes obtained for morphine-regulated genes were different
from 1 and significant values are indicated with asterisks.
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calculation [53]. The expression data for this gene set de-
tected by microarray and RT-qPCR are plotted in Figure 6.
The RT-qPCR and microarray methods showed excellent
qualitative agreement on both up- and down-regulated
genes. The correlation between microarray and RT-qPCR
data obtained a high statistical significance [r (12) = 0.884,
p <0.001]. As mentioned before, the expression of several
morphine-induced genes identified in previous studies
(see Table 5), such as camklyb, dao.1 and wis, was also
analyzed to evaluate the data reliability and the sensitivity
of microarray analysis. As shown in Figure 5, the induced
expression of camklyb and decreased expression of wis
was successfully detected by both RT-qPCR and micro-
array approaches. These results confirmed the reliability
of microarray analysis method in this study.

The role of oprm1 gene in morphine-induced regulation
of differentially expressed genes in zebrafish embryos
The effects of morphine in the embryos are probably
mediated by oprml, the opioid receptor that exhibits
highest affinity towards morphine [46]. Thus, in order
to establish the role of oprm1 in the expression of the
identified genes in our study, we microinjected specific
morpholino (MO) to knock-down (KD)-oprml at the
one-to-four-cell stage in the yolk (named oprmi-MO
group; Figure 7), embryos were analyzed when the 24
hpf stage was reached.

Table 5 Example of genes differentially expressed by morphine in our study and identified in other species

Probeset ID Genename Description/validation in silico R.fold Species Reference
Up-regulation
Dr.9852.1.A1_at camklyb Calcium/calmodulin-dependent protein kinase Igb 2,16 Mouse [12]
Dr.23925.1.A1_at soat1 Sterol O-acyltransferase (acyl-Coenzyme A: cholesterol acyltransferase) 1 1,69 Rat [16]
Dr.19223.1.52_at aldocb Aldolase C, fructose-bisphosphate, b 1,49 Rat [105]
Dr.11457.151_at zbtb16 Zinc finger and BTB domain containing 16 1,44 Mouse [12,65]
Dr.12489.1.51_at mlf1 Myeloid leukemia factor 1 1,44 Mouse [8]
Dr.18505.1.51_at centl Cyclin-T1 1,44 Mouse [6]
Dr822.1.53_at cxcl12a Chemokine (C-X-C motif) ligand 12a (stromal cell-derived factor 1) 1,38 Mouse [8]
Dr.23722.151_at cyp27al4 Cytochrome P450, family 27, subfamily A, polypeptide 1, gene 4 1,35 Mouse [8]
Dr9423.1.51_at ndufb2 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 2, 8 kDa 1,31 Mouse [6]
Dr867.1.51_at wdr1 WD repeat domain 1 1,28 Rat [105]
Dr.12378.1.51_at hspb1 Heat shock protein, alpha-crystallin-related, 1 1,27 Rat & mouse [16,55]
Dr.3645.1.51_at plg Plasminogen 1,26 Rat & mouse [12,15]
Down-regulation
Dr.3663.1.A1_at dao.1 D-amino-acid oxidase 1 -1,94 Rat [51,52]
Dr.9860.1.51_at mdh1b Malate dehydrogenase 1b, NAD (soluble) -1,79 Rat [105]
Dr.19735.1.51_at phyhd1 Phytanoyl-CoA dioxygenase domain containing 1 -1,56 Mouse [55]
Dr.5687.1.A1_at hspb8 Heat shock protein, alpha-crystallin-related, b8 -1,45 Mouse [8,55]
Dr.737.1.A1_at junbb Jun B proto-oncogene b -1,36 Rat & mouse [71
Dr.3546.1.51_at wils wntless homolog (Drosophila) —1,25 Mouse [10]
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After the MO microinjection of oprm1 we did not detect
any morphological alteration in the embryos. We found a
decrease of the mRNA expression level approximately 95%
(data not shown) in the oprml which was similar to that
was reported by previous studies of our group [54-56].

To establish that changes observed after MO microinjec-
tions were produced by MO action on their target, we also
employed two more experimental groups (see Figure 7):
embryos injected with standard MO (not targeting any
gene in zebrafish, named MO Control group), and em-
bryos with oprmI-MO injection plus exposure to mor-
phine (oprmI1-MO + morphine group).

As shown in Figure 7, our results demonstrated that the
gene expression of grb2, acox1, dao.1, wis, grik-1, otpb and
copb2 in the oprml morphants group (oprmil-MO) was

F A & & P {&'\ O éom & ,bot‘ decreased with respect to the Control group, indicating
ST O S o ¥ O ¥ . ) .
& € ) that oprm1 is important in the expression of these genes

Figure 5 Quantitative real-time PCR (RT-qPCR) was used to validate
the microarray data. The genes selected showed similar expression
changes when assessed by RT-gPCR as determined by microarray
analysis. Data are presented as morphine vs. control fold changes.

(Figure 7A-G). When the oprm1-MO group was exposed
to morphine (oprmI1-MO + morphine group), grb2 ex-
pression was recovered and similar values were reached
with respect to Control groups, including MO Control
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Figure 6 Validation of microarray data by RT-qPCR. Correlation between microarray (x-axis) and RT-qPCR (y-axis) data. This correlation was analyzed by Spearman’s
rho test and a high statistical significance [r (12) = 0884, p < 0.001] was observed. Values used in this graph were taken from results presented in Table 4. Each gene
is labeled with a symbol and up- and down-regulated genes are marked in red and green, respectively: 4, grb2 and dao.1; ®, magilb and copb2; A, bnip4 and otpb;
x, camklgb and sox19b; X, acox1 and wis; +, grik-l, —, plg. In the case of two regulated genes (bnip4 and grb2) after chronic morphine exposure that are represented
by two probe sets each one, we have included in this figure the highest microarray data: Dr. 24320.1, bnip4 + 2.36 FC (A), and Dr. 77172, grb2, +2.02 FC (#).




Herrero-Turrién et al. BMC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

Page 13 of 23

N

05

In expression

15

grb2

o T

control MO Control  oprm1 MO

wls

oprm1 MO +
morphine

1
o's '

0
control

1,5

I

MO Control  oprmi MO

copb2

oprm1 MO +

%k
maorphine

_—

control

15

Relative mRNA levels (Fold Change) of control group / normalization to (3-act

1
*%k
0'5 i
0

MO Control  opem1 MO

sox19b

oprm1 MO +
morphine

| dk
1
05
0

control

MO Control  oprm1 MO

Figure 7 (See legend on next page.)

oprm1 MO +
morphine

05 -

05

~N

15

acoxl
*
*kdk
I I |
control MO Control  oprmi MO oprm1 MO
morphine

grik-1

i
dedke
) i

control

MO Control  oprm1 MO

bnip4

oprm1 MO +
morphine

control

control

I
*%

MO Control  oprmi MO

magilb

MO Control  oprm1 MO

dekk

oprmi MO +
morphine

oprm1 MO «
morphine

05 -

1,5

0

15

05

dao.1
ik

*k
control MO Control  oprm1 MO oprm1 MO »
morphine

otpb

—

Kkk

| I
control MO Control  oprma MO oprm1 MO +
morphine

camklyb
Fedk
4 *kk
| i r ' v i T
control MO Control  oprmi MO oprm1 MO +
morphine
plg

control MO Control  oprma Mo oprm1 MO +
imorphine




Herrero-Turrién et al. BIC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

Page 14 of 23

(See figure on previous page.)

Figure 7 Knockdown of p opioid receptor (oprm1). Expression levels of grb2, acox, dao.1, wis, grik-, otpb, copb2, bnip4, camkigb, sox19b, magilb and
plg of the Control group, the Morpholine (MO) control, Morpholine oprm1 (oprm1-MO) and oprm 1-MO exposure to morphine (oprm1-MO + morphine). The
expression levels were quantified using RT-gPCR analysis and were normalized to B-actin expression. Each bar represents the FC + SD (n = 8). Data were
analyzed by one-way ANOVA and using the Tukey post-hoc test. P values of < 0.05 being considered statistically significant (***p < 0.001; **p < 0.01; *p <0.05).

group (Figure 7A). In contrast, analyzing the gene ex-
pression levels of acox1, grik-I, otpb and copb2 in the
oprmI1-MO + morphine group, we observed an increase
of these genes compared to the oprmi1-MO group. The
comparison of gene expression levels of these four genes
in the oprmI-MO + morphine group relative to the two
Control groups shows that gene expression levels of grik-/,
otpb and copb2 were comparable to the Control groups
(Figure 7E-G), but in the case of acox1, it showed a signifi-
cant increase as compared to Control groups (Figure 7B).
Furthermore, dao.l and wis expression did not undergo
any significant change between oprmI-MO + morphine
and oprm1-MO groups (Figure 7C-D).

Unlike the previous group of genes, the absence of
oprmI-mRNAs (oprm1-MO group) increased the expres-
sion of bnip4, camkylb and sox19b genes (Figure 7H-J).
Thus, silencing gene transcription oprml indicates that it
appears to be important in some way in the expression of
these three genes. When the oprmI-MO group was
exposed to morphine (oprmI-MO + morphine group),
sox19b expression was recovered and similar values were
reached with respect to the Control groups (Figure 7). In
contrast, camkylb and bnip4 expression did not undergo
any significant change between oprmI-MO + morphine
and oprmI-MO groups (Figure 7H-I). Finally, magiib and
plg expression did not present any significant change
among all experimental groups (Figure 7K-L).

In conclusion, we found that morphine deregulated
(increased or decreased) the expression of grb2, acoxl,
grik-1, otpb, copb2 and sox19b through an unknown (not
related to oprml) mechanism; however, it required the
expression of oprml to exert its influence on the expres-
sion of dao.1, wis, bnip4 and camkylb. In other words,
these four genes represent a putative collection of genes
whose expression is related to oprml expression.

Discussion

Most of the published data addressing addictive drugs
have focused on adults or neonates in mammalian models
[7-19,57,58]; little information has been published con-
cerning embryonic development and addiction (e.g. [59] —
alcohol-; [10] —morphine-). Nevertheless, the use of
morphine by pregnant women, besides affecting them
personally, also affects their fetuses [60]. It is known
that exposure to morphine may have additional conse-
quences in the mammalian newborn, affecting immune
function, neurodevelopment [61] and long term neuro-
behavioral effects in combination with stress [10,62].

In the present study, we used zebrafish embryos, since
in this model external development can be observed,
which is advantageous for the study of the actions of drugs
in a specific embryonic stage (see our recent studies with
cocaine: [55,56,63]).

We described four groups of genes regulated by chronic
morphine treatment in zebrafish embryos. Each group
contains both, genes already known to be related to mor-
phine activity, and new genes that have not been related
to morphine until now. We have also described some
genes whose expression is related to oprm1 expression: (i)
Immediate early genes (IEG) and other genes related to
transcription; (ii) genes involved in monoaminergic neuro-
modulation; (iii) genes involved in glutamatergic neuro-
transmission; and (iv) others genes involved in neuronal
function.

Immediate early genes and other genes related to
transcription
Genes previously known are IEGs, such as members of
the fos and jun families, which have important roles in
processes such as brain development, learning and long-
term neuronal plasticity [64]. Rapid and transient induc-
tion of ¢-Fos and Jun-B has been described in response
to acute morphine administration in different rat brain
regions [7]. Our results showed that a duplicate of junb
was down-regulated (junbb, -1.36 FC) as well as their
ortholog was up-regulated (junba, +1.18 FC). This fact
suggests that both genes have different functions, such
as reported by Postlethwait et al. [65] indicating a sub-
functionalization of a gene can occur after a gene dupli-
cation event. Additionally, c-fos was also up-regulated
(+1.15 EC). Other known genes deregulated by mor-
phine in zebrafish embryos and related to transcription
are the zinc finger and BTB domain containing 16
(zbth16; +1.44 FC) and the myeloid leukemia factor 1
(mlfl; +1.44 FC). For both genes some similar results
have been reported in various studies. Thus, zbth16 was
also induced after acute treatment by morphine in mice
[12], and this induction was lower after prolonged adminis-
tration. Furthermore, this gene was found to be positively
related to CPP induced by morphine in mouse [66]. Anghel
et al. [8] showed that the MIfI was also up-regulated by
short-term morphine and conversely down-regulated by
long-term morphine in the pituitary gland of mice.

We also detected other genes involved in the regula-
tion of transcription that have not been identified in pre-
vious studies after morphine treatment, for example,
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sox19b (-1.80 FC), sox19a (-1.15 FC), dbx1b (-1.36 FC),
and her4.2 (-1.32 FC) that were also deregulated by am-
phetamine in zebrafish, like other members of these
gene families (sox9a, herl5 and dix1a) [27]. With respect
to sox19b, a gene that we validated by RT-qPCR, belong-
ing to the family of SoxB1 transcription factors (sox1/2/
3/19a/19b), its expression is restricted to the developing
CNS, and specifically at 24 h of development in zebra-
fish, it is expressed in the dorsal spinal cord, in the hind-
brain, in the tegmentum of the midbrain and in the
telecenphalon [67], acting as an important determinant
during such anterioposterior regionalization process of
the CNS in zebrafish development [68,69]. Therefore, we
can postulate that the down-regulation of sox19b pro-
duced by morphine exposure in zebrafish embryos could
intervene in some way by altering the CNS anteriopos-
terior patterning process.

Genes involved in monoaminergic neuromodulation

It is widely known that alterations of biogenic amines,
neurotransmitters derived by the enzymatic decarboxy-
lation of naturally occurring amino acids (catecholamines,
dopamine and norepinephrine, as well as serotonin and
acetycholine), by drugs of abuse play an important role in
the CNS [70]. In particular, morphine increases dopami-
nergic neurotransmission in the nucleus accumbens via
the activation of dopamine cells in the ventral tegmental
area (VTA), an area that possesses a high density of
OPRMs (and/or delta opioid receptors, OPRDs), which
may mediate reinforcing effects of morphine [71]. This
activation mainly results from the disinhibition of inhibi-
tory GABAergic interneurons in the VTA. In zebrafish,
dopaminergic and serotonergic systems share similarities
with their mammalian counterparts [72,73]. Although
in mammals, dopaminergic neurons have been observed
in the diencephalon, telencephalon and mesencephalon; in
zebrafish, these neurons have only been detected in the
diencephalon and telencephalon [74,75], and appear du-
ring development between 18—22 hpf in zebrafish embryos
[76]. In particular, zebrafish A11-type dopaminergic neu-
rons (homologous to mammals), the major far-projecting
dopaminergic neurons in this teleost, are located in the
ventral diencephalic (hypothalamus) and posterior tuber-
culum and express specifically the transcription factor Otp
[75,77]. We hypothesized that the dopaminergic neu-
rotransmission during development may be altered by
down-regulation of otpb gene. In zebrafish, two paralogous
otpa and otpb genes have been previously reported [78]
and the requirement for otpa and otpb function during
development of the larval diencephalon is partially re-
dundant. Both genes are essential for the development of
specific subsets of diencephalic dopaminergic neurons in
zebrafish and mice, of neuroendocrine cells and of specific
neurons in the hindbrain in zebrafish [79-83]. Recently,
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Barreto-Valer et al. [63] showed that cocaine also down-
regulates both duplicate ofp genes at 24 hpf zebrafish
embryos, and these transcription factors, besides LIM
homeobox transcription factor 1 and 2-beta (/mx1b.1/2),
were important in the expression of tyrosine hydroxy-
lase (th), the enzyme responsible for the biosynthesis of
dopamine, during the 24 and 48 hpf zebrafish em-
bryonic stages [79].

Another new identified gene, involved also in dopamin-
ergic neurotransmission and down-regulated by exposure
to morphine in zebrafish embryos, is copb2. This gene en-
codes the subunit (of 7 subunits) of coatomer complex,
which is implicated in a variety of functions ranging from
signal transduction, vesicular trafficking and transcrip-
tional regulation to cell cycle control and apoptosis [84].
In particular, Copb2 regulates the transport of dopamin-
ergic receptor D1 [85]. Thus, one mechanism by which
drugs of abuse can regulate the function of dopaminergic
receptors is promoting a decrease in the traffic of dopa-
minergic receptors from the cytoplasm to the cell mem-
brane or vice versa [15]. The trafficking process could be
regulated by changes in gene expression of proteins in-
volved in this process, such as Copb2. On the other hand,
Kily et al. [26] detected that copb2 was down-regulated by
treatment of both nicotine and ethanol in zebrafish; these
authors also demonstrated that copb2 is implied in the de-
velopment of the notochord.

Concerning genes involved in the serotonergic signal-
ing pathway that in our study are deregulated by chronic
morphine treatment, we can mention bnip4 (also named
bnip3b), an unknown gene to date in the context of ani-
mals treated with morphine. We validated by RT-qPCR
the results obtained by microarrays analysis and identi-
fied that the expression of this gene is related to oprmli
expression. In zebrafish, three ortholog genes have been
described: bnip3 and bnip4, not induced by hypoxia, and
bnip3a, which is induced by hypoxia and is much closer
to human BNIP3, which is related to cell death/survival
[86]. In addition, it is known that rat Bnip3 gene is dif-
ferentially regulated during development and induces
both apoptosis and autophagy. Besides it is also involved
in other biological processes, such as mitochondrial dy-
namics and intracellular calcium regulation [87]. We can
hypothesize that the increase of bnip4 expression pro-
duced after exposure to morphine may be involved in a
possible induction of apoptosis/autophagy.

It has interestingly been suggested that mammalian
BNIP3 protein can be a candidate for an intrinsic antide-
pressive effect-related factor and an antistress reaction
factor [88,89]. Enhanced Bnuip3 expression in NG108-15
cells, which possess the serotonin 2C receptor (5-HT2CR)
mRNA system, was observed after exposure to Hochu-
ekki-to (HET), a (Wakan-yaku) Sino-Japanese traditional
drug with antidepressive effects, as well as after exposure
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to typical antidepressants [88]. In addition, rat brain Bnip3
mRNA expression is enhanced under stress conditions
[89]. Thus, both studies speculate that Bnip3 mRNA may
be the candidate gene that is controlled by the 5-HT2CR
mRNA system, which plays an important role in the
action of antidepressants together with serotonin trans-
porters and/or noradrenaline transporters, and also may
play a role in the maintenance and/or reformation of
synapses in the brain. Therefore, data published up to
now [86-89] and our own data suggest that antidepres-
sants in mammals and the treatment with morphine in
zebrafish embryos producing an increase in expression
of Bnip3-type genes may initially seem to indicate an
unfavorable pro-apoptotic state of the neuronal cell. In
addition, a second conclusion of functional significance of
bnip4 in zebrafish is that the study of this teleost during
development may be a good model to confirm that bnip4
mRNA is a candidate for one of the genes that are con-
trolled by the 5-HT(2C)R mRNA system. The relation
between morphine and serotonergic neurotransmission is
supported by biochemical studies that demonstrated re-
ciprocal functional interactions of the 5-HT(2A) receptor
and the OPRM1 following activation by morphine [90].

Genes involved in glutamatergic neurotransmission
In addition to monoaminergic neurons, the glutamater-
gic system plays a critical role in drug dependence and
addiction [91]. In relation to this system, we identified
groups of genes that are associated with the modulation
of glutamate signaling, producing neuroplasticity, and
are regulated by chronic morphine treatment, some of
which (as grik-l, sicla4 and slcla3a) have not been
described before. Plasticity following chronic drug expos-
ure, including morphine, has been described in the ex-
tended amygdala (formed by nucleus accumbens and
central amygdala) and, in particular, at the interface bet-
ween glutamatergic and monoaminergic systems [58,92].
Within the group of genes down-regulated by expo-
sure to morphine in zebrafish embryos, we found dao. 1,
which we have validated by RT-qPCR and identified as a
gene related to oprml expression. This gene encodes a
peroxisomal flavoprotein (DAO) that catalyzes the oxi-
dative deamination of neutral and polar D-amino acids
as D-Ser (a co-agonist of N-methyl-D-aspartate (NMDA)
receptor [93]) to hydrogen peroxide, and is expressed in
mammals in the kidneys, liver and almost exclusively
within astrocytes in the spinal cord [94-96]. Unlike our
study, two papers of Yoshikawa et al. [51,52] showed
that acute and chronic treatments with morphine
increases the expression of Dao and serine racemase
(Sr), which catalyzes the direct formation of D-Ser from
L-Ser, in most parts of rat brain, mainly forebrain. In our
study, we detected that both genes were down-regulated
by morphine exposure in zebrafish embryos (in the case
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of sr, —-1.20 FC). We have found several genes, as for
example dao.1, chemokine (C-X-C motif) ligand 12a
(cxcli12a), NADH dehydrogenase (ubiquinone) 1 beta
subcomplex 2 (ndufb2), phytanoyl-CoA dioxygenase do-
main containing 1 (phyhdl), and carbonic anhydrase II
(ca2) that were regulated in opposite directions in our
study in contrast to other studies; such differences may
be due to different morphine exposure areas, tissue
(brain) region and/or species.

Interestingly, in rodents, spinal DAO contributes to the
development of central sensitization-mediated chronic
pain and may be a potential target molecule for the treat-
ment of chronic pain and as an efficacious molecule me-
diating morphine tolerance [96,97]. In conclusion, the
decrease of dao.1 expression by treatment with morphine
in zebrafish embryos contrary to that obtained with ro-
dents opens a door hitherto unknown in the use of zebra-
fish as a model to study chronic pain and the effect of
morphine in relation to the dao.I gene. Future studies will
be required to resolve these unknowns, concerning the
mechanisms of action of this gene in zebrafish.

Other gene involved in serine metabolism, whose
expression was also down-regulated by exposure to
morphine in zebrafish embryos, is the transporter of
neutral amino acids slcla4 (named also ACT; -1.27 FC).
SLC1A4 seems to be the main uptake system of L-Ser in
neurons [98]. Therefore, the presence of at least three
genes differentially expressed after exposure to morphine
and involved in serine metabolism implies that mor-
phine can alter this type of metabolism influencing mul-
tiple processes involved in this amino acid, such as the
regulation of NMDA receptors [99]. Other genes related
to the primary excitatory amino acid neurotransmitter glu-
tamate, and closely related to signal transduction, whose
expression was altered by morphine treatment in zebrafish
embryos were: a kainate-like receptor (grik-I); the trans-
porter of glutamate slcla3a (+1.18 FC); glutamate-
ammonia ligases 1a and b (glula: +1.14 FC and glulb: -1.19
FC); and glutamate dehydrogenase 1b (gludib: -1.18 FC).
In the case of grik-I, we identified by in silico studies that
Dr.3211.1.A1 probe set target sequence is complementary
to deep 3’ untranslation region (UTR) of si:ch211-251b21.1
mRNA, which encodes a protein similar to mammalian
glutamate ionotropic receptors, in particular, a kainate-like
receptor [99]. Furthermore, Xu et al. [100] demonstrated
that si:ch211-251b21.1 as a target gene is regulated by
hedgehog signaling during development, and their ex-
pression was confined to the dorsal neurons of the spinal
cord in wild-type zebrafish embryos at 24 hpf. On the
other hand, it is known that morphine causes alterations
of gene expression in distinct subunits of postsynaptic glu-
tamatergic receptors, including kainate receptors [101].
Therefore, we suggest that the alteration of gene expres-
sion of grik-l by exposure to morphine could modify
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neural development of the spinal cord. Concerning
slcla3a gene, it is known that alteration of the expression
of high-affinity glutamate transporters, like this gene, has
been reported in drug dependence and addiction animal
models [102]. In zebrafish, two orthologs for sicla3 were
found [103]. slcla3a was expressed in glia cells of the lar-
val zebrafish brain similar to the expression of mammalian
SLC1A3 (also named GLAST or EAAT1) throughout the
CNS [97,103,104]. SLC1A3 is critical to maintain the
extracellular glutamate concentration in a non-neurotoxic
range [97]. Interestingly, in mammals, it has been reported
that the expression of SLC1A2 mRNA (or GLT1 or
EAAT?2), but not SLC1A3, is decreased in the striatum/
nucleus accumbens and thalamus of morphine-dependent
rats [105]. Therefore, we suggest that zebrafish slcla3a,
whose expression was down-regulated in embryos ex-
posed to morphine, could be the key glutamate trans-
porter in the regulation of the glutamate homeostasis in
this species, and not slcia3b or slcla2. Finally, we also
have observed opposite expression for the two orthologs
glul genes, suggesting that both genes have different func-
tions, such as reported Postlethwait et al. [65]. glulb ex-
pression is diminished in the same way as mice Glul is
suppressed by morphine and by other addictive drugs, as
methamphetamine, cocaine and alcohol [106].

Others genes involved in neuronal function

Within the group of genes up-regulated by exposure to
morphine in zebrafish embryos, we found camklyb, vali-
dated by RT-qPCR and identified as a gene related to
oprml expression. This gene is involved in Ca®* signal
transduction in neuronal development, such as dendrito-
genesis and axonogenesis [107,108]. In particular, CaMKI
contributes strongly to Ca®*-mediated transcription in neu-
rons through crosstalk with the Ras/extracellular-signal-
regulated kinase (Erk) pathway. In cultured hippocampal
neurons or acute slices, NMDA-stimulated activation of
Erk is predominantly mediated through Ca**/calmodulin-
dependent protein kinase kinase (CaMKK)/CaMKI. Fur-
thermore, this pathway appears to be important for
dendritic arborization where activity-dependent NMDAR
activation of the y isoform of CaMKI results in MEK/Erk-
mediated CREB regulated transcription of Wnt-2 and
microRNA132 [108]. Therefore, we hipothetize the
overexpression of camklyb produced by morphine ex-
posure in zebrafish embryos may result in pronounced
acceleration of axon formation, such as reported by
Davare et al. [107].

Another gene down-regulated by exposure to morphine
and identified as a gene related to oprml expression is the
wls, a putative orphan G-protein coupled receptor (GPCR)
that encodes a OPRM1 interacting protein, and is con-
served from worms to human [108]. Juul et al. [10] re-
ported that Wis was also down-regulated by treatment
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with morphine in a mouse model of neonatal stress, which
suggests that it can promote the inhibition of Wnt
secretion. Wis is expressed in various brain regions and
peripheral tissues in mammals and during zebrafish em-
bryogenesis suggesting that WLS may play an essential
role in regulating secretion of multiple Wnts throughout
the body and specifically, it might be critical for neuronal
development and morphogenesis among other functions
[109-112]. In particular, zebrafish wis persists at 24 hpf in
the spinal cord and in different areas of midbrain, hind-
brain, midbrain-hindbrain boundary and ventricular zone.
Using antisense morpholinos to KD wis mRNA translation
in developing zebrafish, Jin et al. [110] suggested that wis
expression was required for brain and ear development
during zebrafish embryogenesis. WLS may possibly serve
as a substrate underlying the alterations in neuronal struc-
ture and synaptic organization characteristic of opioid de-
pendence [113]. Regarding these dependence processes, it
should be emphasized that WLS and OPRM1 have been
co-localized in somata and in dendritic processes in the
murine striatum [113,114], and that proteins that interact
directly with the OPRM1, as WLS, influence their biosyn-
thesis, trafficking and signaling [115], suggesting that these
proteins could regulate these types of mechanisms, in-
cluding signaling and trafficking. Reyes et al. [116]
hypothesized that when morphine binds with OPRM]1,
the morphine-enhanced interaction between OPRM1 and
WLS causes entrapment of WLS at the cell surface, and
WLS is inefficiently internalized. Subsequently, a larger
proportion of OPRM1 and WLS are present at the plasma
membrane enabling more OPRM1 to be available for
activation by morphine. Thus, inhibiting WLS function in
mediating Wnt secretion is related to a significant
inhibition of Wnt secretion in treatment with morphine.
While WLS is inefficiently internalized after mor-
phine treatment, WLS is efficiently internalized in
the presence of [D-Ala, N-MePhe, Gly(ol)]-enkephalin
(DAMGO) [113,116] as it is known that happens with
morphine. In conclusion, wis down-regulate expression by
treatment with morphine suggesting a decrease down-
stream Wnt signaling, affecting neuronal development
(structure and synaptic organization) and ear development
in particular [109,110,112,113]. Furthermore, we hypo-
thesize that the decrease in wis expression could be a
direct response mediated by the OPRM1. Two reasons
suggest this: (i) our demonstration that wis is a gene re-
lated to OPRM1 expression, and (ii) a direct interaction at
the protein level of WLS and OPRM1. Therefore, both
gene expression and protein levels of wils/WLS are regu-
lating actions of morphine through OPRM1.

Conclusions
We present here detailed changes in transcriptome of a
critical period of zebrafish development, at 24 hpf, a key
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stage in the maturation and differentiation of CNS, du-
ring chronic treatment of morphine.

Using microarray technology, we identified different
functional classes of genes and individual candidates
(differentially expressed genes) involved in the mecha-
nisms underlying susceptibility to morphine actions re-
lated to CNS development and, in general, the neural
function. In particular, we identified 1023 genes whose
expression is altered after chronic morphine exposure in
zebrafish embryos and, of these, 254 genes had a FC of
at least 1.3.

We found morphine-induced changes in gene expres-
sion that are specific for the zebrafish and other genes
that are similar to mammals. Several morphine-induced
genes were exclusively detected in zebrafish embryos,
which may be putative targets to analyze, in human
models, the problems of addiction and pain. In addition,
we demonstrated that some of morphine-induced genes
identified in our study might also be related in some
way with the opioid system, in particular, the oprml ex-
pression, which could open new lines for the treatment
of pain and the molecular mechanisms involved in
addiction.

We suggest that some of the genes differentially ex-
pressed after chronic morphine exposure in zebrafish em-
bryos could produce alterations in neuronal development,
in particular, in notochord (in the case of copb2), spinal
cord (grik-I) and other brain regions (wls and dao.1), CNS
patterning processes (sox19b), differentiation and dopa-
minergic neurotransmission (otpb and copb2). Besides a
possible induction of apoptosis and/or autophagy and
alteration of serotonergic signaling pathway by the de-
regulation of bnip4, and activation of processes of axono-
genesis and dendritogenesis (camklyb) could be present
in our experimental model. Finally, the down-regulation
of dao.1 expression by treatment with morphine in zebra-
fish embryos contrary to that obtained with rodents opens
a door hitherto unknown in the use of zebrafish as a
model to study chronic pain and the effect of morphine in
relation to this gene.

In conclusion, morphine in distinct species can affect
common targets and some of these molecular targets
may turn out to be central in understanding pain and
addiction processes.

Methods

Animals

Adult zebrafish (wild-type AB strain) were raised in a
cycle of 14 h light: 10 h dark at 26°C in a multi-tank sys-
tem at our Fish Facilities at the Institute of Neuroscience
of Castile & Leon, University of Salamanca. Embryos
obtained from natural fertilization were selected at
24 hpf using a Discovery V8 stereomicroscope (Carl
Zeiss, Germany), after which fish were raised at 28.5°C
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and maintained in dishes containing sterile E3 medium
(5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl, 0.33 mM
MgSO,) in distilled water. Embryos staged according to
development in hpf according to Kimmel et al. [42].

Ethics statement

All procedures and experimental protocols were carried
out in accordance with the guidelines of the European
Communities Council directive of 24 November 1986 (86/
609/EEC), current Spanish Legislation (RD 1201/2005,
BOE 252/34367-91, 2005), and following the Guide for
the Care and Use of Laboratory animals as adapted and
promulgated by the US National Institute of Health. All
efforts were made to minimize the number of embryos
used and their possible suffering.

All experiments were performed at the Institute of
Neuroscience of University of Salamanca with the ap-
proval of the Animal Care and Ethics Committee of this
Institution.

Microarray study design and drug treatment

Zebrafish embryos were divided into two experimental
groups: control embryos and embryos at 5 hpf (end of
blastula) exposed to 10 nM morphine and collected at
24 hpf, in order to study the chronic effects of the
exposure to drug. Morphine was administered to the
embryos in their water environment, i.e., diluted in E3
embryonic medium. Microarray experiments were per-
formed using six replicates for each condition, which
contained the RNA of approximately one hundred em-
bryos to minimize the influence of potential individual
differences between the animals and technical variation
introduced by tissue preparation. We previously re-
ported that a concentration of 10 nM morphine is the
highest concentration that can be used without a toxic
effect on the embryos, and close to 5% of the morphine
diluted in the E3 medium is detected in the embryo [54].
Morphine was acquired from the Spanish Ministry of
Health.

RNA isolation and microarray hybridization

Total RNA was purified using TRIZOL® (Gibco BRL,
Gaithersburg, MD, USA) following further RNA purifica-
tion using an RNeasy Mini Kit for RNA clean-up (Qiagen
Sicences, Maryland, USA). RNA quantification and quality
was then assessed using Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA), to test the integrity of
the 18S and 28S rRNA bands, and samples with an RNA
integrity number (RIN) > 8.0 were used.

Microarray analysis was performed in the Cancer
Research Center (CIC) of Salamanca according to stan-
dard procedures. Labelling and hybridizations were per-
formed according to protocols from Affymetrix. Briefly,
100-300 ng of total RNA were amplified and labeled
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using the WT Sense Target labelling and control re-
agents kit (Affymetrix Inc., Santa Clara, CA, USA), and
then hybridized to GeneChip® Zebrafish Genome Array
(Affymetrix). Washing and scanning were performed
using GeneChip System of Affymetrix (GeneChip
Hybridization Oven 640, GeneChip Fluidics Station 450
and GeneChip Scanner 7G).

Microarray hybridization data analysis: normalization,
differential gene expression and ontological analysis

The RMA (Robust Multi-array Analysis) algorithm [117]
was used for background correction and normalization of
fluorescent hybridization signals of the microarrays, both
at internal (intra-microarrays) and comparative (inter-
microarrays) levels. This algorithm was selected over
others available (MAS5, (Affymetrix 2001); MBEL a
model-based algorithm) [118] because it was deemed to
provide the best precision in signal detection to achieve
adequate multiple-chip normalization [119], especially in
cases of low-level gene expression [117,120,121] by produ-
cing efficient quantile normalization of the distribution of
probe intensities from each array in the context of a
complete set of arrays. We used Bioconductor and R as
computational tools (www.bioconductor.org), to apply
RMA to the data set of 12 microarray hybridizations in-
cluding six different biological replicas corresponding to
each of the different experimental groups under study
(Control and Morphine).

After quantitation of expression level of each probe set
in all microarrays analyzed, the SAM algorithm [122]
was used to identify probe sets displaying significant dif-
ferential expression when comparing the treat samples
to it controls. This algorithm performs statistical dis-
crimination analysis using permutations to check the
stability of variables fulfilling the ‘alternative hypothesis’.
The method calculates the type I error, or number of ex-
pected false positives, using the calculation of the False
Discovery Rate (FDR) parameter [123]. In this report,
genes with an FDR of 10% or less were considered
significant.

Further processing included functional analysis and over
representation calculations based on Gene Ontology (GO)
Annotation Tool and publication data of Database for
Annotation, Visualization, and Integrated Discovery was
made with GeneSpring GX 7.3 and DAVID Bioinformatics
Resources 6.7 (http://david.abcc.nciferf.gov/) [124].

Data access

The data obtained and discussed in this publication have
been deposited in NCBI's Gene Expression Omnibus
[125] and are accessible through GEO Series accession
number GSE61062 (http://www.ncbinlm.nih.gov/geo/
query/acc.cgi?acc = GSE61062).
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Quantitative reverse transcription real-time PCR (RT-qPCR)
Total RNA (2 pg), primed with oligo-dT, was reverse-
transcribed into cDNA at 37°C for 2 h using the first-strand
c¢DNA synthesis kit (Promega Corporation, Madison, W1,
USA) in a 20 pl volume, and stored at —20°C until used,
according to manufacturer’s instructions. In all cases, a re-
verse transcriptase negative control was used for testing
genomic DNA contamination.

Quantitative real-time PCR (qPCR) were performed
using the SYBR-Green method with a 2x Master Mix
(Applied Biosystems). Each reaction contained 10 pL of
Master Mix, 0.4 pL of each pair of primers, 3 puL of each
c¢DNA sample in a different serial cDNA quantity for
each gene, and MilliQ water up to 20 pl. The amplifica-
tion reaction took place in an ABI Prism 7000 detection
system (Applied Biosystems), with the following con-
ditions: 10 min at 95°C followed by 40 cycles of 15 s at
95°C and 1 min at 60°C depending on each pair of
primers. RT-qPCR experiments were performed in re-
plicates of eight and run in triplicate for each gene pro-
duct examined. The list of used primers is provided in
Additional file 6. Zebrafish -actin was used as house-
keeping gene.

The comparative Ct method was used for presenting
quantitative data [126]. Following the removal of out-
liers, raw fluorescence data were used to determine the
PCR amplification efficiency (E) according to the for-
mula E=[10 CV5P9 _1] = 100. All amplifications had
an E value of 100 + 10% the E value close to 100% being an
indicator of efficient amplification. The relative gene ex-
pression value (FC) for each transcript was calculated ac-
COI'diI'lg to the equation 2 —(ACt “condition 1” — ACt “condition 2"),
where “condition 1” corresponds to experimental samples
(“treatment with morphine”), “condition 2” to samples of
control animals and ACt of each “condition” is Ct “cxperimental
gene” = Ct “endogenous gene” [126]. A standard error for each
relative gene expression value was calculated as a measure
of data variation. Significance from qPCR analysis was de-
termined using a one-way ¢-test for each gene, testing that
|FC| > 1 is significant (p < 0.05).

Mu opioid receptor morpholino microinjection

Antisense MO oligonucleotides used were provided by
Gene Tools (LLC Philomath, OR, USA). MO injection
was performed according to the methodology developed
by Nasevicius and Ekker [127], for which a microinjection
and micromanipulation system designed especially for the
microinjection of zebrafish embryos was used, coupled to
a stereoscope (Stereo Microscope Discovery V8, Zeiss,
Gottingen, Germany) and a high-resolution camera that
allowed videos and photos to be taken. First, the ideal con-
centration of MO was determined. Accordingly, several
concentrations, looking for small lethal effects and ma-
ximum embryonic survival, were microinjected. Thus, the
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highest concentration with minimum mortality was
employed; concentrations of 1 M were used for oprml
(MOR-MO group). Moreover, parameters of pressure and
the appropriate time for microinjecting the volume cal-
culated in each pulse (3 nl of solution) were calibrated.
Zebrafish embryo yolks microinjected with MOR-MO and
the MO controls were used in the single-cell stage of
development. Other embryos, in which no solution was
microinjected, were used as a control group. The microin-
jected and the non-microinjected embryos were main-
tained under the same conditions: 28.5°C and in the E3
medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl,,
0.33 mM MgSO, in ddH,O). To inhibit oprml mRNA
translation we used the following MOR-MO sequence:
AATGTTGCCAGTGTTTTCCATCATG. The efficacy and
specificity of MO employed was demonstrated by Sanchez-
Simon et al. [54].

Additional files

Additional file 1: Table listing the probe-sets of genes expressed
differentially by chronic morphine treatment in zebrafish embryos.
Significance level for each probe-set are presented as d-, p- and g-value.
The expression changes between Morphine vs. Control are showed as R
fold. List of known genes up-, down-, and up-/down-regulated.

Additional file 2: Figure presenting gene ontology analysis of the
zebrafish gene collection. Genes were categorized with the Biological
Process domain. Significantly enriched GO terms have a probability lower
than 0.01 (P value) and include at least three genes. GO terms are shown
if they are significantly enriched in at least one of them. Significantly
enriched GO terms are indicated as black bars whereas non-significantly
enriched terms are displayed as empty bars. Bars represent the number
of genes assigned with the corresponding GO term. For more details, see
also Additional file 3.

Additional file 3: Data file providing the detailed description of
Gene Ontology analysis presented in Figure 2 and Table 1. List of
probe-sets and gene names classified for each GO category.

Additional file 4: Table listing genes differentially expressed by
morphine and included in each functional category presented in
Figure 3 and Table 2. The neuronal function category is emphasized in
two excel sheet tabs (listing genes and Gene Ontology analysis of genes
with neuronal function).

Additional file 5: Table listing genes differentially expressed by
morphine validation by our in silico analysis.

Additional file 6: Table listing the primers used for RT-qPCR.

Abbreviations

CNS: Central nervous system; CPP: Conditioned place preference;

Ct: Threshold cycle; FC: Fold change; hpf: Hours post-fertilization;

IEG: Immediate early genes; KD: Knocked down; OPRM1: Opioid receptor,
mu 1; RT-gPCR: Quantitative reverse transcription real-time PCR;

SAM: Significance analysis of microarrays; UTR: Untranslated region.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MJHT and RER designed the experiments, discussed the results and wrote
the manuscript. RLB prepared the morphine treated experimental groups.
MJHT and IRM performed RT-gqPCR experiments. MJHT analyzed the data and
performed statistical analyses. All authors commented on and revised the
manuscript. All authors read and approved the final manuscript.

Page 20 of 23

Acknowledgements

This work was supported by the Spanish Ministry of Education and Science
(Grant SAF2010-18597) and the Regional Government of Castilla y Ledn
(Grant B1039/5A25/10).

Author details

'Instituto de Neurociencias de Castilla y Ledn, University of Salamanca,
Salamanca 37007, Spain. “Department of Basic Biomedical Sciences,
European University of Madrid, Madrid 28670, Spain. *Department of
Biochemistry and Molecular Biology, University of Salamanca, Salamanca
37007, Spain. “Instituto de Investigacion Biomédica de Salamanca (IBSAL),
Hospital Universitario de Salamanca - Edificio Virgen de la Vega, Salamanca
37007, Spain. *Instituto de Neurociencias de Castilla y Leén, Department of
Biochemistry and Molecular Biology, University of Salamanca, C/ Pintor
Fernando Gallego 1, Salamanca 37007, Spain.

Received: 25 April 2014 Accepted: 24 September 2014
Published: 8 October 2014

References

1. Rodriguez RE: Morphine and microRNA Activity: is there a relation with
addiction? Front Genet 2012, 3:223.

2. Stein C: Opioids, sensory systems and chronic pain. Eur J Pharmacol 2013,
716(1-3):179-187.

3. Volkow ND, Li TK: Drug addiction: the neurobiology of behaviour gone
awry. Nat Rev Neurosci 2004, 5(12):963-970.

4. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW:
Review. Neural mechanisms underlying the vulnerability to develop
compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B
Biol Sci 2008, 363(1507):3125-3135.

5. Przewlocki R: Opioid abuse and brain gene expression. Eur J Pharmacol
2004, 500(1-3):331-349.

6. Loguinov AV, Anderson LM, Crosby GJ, Yukhananov RY: Gene expression
following acute morphine administration. Physiol Genomics 2001,
6(3):169-181.

7. Ammon-Treiber S, Hollt V: Morphine-induced changes of gene expression
in the brain. Addict Biol 2005, 10(1):81-89.

8. Anghel A, Jamieson CA, Ren X, Young J, Porche R, Ozigbo E, Ghods DE,
Lee ML, Liu Y, Lutfy K, Friedman TC: Gene expression profiling following
short-term and long-term morphine exposure in mice uncovers genes
involved in food intake. Neuroscience 2010, 167(2):554-566.

9. Grice DE, Reenila |, Mannisto PT, Brooks Al, Smith GG, Golden GT, Buxbaum
D, Berrettini WH: Transcriptional profiling of C57 and DBA strains of mice
in the absence and presence of morphine. BMC Genomics 2007, 8:76.

10. Juul SE, Beyer RP, Bammler TK, Farin FM, Gleason CA: Effects of neonatal
stress and morphine on murine hippocampal gene expression. Pediatr
Res 2011, 69(4):285-292.

11, Korostynski M, Kaminska-Chowaniec D, Piechota M, Przewlocki R: Gene
expression profiling in the striatum of inbred mouse strains with distinct
opioid-related phenotypes. BMC Genomics 2006, 7:146.

12. Korostynski M, Piechota M, Kaminska D, Solecki W, Przewlocki R: Morphine
effects on striatal transcriptome in mice. Genome Biol 2007, 8(6):R128.

13. McClung CA, Nestler EJ, Zachariou V: Regulation of gene expression by
chronic morphine and morphine withdrawal in the locus ceruleus and
ventral tegmental area. J Neurosci 2005, 25(25):6005-6015.

14.  Piechota M, Korostynski M, Solecki W, Gieryk A, Slezak M, Bilecki W,
Ziolkowska B, Kostrzewa E, Cymerman |, Swiech L, Jaworski J, Przewlocki R:
The dissection of transcriptional modules regulated by various drugs of
abuse in the mouse striatum. Genome Biol 2010, 11(5):R48.

15. Rhodes JS, Crabbe JC: Gene expression induced by drugs of abuse.

Curr Opin Pharmacol 2005, 5(1):26-33.

16.  Rodriguez Parkitna JM, Bilecki W, Mierzejewski P, Stefanski R, Ligeza A,
Bargiela A, Ziolkowska B, Kostowski W, Przewlocki R: Effects of morphine
on gene expression in the rat amygdala. J Neurochem 2004, 91(1):38-48.

17. Tapocik JD, Luu TV, Mayo CL, Wang BD, Doyle E, Lee AD, Lee NH, Elmer GI:
Neuroplasticity, axonal guidance and micro-RNA genes are associated
with morphine self-administration behavior. Addict Biol 2013,
18(3):480-495.

18. Tapocik JD, Letwin N, Mayo CL, Frank B, Luu T, Achinike O, House C,
Williams R, Elmer G, Lee NH: Identification of candidate genes and gene


http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S1.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S3.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S4.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S5.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-874-S6.pdf

Herrero-Turrién et al. BIC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

networks specifically associated with analgesic tolerance to morphine.

J Neurosci 2009, 29(16):5295-5307.

Ziolkowska B, Korostynski M, Piechota M, Kubik J, Przewlocki R: Effects of
morphine on immediate-early gene expression in the striatum of C57BL/
6 J and DBA/2 J mice. Pharmacol Rep 2012, 64(5):1091-1104.

Hassan HE, Myers AL, Lee IJ, Chen H, Coop A, Eddington ND: Regulation of
gene expression in brain tissues of rats repeatedly treated by the highly
abused opioid agonist, oxycodone: microarray profiling and gene
mapping analysis. Drug Metab Dispos 2010, 38(1):157-167.

Yuferov V, Nielsen D, Butelman E, Kreek MJ: Microarray studies of
psychostimulant-induced changes in gene expression. Addict Biol 2005,
10(1):101-118.

Albertson DN, Schmidt CJ, Kapatos G, Bannon MJ: Distinctive profiles

of gene expression in the human nucleus accumbens associated with
cocaine and heroin abuse. Neuropsychopharmacology 2006,
31(10):2304-2312.

Lehrmann E, Colantuoni C, Deep-Soboslay A, Becker KG, Lowe R, Huestis
MA, Hyde TM, Kleinman JE, Freed WJ: Transcriptional changes common to
human cocaine, cannabis and phencyclidine abuse. PLoS One 2006,
1:el14.

Piechota M, Korostynski M, Sikora M, Golda S, Dzbek J, Przewlocki R:
Common transcriptional effects in the mouse striatum following chronic
treatment with heroin and methamphetamine. Genes Brain Behav 2012,
11(4):404-414.

Korostynski M, Piechota M, Dzbek J, Mlynarski W, Szklarczyk K, Ziolkowska B,
Przewlocki R: Novel drug-regulated transcriptional networks in brain
reveal pharmacological properties of psychotropic drugs. BMC Genomics
2013, 14(1):606.

Kily LJ, Cowe YC, Hussain O, Patel S, McElwaine S, Cotter FE, Brennan CH:
Gene expression changes in a zebrafish model of drug dependency
suggest conservation of neuro-adaptation pathways. J Exp Biol 2008,
211(Pt 10):1623-1634.

Webb KJ, Norton WH, Trumbach D, Meijer AH, Ninkovic J, Topp S, Heck D,
Marr C, Wurst W, Theis FJ, Spaink HP, Bally-Cuif L: Zebrafish reward
mutants reveal novel transcripts mediating the behavioral effects of
amphetamine. Genome Biol 2009, 10(7):R81.

Pan Y, Kaiguo M, Razak Z, Westwood JT, Gerlai R: Chronic alcohol exposure
induced gene expression changes in the zebrafish brain. Behav Brain Res
2011, 216(1):66-76.

Tzschentke TM: Measuring reward with the conditioned place preference
(CPP) paradigm: update of the last decade. Addict Biol 2007,
12(3-4):227-462.

Lau B, Bretaud S, Huang Y, Lin E, Guo S: Dissociation of food and opiate
preference by a genetic mutation in zebrafish. Genes Brain Behav 2006,
5(7):497-505.

Ninkovic J, Bally-Cuif L: The zebrafish as a model system for assessing the
reinforcing properties of drugs of abuse. Methods 2006, 39(3):262-274.
Bretaud S, Li Q, Lockwood BL, Kobayashi K, Lin E, Guo S: A choice behavior
for morphine reveals experience-dependent drug preference and
underlying neural substrates in developing larval zebrafish. Neuroscience
2007, 146(3):1109-1116.

Santoriello C, Zon LI: Hooked! Modeling human disease in zebrafish.

J Clin Invest 2012, 122(7):2337-2343.

Lohi O, Parikka M, Ramet M: The zebrafish as a model for paediatric
diseases. Acta Paediatr 2013, 102(2):104-110.

Kari G, Rodeck U, Dicker AP: Zebrafish: an emerging model system for
human disease and drug discovery. Clin Pharmacol Ther 2007, 82(1):70-80.
Chakraborty C, Hsu CH, Wen ZH, Lin CS, Agoramoorthy G: Zebrafish: a
complete animal model for in vivo drug discovery and development.
Curr Drug Metab 2009, 10(2):116-124.

Guo S: Using zebrafish to assess the impact of drugs on neural
development and function. Expert Opin Drug Discov 2009, 4(7):715-726.
Cachat J, Canavello P, Elegante M, Bartels B, Hart P, Bergner C, Egan R,
Duncan A, Tien D, Chung A, Wong K, Goodspeed J, Tan J, Grimes C,
Elkhayat S, Suciu C, Rosenberg M, Chung KM, Kadri F, Roy S, Gaikwad S,
Stewart A, Zapolsky |, Gilder T, Mohnot S, Beeson E, Amri H, Zukowska Z,
Soignier RD, Kalueff AV: Modeling withdrawal syndrome in zebrafish.
Behav Brain Res 2010, 208(2):371-376.

Stewart A, Wong K, Cachat J, Gaikwad S, Kyzar E, Wu N, Hart P, Piet V,
Utterback E, Elegante M, Tien D, Kalueff AV: Zebrafish models to study
drug abuse-related phenotypes. Rev Neurosci 2011, 22(1):95-105.

40.

41.

42.

43.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Page 21 of 23

Nasiraei-Moghadam S, Sahraei H, Bahadoran H, Sadooghi M, Salimi SH, Kaka
GR, Imani H, Mahdavi-Nasab H, Dashtnavard H: Effects of maternal oral
morphine consumption on neural tube development in Wistar rats. Brain
Res Dev Brain Res 2005, 159(1):12-17.

Nasiraei-Moghadam S, Kazeminezhad B, Dargahi L, Ahmadiani A: Maternal
oral consumption of morphine increases Bax/Bcl-2 ratio and caspase 3
activity during early neural system development in rat embryos. J Mol
Neurosci 2010, 41(1):156-164.

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of
embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
Wilson SW, Brand M, Eisen JS: Patterning the zebrafish central nervous
system. Results Probl Cell Differ 2002, 40:181-215.

Gonzalez-Nunez V, Rodriguez RE: The zebrafish: a model to study the
endogenous mechanisms of pain. ILAR J 2009, 50(4):373-386.
Herrero-Turrion MJ, Sdnchez-Simoén FM, Rodriguez RE: Opioids and Opioid
Receptors in Fishes. In Encyclopedia of Fish Physiology from Genome to
Environment. 2011th edition. Edited by Farrell AP. Academic Press; 2011:89-97.
de Velasco EM, Law PY, Rodriguez RE: Mu opioid receptor from the
zebrafish exhibits functional characteristics as those of mammalian mu
opioid receptor. Zebrafish 2009, 6(3):259-268.

Le Merrer J, Becker JA, Befort K, Kieffer BL: Reward processing by the
opioid system in the brain. Physiol Rev 2009, 89(4):1379-1412.

Charbogne P, Kieffer BL, Befort K: 15 years of genetic approaches

in vivo for addiction research: Opioid receptor and peptide gene
knockout in mouse models of drug abuse. Neuropharmacology 2014,
76:204-217.

Sanchez-Simon FM, Rodriguez RE: Developmental expression and distribution
of opioid receptors in zebrafish. Neuroscience 2008, 151(1):129-137.

Andersen CL, Jensen JL, Orntoft TF: Normalization of real-time quantitative
reverse transcription-PCR data: a model-based variance estimation
approach to identify genes suited for normalization, applied to bladder
and colon cancer data sets. Cancer Res 2004, 64(15):5245-5250.

Yoshikawa M, Andoh H, Ito K, Suzuki T, Kawaguchi M, Kobayashi H, Oka T,
Hashimoto A: Acute treatment with morphine augments the expression
of serine racemase and D-amino acid oxidase mRNAs in rat brain. Fur J
Pharmacol 2005, 525(1-3):94-97.

Yoshikawa M, Shinomiya T, Takayasu N, Tsukamoto H, Kawaguchi M,
Kobayashi H, Oka T, Hashimoto A: Long-term treatment with morphine
increases the D-serine content in the rat brain by regulating the mRNA
and protein expressions of serine racemase and D-amino acid oxidase.
J Pharmacol Sci 2008, 107(3):270-276.

Morey JS, Ryan JC, Van Dolah FM: Microarray validation: factors influencing
correlation between oligonucleotide microarrays and real-time PCR. Bio/
Proced. 2006, 8:175-193.

Sanchez-Simon FM, Zhang XX, Loh HH, Law PY, Rodriguez RE: Morphine
regulates dopaminergic neuron differentiation via miR-133b. Mol
Pharmacol 2010, 78(5):935-942.

Lopez-Bellido R, Barreto-Valer K, Rodriguez RE: Substance P mRNA expression
during zebrafish development: influence of mu opioid receptor and
cocaine. Neuroscience 2013, 242:53-68.

Lopez-Bellido R, Barreto-Valer K, Sanchez-Simon FM, Rodriguez RE: Cocaine
modulates the expression of opioid receptors and miR-let-7d in zebrafish
embryos. PLoS One 2012, 7(11):e50885.

Befort K, Filliol D, Darcq E, Ghate A, Matifas A, Lardenois A, Muller J, Thibault
C, Dembele D, Poch O, Kieffer BL: Gene expression is altered in the lateral
hypothalamus upon activation of the mu opioid receptor. Ann N Y Acad
Sci 2008, 1129:175-184.

Befort K, Filliol D, Ghate A, Darcq E, Matifas A, Muller J, Lardenois A, Thibault
C, Dembele D, Le Merrer J, Becker JA, Poch O, Kieffer BL: Mu-opioid
receptor activation induces transcriptional plasticity in the central
extended amygdala. Eur J Neurosci 2008, 27(11):2973-2984.

Downing C, Flink S, Florez-McClure ML, Johnson TE, Tabakoff B, Kechris KJ:
Gene expression changes in C57BL/6 J and DBA/2 J mice following
prenatal alcohol exposure. Alcohol Clin Exp Res 2012, 36(9):1519-1529.
Jones HE, Heil SH, Baewert A, Arria AM, Kaltenbach K, Martin PR, Coyle MG,
Selby P, Stine SM, Fischer G: Buprenorphine treatment of opioid-
dependent pregnant women: a comprehensive review. Addiction 2012,
107(Suppl 1):5-27.

Saurer TB, ljames SG, Carrigan KA, Lysle DT: Neuroimmune mechanisms of
opioid-mediated conditioned immunomodulation. Brain Behav Immun
2008, 22(1):89-97.



Herrero-Turrién et al. BIC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

Hays SL, McPherson RJ, Juul SE, Wallace G, Schindler AG, Chavkin C, Gleason
CA: Long-term effects of neonatal stress on adult conditioned place
preference (CPP) and hippocampal neurogenesis. Behav Brain Res 2012,
227(1):7-11.

Barreto-Valer K, Lopez-Bellido R, Rodriguez RE: Cocaine modulates the
expression of transcription factors related to the dopaminergic system
in zebrafish. Neuroscience 2013, 231:258-271.

Perez-Cadahia B, Drobic B, Davie JR: Activation and function of immediate-
early genes in the nervous system. Biochem Cell Biol 2011, 89(1):61-73.
Postlethwait JH: The zebrafish genome in context: ohnologs gone
missing. J Exp Zool B Mol Dev Evol 2007, 308(5):563-577.

Orsini C, Bonito-Oliva A, Conversi D, Cabib S: Susceptibility to conditioned
place preference induced by addictive drugs in mice of the C57BL/6 and
DBA/2 inbred strains. Psychopharmacology (Berl) 2005, 181(2):327-336.
Girard F, Cremazy F, Berta P, Renucci A: Expression pattern of the Sox31 gene
during zebrafish embryonic development. Mech Dev 2001, 100(1):71-73.

Hu SN, Yu H, Zhang YB, Wu ZL, Yan YC, Li YX, Li YY, Li YP: Splice blocking
of zygotic sox31 leads to developmental arrest shortly after Mid-Blastula
Transition and induces apoptosis in zebrafish. FEBS Lett 2012,
586(3):222-228.

Hu'S, Wu Z, Yan Y, Li Y: Sox31 is involved in central nervous system
anteroposterior regionalization through regulating the organizer activity
in zebrafish. Acta Biochim Biophys Sin (Shanghai) 2011, 43(5):387-399.
Frederick AL, Stanwood GD: Drugs, biogenic amine targets and the
developing brain. Dev Neurosci 2009, 31(1-2):7-22.

Gianoulakis C: Endogenous opioids and addiction to alcohol and other
drugs of abuse. Curr Top Med Chem 2009, 9(11):999-1015.

Rico EP, Rosemberg DB, Seibt KJ, Capiotti KM, Da Silva RS, Bonan CD:
Zebrafish neurotransmitter systems as potential pharmacological and
toxicological targets. Neurotoxicol Teratol 2011, 33(6):608-617.

Klee EW, Schneider H, Clark KJ, Cousin MA, Ebbert JO, Hooten WM, Karpyak
VM, Warner DO, Ekker SC: Zebrafish: a model for the study of addiction
genetics. Hum Genet 2012, 131(6):977-1008.

Schweitzer J, Driever W: Development of the dopamine systems in
zebrafish. Adv Exp Med Biol 2009, 651:1-14.

Tay TL, Ronneberger O, Ryu S, Nitschke R, Driever W: Comprehensive
catecholaminergic projectome analysis reveals single-neuron integration
of zebrafish ascending and descending dopaminergic systems. Nat
Commun 2011, 2:171.

Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M,
Sallinen V: The comparative neuroanatomy and neurochemistry of
zebrafish CNS systems of relevance to human neuropsychiatric diseases.
Neurobiol Dis 2010, 40(1):46-57.

Kastenhuber E, Kratochwil CF, Ryu S, Schweitzer J, Driever W: Genetic
dissection of dopaminergic and noradrenergic contributions to
catecholaminergic tracts in early larval zebrafish. J/ Comp Neurol 2010,
518(4):439-458.

Del Giacco L, Sordino P, Pistocchi A, Andreakis N, Tarallo R, Di Benedetto B,
Cotelli F: Differential regulation of the zebrafish orthopedia 1 gene
during fate determination of diencephalic neurons. BMC Dev Biol 2006,
6:50.

Ryu S, Mahler J, Acampora D, Holzschuh J, Erhardt S, Omodei D,

Simeone A, Driever W: Orthopedia homeodomain protein is essential

for diencephalic dopaminergic neuron development. Curr Biol 2007,
17(10):873-880.

Wolf A, Ryu S: Specification of posterior hypothalamic neurons requires
coordinated activities of Fezf2, Otp, Sim1a and Foxb1.2. Development
2013, 140(8):1762-1773.

Eaton JL, Holmquist B, Glasgow E: Ontogeny of vasotocin-expressing cells
in zebrafish: selective requirement for the transcriptional regulators
orthopedia and single-minded 1 in the preoptic area. Dev Dyn 2008,
237(4):995-1005.

Eaton JL, Glasgow E: Zebrafish orthopedia (otp) is required for isotocin
cell development. Dev Genes Evol 2007, 217(2):149-158.

Fernandes AM, Beddows E, Filippi A, Driever W: Orthopedia transcription
factor otpa and otpb paralogous genes function during dopaminergic
and neuroendocrine cell specification in larval zebrafish. PLoS One 2013,
8(9):75002.

Li D, Roberts R: WD-repeat proteins: structure characteristics, biological
function, and their involvement in human diseases. Cell Mol Life Sci 2001,
58(14):2085-2097.

85.

86.

87.

88.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

o

102.

103.

105.

Page 22 of 23

Zhang X, Wang W, Bedigian AV, Coughlin ML, Mitchison TJ, Eggert US:
Dopamine receptor D3 regulates endocytic sorting by a Prazosin-sensitive
interaction with the coatomer COPI. Proc Natl Acad Sci U S A 2012,
109(31):12485-12490.

Feng X, Liu X, Zhang W, Xiao W: p53 directly suppresses BNIP3
expression to protect against hypoxia-induced cell death. EMBO J 2011,
30(16):3397-3415.

Cho B, Choi SY, Park OH, Sun W, Geum D: Differential expression of BNIP
family members of BH3-only proteins during the development and after
axotomy in the rat. Mol Cells 2012, 33(6):605-610.

Tohda M, Hayashi H, Sukma M, Tanaka K: BNIP-3: a novel candidate for an
intrinsic depression-related factor found in NG108-15 cells treated with
Hochu-ekki-to, a traditional oriental medicine, or typical antidepressants.
Neurosci Res 2008, 62(1):1-8.

Tohda M, Mingmalairak S, Murakami Y, Matsumoto K: Enhanced expression
of BCL2/adenovirus EIB 19-kDa-interacting protein 3 mRNA, a candidate
for intrinsic depression-related factor, and effects of imipramine in the
frontal cortex of stressed mice. Biol Pharm Bull 2010, 33(1):53-57.
Lopez-Gimenez JF, Vilaro MT, Milligan G: Morphine desensitization,
internalization, and down-regulation of the mu opioid receptor is
facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation.
Mol Pharmacol 2008, 74(5):1278-1291.

Kalivas PW: The glutamate homeostasis hypothesis of addiction. Nat Rev
Neurosci 2009, 10(8):561-572.

Spijker S, Houtzager SW, De Gunst MC, De Boer WP, Schoffelmeer AN, Smit
AB: Morphine exposure and abstinence define specific stages of gene
expression in the rat nucleus accumbens. FASEB J 2004, 18(7):848-850.
Shleper M, Kartvelishvily E, Wolosker H: D-serine is the dominant
endogenous coagonist for NMDA receptor neurotoxicity in organotypic
hippocampal slices. J Neurosci 2005, 25(41):9413-9417.

Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G: Physiological functions
of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 2007,
64(11):1373-1394.

Wang YX, Gong N, Xin YF, Hao B, Zhou XJ, Pang CC: Biological implications
of oxidation and unidirectional chiral inversion of D-amino acids. Curr
Drug Metab 2012, 13(3):321-331.

Gong N, Li XY, Xiao Q, Wang YX: Identification of a Novel Spinal Dorsal
Horn Astroglial D-Amino Acid Oxidase-Hydrogen Peroxide Pathway
Involved in Morphine Antinociceptive Tolerance. Anesthesiology 2014,
120(4):962-975.

Zhao W, Gao ZY, Wei H, Nie HZ, Zhao Q, Zhou XJ, Wang YX: Spinal D-amino
acid oxidase contributes to neuropathic pain in rats. J Pharmacol Exp Ther
2010, 332(1):248-254.

Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner
M, Hediger MA: The SLC1 high-affinity glutamate and neutral amino acid
transporter family. Mol Aspects Med 2013, 34(2-3):108-120.

Sacchi S: D-Serine metabolism: new insights into the modulation of
D-amino acid oxidase activity. Biochem Soc Trans 2013, 41(6):1551-1556.
Xu J, Srinivas BP, Tay SY, Mak A, Yu X, Lee SG, Yang H, Govindarajan KR,
Leong B, Bourque G, Mathavan S, Roy S: Genomewide expression
profiling in the zebrafish embryo identifies target genes regulated by
Hedgehog signaling during vertebrate development. Genetics 2006,
174(2):735-752.

. Jacobs EH, Wardeh G, Smit AB, Schoffelmeer AN: Morphine causes a

delayed increase in glutamate receptor functioning in the nucleus
accumbens core. Eur J Pharmacol 2005, 511(1):27-30.

Nakagawa T, Satoh M: Involvement of glial glutamate transporters in
morphine dependence. Ann N Y Acad Sci 2004, 1025:383-388.
Gesemann M, Lesslauer A, Maurer CM, Schonthaler HB, Neuhauss SC:
Phylogenetic analysis of the vertebrate excitatory/neutral amino acid
transporter (SLC1/EAAT) family reveals lineage specific subfamilies.
BMC Evol Biol 2010, 10:117.

. Nakagawa T, Kaneko S: SLCT glutamate transporters and diseases:

psychiatric diseases and pathological pain. Curr Mol Pharmacol 2013,
6(2):66-73.

Ozawa T, Nakagawa T, Shige K, Minami M, Satoh M: Changes in the
expression of glial glutamate transporters in the rat brain accompanied
with morphine dependence and naloxone-precipitated withdrawal.
Brain Res 2001, 905(1-2):254-258.

. Wang J, Yuan W, Li MD: Genes and pathways co-associated with the

exposure to multiple drugs of abuse, including alcohol, amphetamine/



Herrero-Turrién et al. BIC Genomics 2014, 15:874
http://www.biomedcentral.com/1471-2164/15/874

107.

113.

119.

120.

N

122.

123.

124.

methamphetamine, cocaine, marijuana, morphine, and/or nicotine:

a review of proteomics analyses. Mol Neurobiol 2011, 44(3):269-286.
Davare MA, Fortin DA, Saneyoshi T, Nygaard S, Kaech S, Banker G, Soderling
TR, Wayman GA: Transient receptor potential canonical 5 channels
activate Ca2+/calmodulin kinase lgamma to promote axon formation in
hippocampal neurons. J Neurosci 2009, 29(31):9794-9808.

. Wayman GA, Lee YS, Tokumitsu H, Silva AJ, Soderling TR: Calmodulin-kinases:

modulators of neuronal development and plasticity. Neuron 2008,
59(6)914-931.

. Das S, Yu S, Sakamori R, Stypulkowski E, Gao N: Wntless in Wnt secretion:

molecular, cellular and genetic aspects. Front Biol (Bejjing) 2012, 7(6):587-593.

. Jin J, Morse M, Frey C, Petko J, Levenson R: Expression of GPR177

(Wntless/Evi/Sprinter), a highly conserved Wnt-transport protein, in rat
tissues, zebrafish embryos, and cultured human cells. Dev Dyn 2010,
239(9):2426-2434.

. Wang LT, Wang SJ, Hsu SH: Functional characterization of mammalian

Wntless homolog in mammalian system. Kaohsiung J Med Sci 2012,
28(7):355-361.

. Zhu X, Zhu H, Zhang L, Huang S, Cao J, Ma G, Feng G, He L, Yang Y, Guo X:

Wis-mediated Wnts differentially regulate distal limb patterning and
tissue morphogenesis. Dev Biol 2012, 365(2):328-338.

Jin J, Kittanakom S, Wong V, Reyes BA, Van Bockstaele EJ, Stagljar |,
Berrettini W, Levenson R: Interaction of the mu-opioid receptor with
GPR177 (Wntless) inhibits Wnt secretion: potential implications for
opioid dependence. BMC Neurosci 2010, 11:33.

. Reyes AR, Levenson R, Berrettini W, Van Bockstaele EJ: Ultrastructural

relationship between the mu opioid receptor and its interacting protein,
GPR177, in striatal neurons. Brain Res 2010, 1358:71-80.

. Milligan G: Opioid receptors and their interacting proteins.

Neuromolecular Med 2005, 7(1-2):51-59.

. Reyes BA, Vakharia K, Ferraro TN, Levenson R, Berrettini WH, Van Bockstaele

EJ: Opiate agonist-induced re-distribution of Wntless, a mu-opioid
receptor interacting protein, in rat striatal neurons. Exp Neurol 2012,
233(1):205-213.

. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,

Speed TP: Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.

. Li C, Wong WH: Model-based analysis of oligonucleotide arrays:

expression index computation and outlier detection. Proc Natl Acad Sci
US A 2001, 98(1):31-36.

Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of
normalization methods for high density oligonucleotide array data
based on variance and bias. Bioinformatics 2003, 19(2):185-193.

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries

of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003, 31(4):e15.
. Barash Y, Dehan E, Krupsky M, Franklin W, Geraci M, Friedman N, Kaminski

N: Comparative analysis of algorithms for signal quantitation from
oligonucleotide microarrays. Bioinformatics 2004, 20(6):839-846.
Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001,
98(9):5116-5121.

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I: Controlling the false
discovery rate in behavior genetics research. Behav Brain Res 2001,
125(1-2):279-284.

da Huang W, Sherman BT, Lempicki RA: Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources.
Nat Protoc 2000, 4(1):44-57.

Page 23 of 23

125. Edgar R, Domrachev M, Lash AE: Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 2002,
30:207-210.

126. Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the comparative
C(T) method. Nat Protoc 2008, 3(6):1101-1108.

127. Nasevicius A, Ekker SC: Effective targeted gene 'knockdown’ in zebrafish.
Nat Genet 2000, 26(2):216-220.

doi:10.1186/1471-2164-15-874

Cite this article as: Herrero-Turrién et al: Whole-genome expression
profile in zebrafish embryos after chronic exposure to morphine:
identification of new genes associated with neuronal function and mu
opioid receptor expression. BMC Genomics 2014 15:874.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Microarrays analysis
	Gene ontology analysis
	Validation of microarray data by quantitative reverse transcription real-time PCR (RT-qPCR)
	The role of oprm1 gene in morphine-induced regulation of differentially expressed genes in zebrafish embryos

	Discussion
	Immediate early genes and other genes related to transcription
	Genes involved in monoaminergic neuromodulation
	Genes involved in glutamatergic neurotransmission
	Others genes involved in neuronal function

	Conclusions
	Methods
	Animals
	Ethics statement
	Microarray study design and drug treatment
	RNA isolation and microarray hybridization
	Microarray hybridization data analysis: normalization, differential gene expression and ontological analysis
	Data access
	Quantitative reverse transcription real-time PCR (RT-qPCR)
	Mu opioid receptor morpholino microinjection

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

