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Abstract

Background: Accurate analysis of whole-gene expression and individual-exon expression is essential to characterize
different transcript isoforms and identify alternative splicing events in human genes. One of the omic technologies
widely used in many studies on human samples are the exon-specific expression microarray platforms.

Results: Since there are not many validated comparative analyses to identify specific splicing events using data
derived from these types of platforms, we have developed an algorithm (called ESLiM) to detect significant changes
in exon use, and applied it to a reference dataset of 270 human genes that show alternative expression in different
tissues. We compared the results with three other methodological approaches and provided the R source code to
be applied elsewhere. The genes positively detected by these analyses also provide a verified subset of human
genes that present tissue-regulated isoforms. Furthermore, we performed a validation analysis on human patient
samples comparing two different subtypes of acute myeloid leukemia (AML) and we experimentally validated the
splicing in several selected genes that showed exons with highly significant signal change.

Conclusions: The comparative analyses with other methods using a fair set of human genes that show alternative
splicing and the validation on clinical samples demonstrate that the proposed novel algorithm is a reliable tool for
detecting differential splicing in exon-level expression data.

Keywords: Alternative splicing, Splicing index, Human genomics, Exons, Transcripts, Gene expression, Differential
expression, Bioinformatics, R algorithm, Acute myeloid leukemia
Background
The human transcriptome presents a high degree of com-
plexity that most recent research on cell transcriptomics
is trying to unravel [1]. Individual human genes often pro-
duce multiple mRNAs and protein isoforms through alter-
native processing of their pre-mRNA. This process of
RNA “alternative splicing” increases the size and diversity
of the proteome by generating different gene products per
locus. The isoforms produced by alternative splicing may
have related or quite distinct functions [2]. In last decade
the splicing process has begun to be better understood,
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revealing a highly controlled regulation [3] and the in-
volvement of a complex molecular machinery [4]. More-
over, this process has not only been associated with
normal biological states, but also with pathological states
and diseases such as cancer [5,6]. Despite the progress on
our knowledge of splicing events, there is not yet a de-
tailed identification and mapping of all the alternative ex-
pression products derived from each human gene locus in
different cell types. Recent advances in genomic and tran-
scriptomic technologies have generated large datasets cor-
responding to expression studies on human genes in
different contexts, including signal information at exon
level. Analysis of this type of data with accurate measure-
ment of whole-gene expression and individual-exon ex-
pression is essential in order to identify alternative splicing
events. One of the most frequently applied technologies
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aimed at this type of studies are the exon-specific expres-
sion microarray platforms [7], widely used for example in
the ENCODE project (http://genome.ucsc.edu/encode/).
Here, we present a new computational data analysis

strategy to achieve a robust calculation of gene and exon
expression using such exon-specific platforms and we ap-
plied it to detect splicing in a collection of human tissues.
The approach is validated with a previously published ref-
erence set of 270 human genes that undergo splicing [8],
and we compared the results with three other methods
also designed to analyze genome-wide exon expression
data. The indicated reference set of genes used for valid-
ation stems from a study of human tissue transcriptomes
obtained by deep-sequencing (NGS) of complementary
DNA fragments, which provides an inventory of human
genes and mRNA isoforms expression [8]. Our approach
validated many of the human genes found to undergo al-
ternative splicing in different tissues in this reference set.
Finally, in addition to the study on human tissues, we also
applied our novel splicing analysis approach to an inde-
pendent dataset of human samples from patients with pri-
mary acute myeloid leukemia (AML). This analysis allowed
the identification of alternatively spliced isoforms that were
related with high confidence to two distinct AML sub-
groups, and for a selected set of genes findings were con-
firmed experimentally by conventional RT-PCR.

Methods
Human tissues expression datasets and human splicing
reference genes
A dataset of 33 exon microarrays (model GeneChip Hu-
man Exon 1.0 ST, Affymetrix, Inc.) containing 3 replicas of
11 different healthy human tissues was obtained from
www.affymetrix.com. This dataset was used to compare
the performance in the detection of alternative splicing of
the new algorithm proposed here with three other algo-
rithms previously published, using in all cases a reference
set of 270 human genes known to undergo splicing (ob-
tained from [8]). The comparison of the tissues present in
Figure 1 Repertoire of human genes that undergo splicing in differen
pair-wise comparisons between 6 human tissues: breast, cerebellum, hea
alternative splicing between these tissues, giving a compendium of 282 t
alternative splicing detection methods.
the exon array dataset and in the splicing dataset of Wang
et al. [8], returned 6 tissues (breast, cerebellum, heart, liver,
muscle and testes) which were analyzed together since they
present both exon expression data (from the arrays) and
splicing data (from the sequencing). The combination of
these 6 tissues, in pairwise comparisons, provides 15 different
tissue-pairs. The number of genes reported by Wang et al.
[8] that are alternatively spliced and were found in those
pairwise tissue contrasts was 282 (that correspond to 270
distinct human genes) as indicated in Figure 1. The complete
list of these genes is provided in Additional file 1: Table S1.

Method design and implementation
The method presented in this work, called ESLiM (Exon
Splicing by Linear Modeling Analysis), has been imple-
mented in R (http://cran.r-project.org/). The method uses
the algorithm RMA (from R library affy) [9,10] for the cal-
culation of the expression signal at probe level for each
exon and gene loci; and the algorithm LIMMA (from
R library limma) for the differential expression ana-
lyses [11]. The complete method, as an R package, to-
gether with the mapping CDF files are provided as
supporting data files: (Supporting data 1) ESLiMc R pack-
age: ESLiM_1.0.tar.gz; (Supporting data 2) Example of Use
for ESLiMc R package: ESLIM_Install_and_Use.R;
(Supporting data 3) ExonMapper CDF R package:
exonmapperhumanexon1.0cdf_3.0.tar; (Supporting data 4)
ESLiMc GeneMapper CDF: eslimcgenemapperhumanex-
on1.0cdf_3.0.tar.gz. The exon annotation package (exons.
human.Annotation.RData) and the complete raw dataset
of 33 exon microarrays (affy_dataset.zip), that are quite
large files (>20 MB), are available (together with the other
supporting data files) at http://bioinfow.dep.usal.es/xgate/
splicing/splicing.php.
The methodological motivation was to design an analyt-

ical strategy for alternative splicing detection able to calcu-
late the relationship between expression of each specific
exon and the corresponding whole gene expression in a
robust way. This approach overcomes several problems
t tissues. The figure presents the numbers corresponding to 15
rt, liver, muscle, testes. A total of 270 distinct human genes present
rue positive cases that are used to evaluate the performance of
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frequently described in genome-wide expression analyses:
(i) the difficulty to achieve an accurate calculation of the
whole signal corresponding to the gene versus the partial
signals corresponding to transcripts or exons in the same
locus, since estimation of these partial signals is very much
affected when the genes show very different levels of ex-
pression along the compared samples; (ii) the distortion
in the signal values due to artificial “probe effects” in the
arrays [9,10]; and (iii) the “cross-hybridization effects”
provoked by non-specific probes that detect several gene
loci giving ambiguous signals [12].
These problems were addressed in the method ESLiM,

proposed here, following some strategic criteria: (a) pro-
vide and use a stringent definition of “gene core” to cal-
culate the gene signal (as described in Figure 2); (b) use
an approach for the expression calculations based on lin-
ear regression models that combines analysis of the sig-
nal from multiple samples for each gene-exon pair (this
criteria allows to obtain best-performing metrics when
using multiple arrays assessed simultaneously) [13]; (c)
use an unambiguous mapping of all probes to the cur-
rently known expressed biological entities, i.e. to the
known human protein-coding gene loci and to each spe-
cific exon defined on the loci (taking the mapping pro-
vided by GATExplorer) [14]. Exon junction probes are
not considered in this study for two reasons: (i) the gen-
eration of exon arrays that we are analyzing are no de-
signed to have exon-exon junction probes because they
are based on genome sequence and on the location of
Figure 2 Scheme of RGN gene locus. The human gene locus RGN (reguca
p11.23) includes 6 different transcripts (as defined in Homo sapiens genome, E
RGN-202. The transcripts cover different parts of the locus and include differe
to protein-coding sequence. The whole RGN gene locus includes 15 different
the long transcripts. The pink shadows include two short transcripts that cove
white bar indicates the position of each exon.
exons and introns as defined in the reference human
genome (i.e. the probes on the array were not designed
to map on cDNAs); (ii) the identification of alternative
splicing events is based on the individual precise meas-
urement of each exon with specific probes plus the cor-
rect estimation of the whole gene expression. The exon-
junction probes would be ambiguous for one specific
exon and, as indicated above, in the analyses only “non-
ambiguous probes” have been considered.
A key rationale behind the method proposed is that, in

the absence of alternative splicing events, an increase in
the global expression of a gene should correspond to a
higher expression in all its exons. Having datasets with
multiple samples we can test such correspondence since
the data allow the establishment of a relationship be-
tween the signals of each gene and the signals of each
exon. Such a relationship can be modeled using linear
regression analysis. In the formula below, the expected
expression ê of the exon i that belongs to gene j and bio-
logical sample k, is linearly dependent on the expression
of the gene g following a slope s. Each exon-gene pair
will have its own slope depending on the accumulated
characteristics of their detecting probes:

êijk ¼ sij⋅gjk þ bij

In this context, a significant difference between the ob-
served value and the expected value can be interpreted as
being due to an alternative splicing event. These differences
lcin, Ensembl ID: ENSG00000130988, located on chromosome X, band
nsembl v74): RGN-001, RGN-002, RGN-003, RGN-004, RGN-201 and
nt exons (represented as rectangular boxes). Colored boxes correspond
exons. The green shadows include the exons that are kept common in
r less than 60% of the gene locus. At the top of the figure a black and
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are called residuals, and graphically represent the deviation
of each sample with respect to the linear regression:

rijk ¼ eijk−êijk

The model can be completed with these residuals result-
ing in the following formula:

eijk ¼ sij ⋅ gjk þ bij þ rijk

Given that this model is performed in a totally unsuper-
vised way, a further supervised test should be done to
find the statistically significant differences between resid-
uals belonging to two compared biological or clinical cat-
egories (i.e. between two classes). This step of the method
was implemented using limma [11].
The algorithm developed (ESLiM) included three slightly

different versions with respect to how the signals corre-
sponding to the genes were calculated. The first one,
named ESLiM-all (ESLiMa), uses all the probes located
along the gene locus. The second one, named ESLiM-
total (ESLiMt), considers only the probes intersecting
all the known transcripts of the gene locus. Finally,
ESLiM-core (ESLiMc) is an intermediary approach
that, for the calculation of each gene signal, does not
consider the small transcripts covering less than 60% of
the gene locus (as described in Figure 2).

Comparative analyses of different methods to detect
alternative splicing
The performance of the three approaches, ESLiMa,
ESLiMc and ESLiMt, was compared with three other
methods: FIRMA [15], ARH [16] and COSIE [17]. All the
methods were run in R and applied to the same sample
datasets. As indicated above, we used the set of 270 human
genes known to undergo splicing as a reference [8]. The
differences between scores per exon obtained for each of
the 15 tissue pairs compared were assessed with limma
making a ranking of significance based on the p-values. In
the case of ARH the scores for each exon were obtained
using the entropy criterion provided by this method. Fi-
nally, ROC curves were calculated using the R package
ROCR [18].

Independent clinical dataset used for validation
Diagnostic bone marrow or peripheral blood samples
were collected from 64 adult patients with either com-
plex karyotype (CK-AML, n = 40) or core binding factor
(CBF-AML, n = 24) AML, and peripheral blood samples
were obtained from six healthy volunteers. Written in-
formed consent was acquired from all patients and vol-
unteers. Total RNA was extracted from samples that
had been enriched for leukemic blasts/mononuclear cells
(>85% in all analyzed cases) using Trizol reagent (Invi-
trogen, Carlsbad, CA). Gene expression profiling was
performed on Affymetrix GeneChip Exon 1.0 ST micro-
arrays (n = 64) inserting 0.2 μg total RNA according to
the manufacturer’s protocols (Affymetrix, Santa Clara,
CA). The complete dataset is available at Gene Expres-
sion Omnibus (accession number GSE21337, at http://
www.ncbi.nlm.nih.gov/geo/).

ESLiMc identified splicing events validated by RT-PCR
Twelve selected top candidate genes identified by ESLiMc
to undergo alternative splicing were further evaluated by
conventional RT-PCR. In brief, 1.0 μg RNA of the diag-
nostic AML samples was transcribed into cDNA using the
SuperScript III Kit with random hexamer primers accord-
ing to the manufacturer’s recommendations (Invitrogen,
Carlsbad, CA). Then, cDNA was analyzed by a standard
PCR protocol (PCR conditions: 40 cycles with 40s at 94°C,
40s at 55°C, and 60s at 72°C). As a proof of concept and
singular testing of the method, two of the most significant
genes –within the top 12 selected– were taken for valid-
ation of the specific exons that undergo splicing. The fol-
lowing primers that were able to amplify both spliced and
unspliced transcript variants (MAPK15 sense 5′-GCTG
CCTTCTAGGACACCTG-3′, MAPK15 as 5′-CTGGTT
GGCCACCTGAGC-3′, PLXNB1 sense 5′-GGGGGTGT
AACTGGTGTGTC-3′ PLXNB1 as 5′-AGGTCGCCTCT
TCCAGCTC-3′). PCR products were cloned in TOPO
vector (Invitrogen, Carlsbad, CA) and sequenced with
TOPO-specific primers M13F and M13R using the ABI
Ready Reaction Dye Terminator Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA). PCR gel images
were quantified using software ImageJ (available at
http://rsbweb.nih.gov/ij/). Band densities were quanti-
fied in ImageJ software and normalized to the PCR band
densities of beta-actin loading control. The correlation
plots were plotted in GraphPadPrism 6.0. All the proce-
dures performed in the current study were in accordance
with the Declaration of Helsinki and all human samples
were collected after signed informed consent was obtained
as formally approved on by the corresponding Ethics
Committee of the University Hospital of Salamanca (HUS),
the Cancer Research Center (CiC-IBMCC) and the Univer-
sity Hospital of Ulm.

Results and discussion
Human gene loci architecture: search for a consensus
gene signal
Before starting the analysis of the expression signal com-
ing from a given transcriptomic platform, we had to con-
sider the general architecture of a human gene locus.
Most human genes include multiple exons along their loci
that can be used in the alternative transcripts expressed
from each specific locus. In many cases, the exact number
of alternative transcripts derived from a given gene is not
yet known, and the human genome databases include
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many putative transcripts with quite variable coverage
along the locus. This variability and uncertainty provokes
serious problems in the calculation of the gene expression
signals when using high throughput omic techniques
which map all the annotated exons for each locus –such
as RNA-seq or exon microarrays–, because the final
gene products (i.e. the proteins) may stem only from
the expression of a subset of exons. In order to avoid or
minimize this important problem, we propose to use only
the common “consensus set of exons” that are present in
the major transcripts of a given locus for the calculation
of the gene expression signal. The “consensus exons” can
refer either to the “complete full exons” that are conserved
along all the transcripts or to the specific regions or “ex-
onic-segments” conserved. However, in practical terms for
this work, exons from two transcripts that have a partial
overlapping will only be considered the same exon when
they are mapped by the same oligonucleotide probes in
the exon microarrays. Therefore, along the analyses the
exon conservation will be always measured by the pres-
ence of the corresponding probes that map on the specific
exons.
In Figure 2 we show an example illustrating the com-

plexity of a locus for the human gene RGN (located on
chromosome X). For this gene, six different transcripts
have been defined as possible expressed entities. Two of
these transcripts (RGN-003 and RGN-004) are quite short
and cover less than 60% of the whole locus. The other
transcripts (RGN-001, RGN-002, RGN-201 and RGN-
202) cover most of the locus, and include the protein-
coding sequences corresponding to this gene. In this way,
these four transcripts have a stable annotation in Ensembl
database (with label protein-coding and not just processed
transcript) according to the human reference genome
(Homo sapiens GRCh37, Ensembl v74). The whole RGN
gene locus includes 15 different exons to build all these
transcripts. Only 5 exons are conserved in the long tran-
scripts (green boxes in Figure 2) and comprise protein-
coding sequences.
Considering this complexity observed in the majority of

the human gene loci, we propose three possible ways to
account for the transcription signal attributed to a given
locus: (i) to use all the exons defined in each whole locus
to calculate the expression signal of the corresponding
gene (this is done in method ESLiM-all, ESLiMa); (ii) to
use only the common set of exons conserved in all the
transcripts (i.e. the “consensus conserved exons”) (this is
done in method ESLiM-total, ESLiMt); (iii) to use only
the exons conserved in the long transcripts that cover at
least 60% of the locus (this is done in method ESLiM-
core, ESLiMc) (Figure 2). We define and test these three
different methodological approaches to find which one
yields the most robust way to determine alternative spli-
cing. It is important to emphasize that the classical
standard methods usually take “all the exons” (i.e. they fol-
low the first approach named here ESLiM-all), and so,
this is the by-default approach that does not consider the
architecture of the gene loci. In this work we test this ap-
proach comparing it with the other two, ESLiM-total and
ESLiM-core, which are designed to provide a robust and
stable estimation of the expression signal of the genes
considering the “conservation” of exons in the known
transcripts associated to each gene locus. These second
and third approaches do this in two different ways. The
second method (ESLiM-total) considers the exons that
are fully conserved in all the transcripts and this can be
very stringent, reducing the coverage of genes. In fact, in
the example case of gene RGN, there is not any exon that
is conserved in all its six transcripts (Figure 2), therefore
using ESLiM-total the signal for this gene will not be
measurable. The third method, ESLiM-core, looked for a
balance between the all exons approach (which can pro-
vide “noisy signal” in many cases) and the complete con-
served exons approach (which, as indicated, can provide
“lack of signal” in many cases). To do so, ESLiM-core
takes into consideration the exons conserved only in the
transcripts that cover a major part of the locus. We fix a
coverage threshold of ≥60% of the locus length after ana-
lyzing the architecture of all known human protein-
coding genes (Additional file 5: Table S7). In this analysis
we observed that most (85%) of the transcripts that cover
≥60% of the human loci length correspond to stable and
well-annotated protein-coding transcripts. As indicated in
Figure 2, the short transcripts correspond many times to
mRNAs that are not translated and are called “processed
transcripts” in Ensembl database. We also calculate that
99.7% of the human gene loci included at least one
protein-coding transcript that covered ≥60% of its locus
length. In this way, using this threshold of ≥60%, we lost
signal in less than 0.3% of the genes. By contrast, using for
example a threshold of ≥75%, 330 loci would be lost (i.e.
applying such threshold 1.6% of the human gene loci will
not be detectable by the method) (see Additional file 5:
Table S7).

Combined estimation of gene and exon expression
signals
As it has been described, in order to detect alternative spli-
cing events in gene loci, we need an adequate calculation
and comparison of the expression signals of each gene and
its individual exons. These signal measurements should
come from transcriptomic platforms able to detect each
gene locus and the individual exons included in it. Every
platform has its own technical characteristics that should
be considered in order to achieve a quantitative calculation
of the expression signals. In case of high-density oligo-
nucleotide microarrays designed to measure exon and
gene expression, commonly used platforms (such as
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Affymetrix Exon 1.0 ST Arrays) include oligo probes that
map to each known exon. The probes can have variable
response characteristics [17] and it is important to use up-
dated and accurate mapping of the probes to genes and to
exons [14]. The expression of each gene is calculated
using the probes that map to the exons along a given gene
locus and the expression of each exon is calculated using
the specific probes that map to such exon. If a gene is
expressed and there is no alternative splicing event, the
exons of such a gene should have a signal similar to the
average signal of the whole gene (i.e. a non-spliced exon
across analyzed samples is expected to show an expression
Figure 3 Exon expression and gene expression. Calculation of exon exp
residual regression score proposed in this work. (A) Plot of the exon expression
human tissue samples by exon microarrays (3 replicates per sample). The exo
ENSE00001527616 and the gene signal is calculated using the probes that ma
the gene. A linear regression is applied to the data to calculate the expression
(labeled as “cer”) are placed in a circle to show that the average expression of
calculated for the whole gene. (B) Expression signal profile of gene RGN (ENS
the profile of exon ENSE00001527616 (black line) and the profiles of the rest o
for each sample for the gene-exon pair ENSG00000130988-ENSE00001527616
gene-exon pair ENSG00000130988-ENSE00001527616.
signal correlated with the signal of the whole gene). In this
way, the relationship between the expression of every sin-
gle exon and the corresponding gene can be modeled
using a linear regression.
The exon-gene relationship can be graphically repre-

sented considering the expression values, as it is done in
Figure 3A. This figure shows the exon expression signal
versus the gene expression signal of the exemplary gene
RGN measured in a collection of 11 human tissues sam-
ples by exon microarrays (with 3 biological replicates
per sample). The exon signal is calculated using only the
probes that map to the specific exon (in the example:
ression versus gene expression using the standard splicing index and the
signal versus the gene expression signal of gene RGN measured in 11
n signal is calculated using the probes that map to the specific exon
p to the common conserved exons included in the long transcripts of
of the gene-exon pair. The 3 samples corresponding to cerebellum
these samples shows a significant deviation from the linear regression
G00000130988) across the 33 samples (red line with dots) compared to
f the exons (grey lines). (C) Plot of the residual regression scores calculated
. (D) Plot of the splicing indexes calculated for each sample for the
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ENSE00001527616) and the gene signal is calculated
using the signal from the probes that map to the com-
mon conserved exons included in the long transcripts
(as indicated in the previous section). Due to the fact
that the human genes measured in different tissues
usually show a distribution of expression levels, we can
calculate a linear regression between all the measure-
ments to estimate the expected expression signal for
this gene-exon pair (Figure 3A). Using this regression
analysis, if a given group of samples corresponding to
one specific tissue shows a significant deviation of their
expression signal with respect to the linear regression
of the gene-exon pair, we can estimate that such exon
is subjected to alternative splicing in the respective tis-
sue. This is the case for gene RGN in the three cerebel-
lum samples (labels “cer” in Figure 3A). If the signal of
the tissue samples is over the regression line, the exon
will be more expressed (e.g. up-regulated in cerebel-
lum); and if the signal of the tissue samples is below
the regression line, the exon will be less expressed (e.g.
down-regulated in liver). Following this strategy, we
have designed an algorithm that calculates significant
differential expression for each exon comparing all the
sample classes in a given dataset based on the devia-
tions of the exon signals from the linear regression
calculated for the corresponding gene-exon pair. The
algorithm is provided as an R tool easy to use. Details
about the algorithm and the application guidelines are
in the Methods section and in the supporting data
section.

Gene-exon linear regression model compared to splicing
index approach
The most common and known approaches to identify al-
ternative splicing are based on the calculation of the
splicing index (SI) [19] or modifications of this param-
eter. The splicing index is defined as the log-ratio of the
exon intensities between the two sample types after
normalization to the gene intensities in each sample: SIi
= log2( (e1i/g1j) / (e2i/g2j) ) , for the i-th exon of the j-th
gene in sample type 1 or 2. If a given exon provides the
same signal as the whole gene, the exon/gene ratio will
be 1 and the normalized value (log2) will be 0. Then, the
splicing index indicates that there is no splicing associ-
ated with the respective exon.
As shown in Figure 3A, a linear regression analysis al-

lows defining a general trajectory for the expression of a
specific gene-exon pair in a sample dataset. However,
sometimes not all the samples included in a dataset fit
well on a linear regression with respect to the majority
of the samples. In our tissue samples study, when we
plot the expression signal profile of a gene across the 33
samples (red line with dots in Figure 3B) and the profiles
of all its exons (black and grey lines in Figure 3B), we
observe that some samples show a deviation revealed by
the separation between the profile corresponding to the
gene and the profile corresponding to a specific exon
(see red line versus black line in Figure 3B). As indicated
in the previous section, for each sample we can calculate
the deviation in expression against the estimated expres-
sion values calculated for each specific gene-exon pair
by applying a linear regression model to the data. In this
way we obtain the residual regression score calculated
for each sample and each gene-exon pair (Figure 3C).
This parameter is more accurate than the splicing index
calculated to estimate specific changes in the exons of
some samples with respect to the overall expression of
the corresponding gene-exon pair. In fact, if we calculate
the splicing index for one exon (ENSE00001527616) of
the exemplary gene RGN (ENSG00000130988) using the
dataset of 11 human tissues, we observe that the spli-
cing index detects significant changes in at least 12
samples, since the normalized ratio between the exon
expression signal and the gene expression signal (logNI)
is > |0.5| for these 12 samples (Figure 3D). However, in
the same example (i.e. exon ENSE00001527616 and
gene ENSG00000130988) the results obtained calculat-
ing the residual regression score show that only 2 tis-
sues, cerebellum (cer) and liver (liv) (i.e. 6 samples),
have a clear change with respect to the expected signal
of the exon (Figure 3C). This result is in line with an al-
ternative splicing event previously reported for this
gene between cerebellum and liver [8] and eliminates
other putative alternative splicing events identified by
the splicing index that would give false positive results.
Although other methods previously published (and
tested in this work) have been proved to be more ro-
bust than the splicing index, this example is illustrative
of how the “probe” effects or other artificial sources of
variability can result in false positive findings. There-
fore, despite the need for a broader validation versus
other methods, we can say that our method based on
linear regression model is to be more precise and strin-
gent than the splicing index approach and, when ap-
plied to the detection of changes in large-scale analyses
of all the human exons (i.e. hundreds of thousands of
exons), it will provide a smaller number of false positive
results.

Use of a reference set of human tissue-specific splicing
genes
It has been estimated that approximately 95% of the hu-
man multi-exon genes may present several active isoforms,
making a total expectation of approximately 100,000 spli-
cing events in the human transcriptome [20]. However,
there are not many genome-wide datasets that have experi-
mentally proven the presence of alternative splicing and
exon shuffling in human samples. A recent analysis of 15
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diverse human tissue and cell line transcriptomes derived
from deep-sequencing of cDNAs yielded an inventory of
gene and mRNA isoform expression [8]. This study reports
a large set of distinct human genes that show alternative
splicing when comparing their expression in two different
tissues. As described in Methods a large part of this dataset
is referred in Figure 1, presenting the number of genes that
show splicing in 15 pairwise comparisons of six human tis-
sues/organs: breast, cerebellum, heart, liver, muscle and
testes. The numbers indicate that some tissues include
more genes with alternative isoforms than others (e.g. cere-
bellum). The total number of positive cases where these
genes show splicing between two given tissues is 282. We
used these genes to test the statistical sensitivity and speci-
ficity of the method here proposed (ESLiM) implemented
in 3 slightly different versions (ESLiMa, ESLiMc, ESLiMt)
described above. We also used the described reference set
of human tissue-specific splicing events for comparative
analyses of the performance of our method with 3 other
previously published methods.
Figure 4 ROC curves comparing the performance of five methods to
true positive rates versus the false positive rates (i.e. “sensitivity” versus “1–s
(A) BRE-CER breast and cerebellum; (B) CER-LIV cerebellum and liver; (C) M
CER-MUS cerebellum and muscle; (F) CER-TES cerebellum and testis. A labe
in a box inside each plot: ESLiMa (black line), ESLiMc (black dashed line), ES
Comparison of several methods for alternative splicing
detection
Together with the reference set of 270 human genes that
undergo alternative splicing in six different tissues, we
used –as described above– an additional experimental
exon microarray dataset (Human Exon 1.0 ST) applied
to the same human tissues. This allows to test different
methods and to compare the accuracy in the detection
of known splicing events [21]. First, we tried our method
in ESLiMa, ESLiMc and ESLiMt. In parallel, we also
tried three published methods: FIRMA [15], ARH [16]
and COSIE [17]. The most widely used is FIRMA (re-
ferred in 75 publications according to Google-Scholar in
April 2014), which is based on an extension of the addi-
tive model of the RMA method [22].
The statistical analysis of the performance of all these

methods is presented in Figure 4, which includes the ROC
curves for six tissue pairs, and in Figure 5, which com-
pares AUC values (area-under-the-curve) and number of
true positives. In each case the number of true positives
identify splicing events in six tissue pairs. The curves display the
pecificity”). The panels A-F correspond to the following tissue pairs:
US-TES muscle and testis; (D) HEA-MUS heart and muscle; (E)
l indicating the color line that corresponds to each method is included
LiMt (black dotted line), FIRMA (red), ARH (green) and COSIE (blue).



Figure 5 AUC and number of true positives found by each method. Barplots presenting the comparison of the performance of five methods
to identify splicing events in 15 tissue pairs. (A) Area under the ROC curve (AUC) corresponding to each method considering the mean of 15
curves and adjusted to the number of true positives found in each comparison. (B) Number of true positives corresponding to each method
detected in the top 100, 500, 1000 genes of the 15 tissue comparisons. The specific AUC values obtained for each of 15 comparisons
corresponding to each one of the methods compared are provided in Additional file 2: Table S2.
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(TP) and true negatives (TN) were calculated using the
reference set of human genes included in Figure 1. The
ROC curves display the true positive rates (TPR = TP/
(TP–FN)) versus the false positive rates (FPR = 1 – FP/
(FP + TN)); that is equivalent to “sensitivity” versus “1–
specificity”. ESLiMc (black dashed lines) is the method
that performs better than all others providing an average
value for AUC of 0.832 considering 15 tissue pair compar-
isons (Figure 5A). The AUC values obtained for these 15
comparisons corresponding to each one of the methods
are provided in Additional file 2: Table S2. AUC averages
were weighted by the number of validated splicing events
in each comparison. The numbers of genes showing evi-
dence for splicing are indicated in Figure 5B for each one
of the tissue pair comparisons performed with each
method (see also Additional file 3: Table S3). These genes
are found in the top 100, 500 and 1000 most significant
genes (i.e. top genes ranked by best p-values) detected by
each method. Again ESLiMc is the method that shows the
best performance.
In the ROC values we observed that the ESLiM ap-

proaches, compared to the other algorithms, present
higher true positive rates (TPR) at low false positive
rates (FPR). This feature can be very valuable when ex-
perimental validations are planned in accordance with
the ranking of genes returned. In particular, ESLiMc is
the best method in most cases. The lower performance
of ESLiMt with respect to ESLiMc can be due to the
fact that approximately only the 75% of the protein-
coding genes can be measured with the restriction of find-
ing probes in all known transcripts, and this reduces quite
a lot the number of validated genes that can be detectable.
The list of 61 spliced genes identified by ESLiMc in the
top 1000 genes is provided as supplementary material
(Additional file 4: Table S4), and they can be considered a
revalidated set of human genes that present alternative
splicing in different tissues, as identified in this work.
In the overall comparison with the other methodological

approaches (i.e. ARH, COSIE, FIRMA) we can say that
ESLiM improves findings in about 5-10% of the ROC
values due to the application of the linear regression
model. About another 2-5% of the ROC values improve-
ment can be attributed to the application of the gene core
signal calculated as described for ESLiMc. Comparisons
considering other parameters, like the one in Figure 5B,
also reflect a clear improvement provided by the
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application of the linear regression model. In fact, COSIE,
the external method that performed best after ESLiMc for
the detection of true positives (in the top 100 and top 500
spliced genes), is a method that includes a non-linear cor-
relation model to calculate a corrected splicing index [17].
With regard to the other methods, we have already de-
scribed the principles of gene-exon linear regression
model compared to a splicing index (SI) approach; and
most methods include small modifications of the SI cal-
culation (like PAC, MIDAS, etc) [23]. In general, the
comparisons presented in Figure 5 show a considerable
improvement using ESLiMc; even with respect to FIRMA
that is probably the most widely used method [15]. There
are many additional tools and bioinformatic applications
that have been published to help in the analyses of exon
arrays datasets, like easyExon [24] Exon-Array-Analyzer
[25], AltAnalyze [26] and BEAT [27]; but most of them
are not very innovative approaches because they usually
are integrated software packages including standard statis-
tical methods (such us ANOVA and SI) or including other
known algorithms (such us FIRMA [15] and MADS [28]).
One final comment about these tools is that several of
them allow the usage of different probesets-to-gene
mappings (core, extended or full) provided by Affyme-
trix for the exon arrays; and most methods recommend
to use the “core” mapping for splicing detection. How-
ever, it is important to realize that these exon array
“core probesets” do not correspond with what we called
the “gene core” included in ESLiMc, that uses only the
probes that map on the exons conserved in long tran-
scripts (covering ≥60% of the loci). The intention to
improve on splicing detection may be similar, but the
concept of “exons conservation” along transcripts and
the practical way to calculate the “gene core” is specific
to the method presented here.
Finally, it is worth to note that “sample size” is import-

ant for applying the ESLiM method given that it takes
advantage of using all samples to do the linear regression
estimates and to correct artificial probe effects and con-
trol the variability of genes showing different expression
levels in different sample types. Therefore, in order to
work properly, the method should be used with at least
20 or 30 different sample measurements. A dataset with
very few replicates and only two different biological
types will produce no significant result for exon changes
in highly differentially expressed genes. The limitation of
a “minimum sample size” (≈20-30 samples) does not
mean that ESLiM is not adequate to do binary compari-
sons with just two biological classes. In these cases the
method works fine as far as there are 10 to 15 samples
for each class compared. This is shown with a practical
example in the next section, proving that ESLiM pro-
duces coherent results in the comparison of two disease
subtypes.
Experimental validation of ESLiMc with an independent
set of leukemia samples
In order to further evaluate the power of the method
ESLiMc to identify specific exon re-arrangements and al-
ternative splicing events, we analyzed a dataset of acute
myeloid leukemia (AML) samples (n = 64) and mono-
nuclear cell control samples (n = 6). As indicated above,
the AML samples included two specific subtypes: (i) 24
core binding factor AMLs and (ii) 40 AMLs with complex
karyotype. Using ESLiMc we did the analysis of splicing
between these AML subtypes comparing the 40 CK-
AMLs versus the 24 CBF-AMLs and identified, using a
cutoff of FDR < 0.01, 1180 exons showing significant al-
teration (i.e. showing differential expression with ad-
justed p-values <10−7 and relative R-fold changes >1.5
for overexpression and <0.65 for repression) (data in-
cluded in Additional file 6: Table S5). These exons corres-
pond to 654 protein-coding genes, showing clear signs of
a disease subtype-specific alternative splicing. In parallel,
we checked the expression of transcripts in peripheral
blood mononuclear cells (PBMNC) of healthy controls,
to assess whether the detected transcripts were specific
to AML. Based on these analyses, we confirmed spli-
cing events by conventional RT-PCR in a selected num-
ber of 10 genes (Additional file 7: Table S6) out of 12
tested genes, observing a validation rate that shows a
good performance of the algorithm on cancer samples.
This subset of genes was selected for experimental val-
idation due to a potential leukemogenic impact on the
respective AML subtypes. Several of them have been
correlated with AML pathology (like the leukemia-
associated factor RUNX3/AML2), and are known to
have multiple transcript variants resulting from alterna-
tive splicing events (like ARHGAP4, EPHB6, MPG,
PLXNB1, RUNX3 and SEC14L1; as indicated in NCBI
GENE database).
For two of the most significant genes (MAPK15 and

PLXNB1) that showed alternative splicing, and that were
most relevant for our AML study, we conducted a specific
RT-PCR analysis to see if the reported alterations could be
assigned to the indicated exons. For this validation 6 sam-
ples per subgroup were analyzed. In Figure 6 we present
the experimental results for the exons detected as most
changed for these two genes (ENSE00001663392 for
MAPK15 and ENSE0000108091 for PLXNB1, Figure 6A).
For MAPK15 gene (also called ERK8), which regulates
localization of nuclear receptors and is involved in cellular
proliferation and transformation [29], we could confirm
the presence of a known isoform retaining a 137 bp intron
in CBF samples that is not present in CK-AML or healthy
control samples (isoform ENST00000461928/MAPK15.
fAug10 with EST accession number BX451569, previously
found in human fetal brain cDNA library). Similarly, for
plexin B1 (PLXNB1) gene, which encodes the semaphorin



Figure 6 Experimental validation of splicing patterns discriminating two subtypes of acute myeloid leukemia. Validation of splice
variants for genes MAPK15 and PLXNB1 detected in AML patients and in mononuclear cells of healthy controls. (A) Table with the output results
provided by ESLiMc method showing the exons most significantly changed in genes MAPK15 and PLXNB1. (B) Scaled pictures presenting the
architecture of MAPK15 and PLXNB1 gene loci including all exons and introns. Red boxes show the coding exons; white boxes the untranslated
regions (UTR); pink shadow boxes mark the exons which undergo splicing (ENSE00001663392 for MAPK15 and ENSE0000108091 for PLXNB1).
(C) Validation by RT-PCR performed with RNA samples from 12 AML patients (6 CBF-AML and 6 CK-AML) and with RNA from mononuclear cells
of 6 healthy probands. The splice isoforms differentially expressed between the two AML subgroups are marked with red arrows. The splice
isoforms differentially expressed between AML subgroups and the mononuclear blood fraction from healthy donors are marked with green
arrows. NTC is for “no template control”. Beta-actin was used as loading control. The architecture of the specific exon/intron region from genes
MAPK15 and PLXNB1 that show changes is presented aside.
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4D receptor and has been shown involved in tumor
progression of several cancers [30], we also could confirm
the detection of previously annotated alternative tran-
scripts (ENST00000296440 and ENST00000456774/
PLXNB1.dAug10), as well as a novel alternative transcript
(Figure 6C). This alternative isoform, detected as a 233 bp
PCR product, was expressed in CBF-AML and CK-AML
(though less in CK), and it was not expressed at all in
healthy control cells (Figure 6C). Sanger sequencing of the
PCR product revealed the loss of the exon (exon fragment
aEx11-1) observed in the PLXNB1 gene (data not shown).
These two examples show that our novel algorithm pro-
vides a helpful tool to detect alternative splicing events
using exon expression data and that the identified exon
alterations can drive the way to discover relevant isoforms
associated to the diseases studied.
Finally, it is worth to note that the experimental valid-

ation done with the AML samples is more qualitative than
quantitative (i.e. as a proof of concept and singular testing
of the method) since we do not pretend to include a
full statistical analysis of this dataset in this work.
Moreover, the specific genes validated (MAPK15 and
PLXNB1) were selected in the context of our current
studies on the AML biology and not just randomly be-
tween all the significant results provided by ESLiMc.
Nevertheless, quantification of findings showed a highly
significant correlation with our ESLiM estimates (Figure 7),
and thus the results are a proof of the value of the method



Figure 7 Quantification of the relative expression of MAPK15 and PLXNB1 splice variants in two subtypes of acute myeloid leukemia.
(A) ESLiMc correlation plot of exon expression (exon ID: ENSE00001663392) of MAPK15 versus gene expression using the normalized expression signals
calculated as indicated in Methods. (B) Quantification of MAPK15 splice variant expression by measuring the relative density of MAPK15 PCR product in
ImageJ software (showing a significant differentially expression between CBF- and CK-AML). (C) Correlation plot of relative density of PCR product with
ENSE00001663392 expression values. Relative density of PCR product is plotted along the x-axis and mean log2 transformed probeset intensities for
ENSE00001663392 (Affymetrix probeset IDs 3119813, 3119814) are shown along y-axis. CK-AML (red dots) correspond to AML with complex karyotype,
and CBF-AML (black dots) to core binding factor AML. (D) ESLiMc correlation plot of exon expression (exon ID: ENSE00001080901) of PLXNB1 versus
gene expression using the normalized expression signals calculated as indicated in Methods. (E) Quantification of PLXNB1 splice variant expression by
measuring of PCR bands intensities in ImageJ software (this shows a significantly higher expression of PLXNB1 splice isoforms in CBF-AML, which is in
agreement with ESLiM correlation plot on D). (F) Correlation of relative PCR band intensities of PLXNB1 splice variants with ENSE00001080901
exon expression. Relative density of PCR product is plotted along the x-axis and mean log2 transformed probe set intensities for
ENSE00001080901 (Affymetrix probeset ID 2673238) are shown along y-axis.
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in a real case, showing the detection of splicing events on
two disease subtypes.

Conclusions
In conclusion, our data suggest that the newly developed
ESLiMc method (ESLiM-core) presented here provides a
robust tool for the detection of alternative splicing events
via the identification of specific exons which show signifi-
cant relative changes –gain or loss– with respect to the
genes. The algorithm outperforms several methods cur-
rently used, providing considerably better accuracy and it
is suitable for validation of known splicing events as well
as for exploration and discovery of novel non-annotated
transcripts in human samples. The method is provided as
an R package and can be applied to different types of sam-
ples and easily adapted to different types of datasets. Fi-
nally, the work shows that a correct definition of the gene
core allows a better comparison of gene and exon expres-
sion signals and our strategy can help to improve the ana-
lyses of complex transcriptomic datasets [1,7] that are still
not well studied.
At last, we consider that the use of a “gold standard”

dataset of genes in this work has been essential to achieve
a good comparison and evaluation of several splicing de-
tecting methods. The fact that this information was derived
from RNA-seq was circumstantial, since our main concern
was to have an independent and experimentally validated
set of human genes undergoing splicing in different tissues.
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With respect to this point, it is important to indicate that
most of the bioinformatic analytical methods are very
much dependent on the specific technological platform
that is used to measure the biological signals. It is clear that
both expression arrays and RNA-seq measure genome-
wide expression signals, but the way they do it –in techno-
logical detail– is totally different [31]. Microarrays measure
the expression signal by hybridization on oligo “probes”
that map each exon and each gene locus, but RNA-seq
platforms measure the expression signal by sequencing
and counting “reads” that map on each exon and each gene
locus. Moreover, the quantification of the “probe-signals”
and the “read-signals” at deep level needs the applica-
tion of different algorithms. Despite this, we consider
that some general principles and characteristics of the
ESLiMc method can be transferred and applied to
methods designed for the analysis of RNA-seq data. These
applicable principles are: (i) the proposed approach to es-
timate whole gene signal that takes into consideration the
exons conserved in the transcripts that cover a major part
of the gene locus; (ii) the use of a linear regression model-
ing strategy to estimate the expression signal that is attrib-
uted to each exon/gene pair and to calculate the
differential expression changes between them.

Availability of supporting data
As indicated in Methods section the algorithm pre-
sented in this work (ESLiM) is provided as an R pack-
age together with examples of use and the mapping
CDF files, all included as supporting data at URL
(http://bioinfow.dep.usal.es/xgate/splicing/splicing.php):
(Supporting data 1) ESLiMc R package: ESLiM_1.0.tar.gz;
(Supporting data 2) Example of use for ESLiMc R package:
ESLIM_Install_and_Use.R; (Supporting data 3) ExonMap-
per CDF R package: exonmapperhumanexon1.0cdf_3.0.
tar; (Supporting data 4) ESLiMc GeneMapper CDF R
package: package: eslimcgenemapperhumanexon1.0cdf_3.0.
tar.gz. Moreover, we also provide at web site http://bioinfow.
dep.usal.es/xgate/splicing/splicing.php the annotation R
package for human exons (R data file: exons.human.
Annotation.RData); and the dataset corresponding to the
33 exon microarrays GeneChip Human Exon 1.0 ST
(file: affy_dataset.zip) containing 3 replicas of 11 different
healthy human tissues.

Additional files

Additional file 1: Table S1. List of human genes reported by Wang et
al. [8] that are alternatively spliced and were found in the pairwise tissue
contrasts reported in Figure 1. The list includes 270 distinct genes
identified in 282 pairwise contrasts.

Additional file 2: Table S2. AUC values obtained for 15 pairwise tissue
comparisons and for each one of the six compared methods: ESLiMa,
ESLiMc, ESLiMt, FIRMA, ARH and COSIE. AUC averages were weighted by
the number of validated splicing events in each comparison.
Additional file 3: Table S3. Number of reference genes showing
evidence for splicing for each one of the tissue pair comparisons
performed with each method. These reference genes are found in the
top-100, top-500 and top-1000 most significant genes detected by each
method (ranked by best p-values).

Additional file 4: Table S4. List of 61 spliced genes identified by
method ESLiMc as detected in the top-1000 genes provided by this
method. The table includes the ENSEMBL ID, the gene symbol, the
chromosomal location, the gene description and the tissue-pair where
each gene has been detected.

Additional file 5: Table S7. Analysis of the architecture of known
human protein-coding genes presenting the number of protein-coding
transcripts (pcTranscripts) that cover different % of their locus length (≥T
%). The data show that most (85%) of the transcripts that cover ≥60% of
the human loci length correspond to stable and well-annotated protein-
coding transcripts. The table also presents the number of gene loci
covered by at least one transcript of a given locus length (i.e. ≥ that a
given % of the locus length). The numbers indicate, for example, that
99.7% of the human gene loci included at least one protein-coding
transcript that covered ≥60% of its locus length.

Additional file 6: Table S5. Analysis of splicing detected in two AML
subtypes, done using ESLiMc method: 40 samples of CK-AMLs versus 24
samples of CBF-AMLs. For a cutoff of FDR<0.01 1180 exons were found
showing significant alteration. These exons were found considering:
differential expression with adjusted p-values <10-7 and relative R-fold
changes >1.5 for overexpression and <0.65 for repression. These exons
correspond to 654 distinct protein-coding genes.

Additional file 7: Table S6. Splicing events that were confirmed by
conventional RT-PCR in a selected number of 10 human genes. The table
presents the values provided by the analysis done using ESLiMc method.
For these 10 genes, a total of 22 exons were detected as statistically
significant.
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