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Abstract

Background: There are several studies describing loss of genes through reductive evolution in microbes, but how
selective forces are associated with genome expansion due to horizontal gene transfer (HGT) has not received
similar attention. The aim of this study was therefore to examine how selective pressures influence genome
expansion in 53 fully sequenced and assembled Escherichia coli strains. We also explored potential connections
between genome expansion and the attainment of virulence factors. This was performed using estimations of
several genomic parameters such as AT content, genomic drift (measured using relative entropy), genome size and
estimated HGT size, which were subsequently compared to analogous parameters computed from the core
genome consisting of 1729 genes common to the 53 £ coli strains. Moreover, we analyzed how selective pressures
(quantified using relative entropy and dN/dS), acting on the E. coli core genome, influenced lineage and
phylogroup formation.

Results: Hierarchical clustering of dS and dN estimations from the E. coli core genome resulted in phylogenetic
trees with topologies in agreement with known E. coli taxonomy and phylogroups. High values of dS, compared to
dN, indicate that the £ coli core genome has been subjected to substantial purifying selection over time;
significantly more than the non-core part of the genome (p<0.007). This is further supported by a linear association
between strain-wise dS and dN values (8= 26.94+ 0.44, R?~0.98, p<0.007). The non-core part of the genome was also
significantly more AT-rich (p<0.007) than the core genome and £. coli genome size correlated with estimated HGT
size (p<0.007). In addition, genome size (p<0.007), AT content (p<0.001) as well as estimated HGT size (p<0.005) were

all associated with the presence of virulence factors, suggesting that pathogenicity traits in E. coli are largely
attained through HGT. No associations were found between selective pressures operating on the E. coli core
genome, as estimated using relative entropy, and genome size (p~0.98).

Conclusions: On a larger time frame, genome expansion in E. coli, which is significantly associated with the
acquisition of virulence factors, appears to be independent of selective forces operating on the core genome.

Background

It has been widely documented that horizontal gene
transfer (HGT) can make potentially harmless, even pro-
biotic, bacterial species lethal [1,2]. Considerable re-
search has focused on how bacteria can evolve from
being nonthreatening, host-independent and free-living
organisms to become obligatory intracellular parasites
with reduced genomes [3-9]. However, the evolutionary
mechanisms explaining genome expansion due to HGT
are much less documented. One reason for this is the
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need for a large number of fully sequenced and assem-
bled genomes from strains of species that are parti-
cularly well suited for such analyses. The recent
development of high-throughput sequencing technology
has reduced sequencing costs and for many microbial
species there are now multiple strains, completely se-
quenced and assembled, available for analyses in public
databases [10]. This allowed us to explore strain-level re-
lationships between base composition, genome size and
predicted HGT in several microbial species in a recent
study [11]. We found that the genome size, compared at
strain-level, was predominantly correlated with genomic
AT content, contrary to what has been found for pro-
karyotes in general [12]. Additionally, AT content
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correlated with predicted HGT size, which again corre-
lated with chromosome size [11]. In this study we also
analyzed the influence of selective pressures on micro-
bial genome size using the concept of relative entropy
[13,14].

Relative entropy can be used to measure genomic dis-
tance and is computed with the Kullback-Leibler meas-
ure between observed and expected codon frequencies
(see [14] for more details). The expected codon frequen-
cies are calculated from genomic nucleotide frequencies
so that decreasing distances between observed and ex-
pected codon frequencies imply increased independence
between the neighboring nucleotides constituting the co-
dons. This implies more random distributions of codon
frequencies presumably due to mutations/genetic drift
[13,15]. A negative correlation between relative entropy
and AT content has previously been detected in micro-
bial genomes, implying that AT-rich genomes tend to
have, on average, a more random base composition than
GC-rich genomes [11,13,16]. The greater similarity be-
tween AT-rich genomes and random DNA sequences,
with similar base compositions, is a consequence of the
fact that genomic mutations are in general biased to-
wards AT-richness [17,18].

Horizontally transferred DNA tends to have lower rela-
tive entropy than DNA of the host chromosome. Thus, it
is likely that the genomes of strains with high levels of
horizontally transferred DNA will, on average, have lower
relative entropy than the genomes of strains having re-
ceived less HGT [13]. However, it may also suggest differ-
ences in how selective forces operate at the strain level,
analogous to the general negative correlation between AT
content and genome size, which appears to be largely re-
versed at the strain-level of bacterial species [11].

The dN /dS ratio, where dN describes the difference in
non-synonymous substitutions between taxa and dS des-
ignates the difference in synonymous substitutions, has
also been associated with selective pressures [19]. In-
deed, a large dS relative to dN is linked to purifying se-
lection; dN=dS is assumed to indicate neutrality of
selection, while a dN greater than dS is associated with
positive selection [19]. Not only does dS > dN provide an
approximate quantitative measure of the selective pres-
sures involved in purging non-synonymous substitutions
resulting in reduced fitness, but the relation may also
give clues about the species’ population structure [18].
Additionally, time is a central factor [19]. A recent diver-
gence between two or more strains is often indicated by
dN > dS, since such mutations are more likely to take
place within a short time span [19].

It has previously been shown that purifying selection
correlates with genome size for microbes above strain
level [20]. In the present study we wanted to examine
whether selective forces would leave a base compositional
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pattern in the core genomes of bacterial strains undergo-
ing genome expansion, mediated through HGT, since
such a pattern has been observed for microbial species
undergoing genome reduction [3,13]. We focused our
analysis on E. coli since this particular species is renowned
for extensive HGT and has many strains sequenced and
fully assembled [21,22]. Since pathogenicity has been
linked with HGT [1,2] we also wanted to test whether the
pathogenic potential of the E. coli strains correlated with
genomic properties such as AT content, genome size, gen-
omic drift, and selective pressures, as estimated using rela-
tive entropy and dN/dS. To reach our aim we extracted
the E. coli core genome, consisting of 1729 genes, from 53
E. coli strains and estimated dS and dN, as well as the
other genomic properties mentioned above. We also gen-
erated a maximum likelihood tree based on mutations in
the mutT gene, which has been associated with hyper-
mutable strains [23], and compared the congruency of
that tree to the trees resulting from the dS- and dN-based
hierarchical cluster analyses.

Results and discussion

Estimation of dN and dS from the E. coli core genome

We wanted to explore whether there was a relationship
between the selective pressures that the E. coli core gen-
ome has been subjected to and genome expansion due
to HGT since an association between purifying selection
and genome size has previously been identified for mi-
crobial species in general [20].

We performed hierarchical cluster analyses based on dS
and dN estimations from all 1729 genes belonging to the
E. coli core genome. The results can be seen in Figures 1
and 2 for dS and dN estimations, respectively, and the
resulting cluster groups (denoted by different colors in
both Figures 1 and 2) indicate a strong association with
known E. coli phylogroups [24-26]. Table 1 contains more
information on the different E. coli strains and the corre-
sponding patho-/phylo-groups resulting from the 4S and
dN based cluster analyses.

From the heatmaps in Figures 1 and 2 it can be seen
that dS is considerably higher than dN implying that the
E. coli core genome has been subjected to strong purify-
ing selection [27]. Since the core genome consists of all
genes common to all the strains discussed here, these
genes are presumably important for the species survival
and the removal of fitness-reducing mutations appears
to have been of considerable importance for the evolu-
tion of the different lineages.

The similar topology of the heatmaps in Figures 1 and
2 points to corresponding differences in dS and dN for
each strain and Figure 3 demonstrates that we found a
strong linear association between median- dS and dN
values with respect to each strain (8 = 26.94 + 0.44, R* ~
0.98, p < 0.001). From Table 1, as well as Figures 1 and 2,



Bohlin et al. BMC Genomics 2014, 15:882
http://www.biomedcentral.com/1471-2164/15/882

Page 3 of 13

P
Color Key
o
i=3
©
-
Co
38
Oo
=3
<
o
o
N
° |
0 0.02 004 006 0.8
Value

el [,

Escherichia coli 536

Escherichia coli LF82
Escherichia coli 055 H7 CB9615

Escherichia coli IAI39

Escherichia coli 07 K1 CE10
Escherichia coli 083 H1 NRG 857C
Escherichia coli ED1a

Escherichia coli 0127 H6 E2348 69
Escherichia coli NA114

Escherichia coli UMN026
Escherichia coli SMS 3 5

Escherichia coli CFT073

Escherichia coli ABU 83972

%Lmﬁﬂ

Figure 1 dS-based heatmap. The heatmap demonstrates a hierarchical cluster analysis of estimated dS (the rate of synonymous distributions
between taxa) of 1729 core genes from the 53 E. coli genomes. The differently colored labels designate phylogroups: D (light green), B2 (red), E
(green), B1 (blue), and A (dark blue). Groups D, B2 and E consisted predominantly of pathogens; Group A was almost exclusively non-pathogenic,
while Group B1 consisted of a mixture of pathogenic and non-pathogenic strains.
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it can be seen that group B1, which includes 9 pathogens
and 6 non-pathogens, is closest to group A consisting al-
most exclusively of non-pathogens (one pathogen and
11 non-pathogens). The predominantly pathogenic
groups: B2, D and E cluster together and are further
away from groups A and B1. The strong correlation be-
tween dS and dN observed in Figure 3 may indicate that
the formation of the different lineages may be of a more

ancient origin since both dN and dS based cluster ana-
lyses resulted in cluster groups completely congruent
with the established E. coli phylogroups [24].

As mentioned above, the type of selective pressures af-
fecting genomes can be inferred from the dN/dS ratio.
To examine the selective pressures operating on the
different E. coli lineages we used the dS/dN ratio instead
of dN/dS for clarification [19]. The resulting dS/dN
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Figure 2 dN-based heatmap. The heatmap shows a hierarchical cluster analysis of estimated dN (the rate of non-synonymous distributions
between taxa) of 1729 core genes from the 53 £. coli genomes. The differently colored labels designate phylogroups: D (light green), B2 (red), E
(green), B1 (blue), and A (dark blue). Groups D, B2 and E consisted predominantly of pathogens; Group A was almost exclusively non-pathogenic,
while Group B1 consisted of a mixture of pathogenic and non-pathogenic strains.
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heatmap can be seen in Figure 4 and shows that al-
though phylogroups D, B2 and E cluster together, phy-
logroup A is divided into two cluster groups one of
which is flanked by phylogroup B1. Interestingly, a simi-
lar tree topology was observed by Didelot et al. [24] in a
cluster analysis based on E. coli non-core gene content,
as opposed to the core genome dS/dN ratios explored in
the present study, which may suggest that the lineages

represented by phylogroups A and Bl have been ex-
posed to similar selective pressures. Indeed, Didelot
et al. points out that the frequency of HGT between
these two phylogroups is higher than that observed be-
tween any of the other E. coli phylogroups. Therefore it
is conceivable that the strains in phylogroups A and Bl
are often found within geographic proximity and in simi-
lar environments [24].
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Table 1 Information about the different E. coli strains used in the study
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Name Pathogroup Phylogroup
Escherichia coli O7:K1 CE10 EXPEC (neonatal meningitis) D
Escherichia coli 1AI39 EXPEC (Uropathogenic E. coli (UPEQ)) D
Escherichia coli SMS 3-5 Multi-resistant D
Escherichia coli UMNO26 EXPEC (UPEC) D
Escherichia coli 536 EXPEC (UPECQ) B2
Escherichia coli ED1A Non-pathogenic B2
Escherichia coli O83:H1 NRG 857C AIEC (adherent-invasive E. coli) B2
Escherichia coli LF82 AlEC B2
Escherichia coli clone D i2 EXPEC (UPECQ) B2
Escherichia coli clone D i14 EXPEC (UPEC) B2
Escherichia coli CFT073 ExPEC (UPEQ) B2
Escherichia coli ABU 83972 ExPEC (UPEC) B2
Escherichia coli UTI89 EXPEC (UPEC) B2
Escherichia coli UM146 AIEC B2
Escherichia coli IHE3034 EXPEC (neonatal meningitis) B2
Escherichia coli APEC O1 Avian pathogenic E. coli (APEC) B2
Escherichia coli S88 EXPEC (neonatal meningitis) B2
Escherichia coli SE15 Non-pathogenic B2
Escherichia coli NA114 EXPEC (multidrug-resistant UPEC) B2
Escherichia coli E2348_69 O127:H6 Enteropathogenic E. coli (EPEC) B2
Escherichia coli O157:H7 TW14359 Shiga toxin-producing E. coli (STEC/EHEC) E
Escherichia coli O157:H7 EC4115 STEC/EHEC E
Escherichia coli O157:H7 Sakai STEC/EHEC E
Escherichia coli Xuzhou21 STEC/EHEC E
Escherichia coli O55:H7 RM12579 Atypical EPEC (aEPEC) E
Escherichia coli O55:H7 CB9615 akPEC E
Escherichia coli UMNK88 Enterotoxigenic E. coli (ETEC) A
Escherichia coli P12b Non-pathogenic A
Escherichia coli HS Non-pathogenic A
Escherichia coli BL21 DE3 Lab strain - Non-pathogenic A
Escherichia coli B REL606 Lab strain — Non-pathogenic A
Escherichia coli BL21 Gold DE3 pLysS AG Lab strain — Non-pathogenic A
Escherichia coli BW2952 Lab strain — Non-pathogenic A
Escherichia coli K12 substr DH10B Lab strain — Non-pathogenic A
Escherichia coli K12 substr MDS42 Lab strain — Non-pathogenic A
Escherichia coli K12 substr W3110 Lab strain — Non-pathogenic A
Escherichia coli DH1 (AP012030.1) Lab strain — Non-pathogenic A
Escherichia coli DH1 (CP001637.1) Lab strain — Non-pathogenic A
Escherichia coli O104:H4 str. 2009EL-2050 Enteroaggregative — EHEC (EAggEC-EHEC) B1
Escherichia coli O104:H4 str. 2009EL-2071 EAggEC-EHEC B1
Escherichia coli O104:H4 str. 2011C-3493 EAggEC-EHEC B1
Escherichia coli 55989 EAggEC B1
Escherichia coli W (CP002185.1) Lab strain B1
Escherichia coli W (CP002967.1) Lab strain B1
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Table 1 Information about the different E. coli strains used in the study (Continued)

Escherichia coli KO11FL_162099 (CP002516.1) Lab strain B1
Escherichia coli KO11FL_162099 (CP002970.1) Lab strain B1
Escherichia coli SE11 Non pathogenic B1
Escherichia coli IAIN Non pathogenic B1
Escherichia coli E24377A ETEC B1
Escherichia coli O103:H2 str. 12009 STEC/EHEC B1
Escherichia coli O111:H- str. 11128 STEC/EHEC B1
Escherichia coli O26:H11 str. 11368 STEC/EHEC B1
Escherichia coli APEC O78 APEC B1

Phylogenetic inferences from the mutT gene

The topology of the phylogenies resulting from the dS
and dN based cluster analyses (Figures 1 and 2) are con-
gruent with the tree depicted in Figure 5, based on vari-
ants of the mutT gene, some of which are known to be
associated with hyper-mutable E. coli strains [23]. The E.
coli EDla strain, one of two non-pathogens in phy-
logroup B2 (see Table 1), cluster outside all groups.
Other genes related to the genomic mutation levels such
as mutY, mutlL and mutM [28] resulted in trees with
topologies similar to the one we obtained with the mutT
gene. However, these alignments were based on rela-
tively large sequences with few mutations resulting in a
bootstrap support that was too low for any consistent
tree-topology to be inferred. Nevertheless, it is interest-
ing to note that the mutT based-tree supported the dN
and dS based phylogenies obtained above. This could
mean that the different phylogroups have distinct vari-
ants of the mutT gene that coincide with both non-

synonymous and synonymous substitution rates in the
E. coli core genome. However, our data does not allow
any conclusive statements with respect to potential ef-
fects of mutT genotypes on dN/dS values.

Examination of the base composition in the E. coli core
genome

As previously mentioned, the selective pressures that the
E. coli core genome has been exposed to can be analyzed
using relative entropy [13]. The genomic frequencies of
codons subjected to strong selective pressures are as-
sumed to be substantially different than the correspond-
ing products of nucleotide frequencies. Conversely,
codons exposed to weak selective pressures will presum-
ably have more similar frequencies to the corresponding
product of nucleotide frequencies due to mutational bias
[13,29]. The relative entropy measure cannot separate
between positive- and negative selective pressures asso-
ciated with dN/dS-based methods. Therefore, with

Strain-wise median dS
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regression analysis resulting in a sample size of 36 strains.
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Figure 3 Regression plot of strain-wise median dS and dN. The figure shows median dS estimates plotted against median dN estimates for
the £. coli strains in the study. The diagonal line designates the estimated regression line. All similar and clonal strains were removed for the
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regards to relative entropy, selective pressures will de-
note both positive- and negative selective pressures.

We wanted to examine whether we could find base
compositional differences between core- and whole
genomes and whether properties deduced from the
core-genomic base composition could be associated with
corresponding whole genome properties. For the following

statistical analyses we removed all strains that are known
to be modified clones, or otherwise genetically very simi-
lar, to reduce bias. Details about the specific isolates in-
cluded in these analyses can be found in Additional file 1.
From Figure 6, left panel, it can be seen that relative
entropy in the E. coli core genomes was significantly
higher than for the corresponding whole genomes (R” ~
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Figure 5 mutT based phylogenic tree. The phylogenic tree is based on alignments of the mutT gene found in the core genome of all 53 E. coli
strain. The numbers close to the branches represent bootstrap support. The differently colored labels designate phylogroups: D (light green), B2
(red), E (green), B1 (dark blue), and A (blue). Groups D, B2 and E consisted predominantly of pathogens; Group A was almost exclusively non-
pathogenic, while Group B1 consisted of a mixture of pathogenic and non-pathogenic strains.

0.98, p <0.001). This indicates that the core genome has
been subjected to substantially stronger selective pres-
sures than the non-core part of the genome. As previ-
ously shown (Figures 3 and 4) the dS estimates were
substantially larger than dN estimates, which suggest
strong selection of the purifying type. Additionally, it
can be seen from Figure 6, right panel, that the core
genome was significantly less AT rich (R*~0.98, p<
0.001) than the rest of the genome. This finding has also
been linked to increased selection in other studies al-
though of an unspecified type [30]. In the instance dis-
cussed here, relating to the E. coli core genome, there
seems to be a connection between purifying selection
and decreased AT content.

We also examined whether there was any association
between core- and whole genome levels of both relative
entropy and AT content, which could point towards
similar selective pressures operating on the core- and
whole genome. Our findings indicate no correlation be-
tween core- and whole genome relative entropy (p ~
0.26) suggesting that selective pressures operating on the
core genome are most likely unrelated to selective forces
effective on the rest of the genome. Core- and whole
genome AT content may be negatively correlated (p ~
0.058), albeit weakly. Since this negative correlation was
produced with robust regression, the result was some-
what surprising. An extra generalized additive model
(GAM) [31] was therefore fitted, since such models are
more capable of modeling non-linear relations, but the
association between core- and whole genome AT con-
tent was no longer statistically significant (p ~0.23).

Hence, these results seem to suggest that different se-
lective pressures form the E. coli core and non-core
genomes.

The effect of selective pressures on E. coli genome size

Since we have explored how selective pressures operate
on whole and core genomes using both dN/dS and rela-
tive entropy, we have the necessary results to examine
whether selective forces are associated with genome size
in E. coli. Previously, a negative correlation between E.
coli strains and relative entropy was established which
may give the impression that an increase in genome size
is a consequence of reduced selective pressures. How-
ever, foreign DNA sequences incorporated into a host
genome typically have lower relative entropy. Accord-
ingly, the negative association between genome size and
relative entropy may be due to the lower relative entropy
of the foreign DNA [11]. In Figure 7, it can be seen that
the negative association between relative entropy and
genome size still holds (R* = 0.72, p < 0.001). In addition,
we also found a significant association between the
pathogenicity status of the E. coli strains and genome
size (p~0.001), AT content (p <0.001), whole genome
relative entropy (p < 0.001), as well as size of predicted
HGT (p ~ 0.005). Hence, we find a clear association be-
tween the acquisition of virulence factors and DNA up-
take as well as genome size, suggesting that the
pathogenic potential of E. coli is associated with DNA
uptake. However, we could not find any association be-
tween core genome relative entropy on one hand, and
genome size (p ~ 0.98) or predicted GI size (p ~ 0.37) on
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Figure 6 Core genome relative entropy and AT content. The figure consists of two panels of boxplots displaying the difference between
core- and whole genome relative entropy (left), and core- and whole genome fraction of AT content (right) in all 53 £. coli strains.
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Figure 7 Statistical analyses of genomic properties in 53 E. coli strains. The figure consists of 4 panels showing different associations between
selected genomic properties of pathogenic (red dots) and non-pathogenic (green dots) E. coli strains. The blue line denotes the estimated regression
line, which was significant for all panels (p < 0.05). Top left panel shows genomic AT content versus chromosome size, while the top right panel depicts
estimated HGT size versus genomic AT content. Bottom right panel designates whole genome relative entropy versus genome size, and bottom left
panel shows whole genome relative entropy plotted against genomic fraction of AT.

the other. Thus, the lack of correlation between core-
and whole genome relative entropy in E. coli seems to
suggest that the acquisition of foreign DNA, and viru-
lence factors in particular, is not a consequence of in-
creased selective pressures operating on the genome, at
least not on a larger time scale. In this respect, it is in-
teresting that Shigella spp., which is more or less a dis-
tinct lineage of E. coli, has been shown to obtain its
pathogenic traits through reductive evolution and re-
laxed selective pressures [9]. It should also be noted that
due to strong bi-modality in the strain-based dN/dS esti-
mations no reliable statistical tests could be performed
between group-wise median- dN and dS and any corre-
sponding genomic property such as AT content, genome
size and relative entropy. Plotting both dN and dS or
dN/dS values against the genomic properties discussed

above did not reveal any indications of potential trends
and were therefore excluded.

Genome expansion and genome reduction in E. coli

To our knowledge, there are no previous studies of evo-
lutionary forces responsible for genome expansion due
to HGT. A recent study discusses evolutionary aspects
of recombination in recently emerged clonal Staphylo-
coccus aureus and Clostridium botulinum isolates by
examining dN and dS of SNPs in core-, non-core- and
recombined DNA, but does not deal with genome ex-
pansion as such [32]. Our findings suggest that the E.
coli core genome has been subjected to substantial se-
lective pressures over time compared to the genome as a
whole. The linear association between median dS and
dN estimations for all strains indicates that purifying
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selection has been directing E. coli lineage evolution and
the comparably low rates of non-synonymous substitu-
tions (dN) may indicate that the core genome has
remained intact for a longer time span [19]. It should
also be noted that all E. coli strains examined in this
study are publicly available whole genome sequences,
and the fact that they have been selected for sequencing
may be due to some special traits not commonly ob-
served in wild-type E. coli.

Conclusions

Our results support previous studies arguing that acqui-
sition of traits through HGT may be a consequence
of “spandrel”-like evolutionary processes [33] where the
functions of acquired genes are formed through positive
selection over time or eventually lost [34,35]. Hence, in-
crease of selective pressures appears not to be the driv-
ing force behind chromosome expansion and acquisition
of new traits in E. coli, which is consistent with related
findings, also those pointing to an analogous evolution-
ary trail for gene duplications [36,37]. Pathogenic E. coli
may thus have evolved as a consequence of a hostile
environment, where virulence associated genes are abun-
dant. We anticipate that a lot more will be said about
this in the future.

Methods

59 E. coli genomes, with their annotated coding genes
and corresponding proteins, were downloaded from
NCBI/Genbank [10]. In six of the genomes we discov-
ered a lack of correspondence between the coding genes
and their listed proteins, and these six genomes were
discarded from the downstream analysis. See Additional
file 1 for more information on the different E. coli strains
used in the study. Genomic properties such as genome
size, AT content and relative entropy were estimated
using in-house scripts that are available upon request.
All statistical analyses were performed with R [38].

Extraction of the core genome

All proteins from every genome were BLASTed (blastp)
[39] against all proteins of all other genomes, and a dis-
tance was computed between all protein pairs as de-
scribed in [40]. Based on these distances, proteins were
clustered using hierarchical clustering with complete
linkage, and divided into clusters by cutting the dendro-
gram tree at distance 0,1. Loosely speaking, this means
any two proteins in the same cluster share 90% similar-
ity. Using this rather strict cutoff resulted in a set of
1729 core clusters, i.e. clusters with at least one protein
for each of the 53 genomes in the study. Next, paralogs
were eliminated from each cluster using the same pro-
cedure as described in [40]. The 53 orthologs in each
cluster were aligned using the MCoffee software [41]
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and the protein-alignments were back-translated to
DNA -alignments using the TranslatorX software [42].

Estimation of core genome dN and dS
To calculate dN and dS we followed the method first
described by Li et al. [43]. Briefly, we sequentially
performed gene-wise multiple alignments as described
above on all 1729 core genes from the 53 strains used in
the study. The alignment ends were trimmed manually
so that the sequences within the alignments were all of
the same length. We then used the seginr package [44]
in R to read the alignments, and subsequently calculated
gene-by-strain dN and dS values using the kaks() com-
mand. For strain-wide assessments, the dN and dS esti-
mates for individual genes were added up and weighted
according to gene length. dN and dS for each strain were
based on the median from all versus all comparisons.
Due to the bimodal distribution of the core genome-
based dN and dS values, heatmaps based on hierarchical
clustering with Euclidean distance were created for each
of the dS, dN and dS/dN estimated distance matrices so
that potential differences between the strains could be
examined. These matrices are included in an R-file (see
Additional file 2).

Relative entropy

Relative entropy measures the Kullback-Leibler diver-
gence between observed and expected codon frequencies
in coding regions [13], i.e.:

Fi(XYZ)

Dy = X;F XY 2ot O E(VEZ)

where the sum is taken over all 64 possible codons
XYZ consisting of nucleotides X, Y'and Z, respectively. F;
is a function returning the frequency of codon XYZ, or
nucleotides X, Yand Z, from genome i. A low Dy; indi-
cates that the observed codon frequencies are, on aver-
age, similar to the individual nucleotide frequencies,
signifying that the codon frequencies are more random,
presumably due to relaxation of the selective forces op-
erating on the genome [13].

The mutT based phylogenetic tree

The phylogenic tree based on the mutT gene was created,
after sequence alignment, using maximum likelihood esti-
mation and 500 bootstraps using the package Mega 6 [45].
Based on statistical analyses carried out with the “Ape”
package in R [46], we found that a nucleotide substitution
model based on the Tamura-Nei 93 model [47], which
assumes equal transversion rates and unequal transition
rates, with Gamma-distributed among-site rate variation
was the model with the lowest AIC [48] and therefore
chosen. The Gamma distribution was discretized into 6
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categories, which is the default number of categories;
changes to this number did not notably affect the tree top-
ology. The DNA sequences which the mutT based phylo-
genetic tree is based on are included in FASTA-format
(Additional file 3).

HGT predictions

HGT predictions based on the SIGI-HMM method were
downloaded and computed using the Islandviewer web-
page [49-51].

Statistical analyses

The statistical analyses were carried out using an itera-
tive robust MM-type regression (M-type estimator with
Tukey’s biweight and initial coefficient estimates pro-
vided from an S-type estimator) [52] with significance
estimates (p-values) obtained from ¢-statistics. All similar
strains were discarded before these statistical analyses
so that the sample size was reduced to 36 strains (see
Additional file 4 and Additional file 5). Robust regres-
sion was used where there were several outlying resid-
uals resulting in moderately skewed distributions,
otherwise standard ordinary least squares regression was
used, which additionally includes a goodness-of-fit esti-
mate (R?). The association between core- and whole
genome AT content was also tested using a generalized
additive model (GAM), where the predictor (whole gen-
ome AT content) was modeled using a spline-function
[53]. Additional file 5 contains all estimates resulting
from the statistical analyses.

Additional files

Additional file 1: An Excel file containing information about the
strains used in the study.

Additional file 2: An R-file with the dN/dS estimates used in the
cluster analyses.

Additional file 3: FASTA file with aligned sequences used to make
mutT-based tree.

Additional file 4: An Excel file with data used for regression
analyses.

Additional file 5: An Excel file containing data from the regression
analyses.
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