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Abstract

Background: The genome-wide association (GWA) approach represents an alternative to biparental linkage mapping
for determining the genetic basis of trait variation. Both approaches rely on recombination to re-arrange the genome,
and seek to establish correlations between phenotype and genotype. The major advantages of GWA lie in being able
to sample a much wider range of the phenotypic and genotypic variation present, in being able to exploit multiple
rounds of historical recombination in many different lineages and to include multiple accessions of direct relevance to
crop improvement.

Results: A 191 accessions eggplant (Solanum melongena L.) association panel, comprising a mixture of breeding lines,
old varieties and landrace selections originating from Asia and the Mediterranean Basin, was SNP genotyped and
scored for anthocyanin pigmentation and fruit color at two locations over two years. The panel formed two major
clusters, reflecting geographical provenance and fruit type. The global level of linkage disequilibrium was 3.4 cM. A
mixed linear model appeared to be the most appropriate for GWA. A set of 56 SNP locus/phenotype associations was
identified and the genomic regions harboring these loci were distributed over nine of the 12 eggplant chromosomes.
The associations were compared with the location of known QTL for the same traits.

Conclusion: The GWA mapping approach was effective in validating a number of established QTL and, thanks to the
wide diversity captured by the panel, was able to detect a series of novel marker/trait associations.
Background
Eggplant (Solanum melongena L.) ranks third in com-
mercial importance among the solanaceous crops after
potato and tomato, and it is cultivated in many coun-
tries, particularly in southern Asia, middle East and
Northern Africa. Global production in 2012 was about
48 Mt [1], and the largest European producer is Italy.
Despite its commercial importance, little research effort
has been devoted to the genetic analysis of key breeding
and quality traits with respect to the other Solanaceae
crops tomato, potato and Capiscum [2-4]. Several quan-
titative trait loci (QTL) underlying fruit color and shape
have been described by Nunome et al. [5], while
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Doganlar et al. [6] and Frary et al. [7] succeeded in iden-
tifying QTL for certain fruit- and plant-related traits, but
only in a population derived from an inter-specific cross,
which is of reduced utility in eggplant improvement.
More recently, the genetic basis of parthenocarpy [8],
Ralstonia solanacearum resistance [9], anthocyanin con-
tent [10] and a group of agronomic traits [11] has been
elucidated.
The genome-wide association (GWA) approach repre-

sents an alternative to biparental linkage mapping for
the determination of the genetic basis of traits [12]. Both
approaches rely on recombination to re-arrange the gen-
ome [13], and seek to establish correlations between
phenotype and genotype, based on the non-random as-
sociation of alleles at two or more loci, termed linkage
disequilibrium (LD). In a bi-parental population, only
the polymorphisms between the two parents can be
queried, whereas in a GWA population the number of
l Ltd. This is an Open Access article distributed under the terms of the Creative
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polymorphisms is determined by the genetic diversity of
the entire germplasm panel. In a GWA population, LD
is determined not only by recombination frequency, but
also by genetic drift, by the mating system of the plant
and by the history of selection (reviewed by Rafalski and
Morgante [14]). The major advantages of GWA over bi-
parental linkage mapping lie in the much wider variabil-
ity in phenotype and genotype made accessible, a history
of multiple rounds of recombination in many different
lineages and the inclusion of germplasm of direct rele-
vance to crop improvement. The real risk that the gen-
etic architecture of the germplasm panel may cloud the
analysis has to be allayed by a prior evaluation of the
population’s structure [15].
To date only one GWA-based study of variation in

eggplant has been performed [16] but the present study
used a larger number of accessions (191 vs 141) and a
more densely populated genetic map (384 SNPs (single
nucleotide polymorphisms) vs 105 microsatellites) and
targeted traits related to anthocyanin accumulation and
fruit color.

Methods
Plant material and DNA isolation
A core set of 191 accessions (Additional file 1: Table S1),
chosen from a large collection of breeding lines, old var-
ieties and landrace selections by Cericola et al. [17], was
established to represent germplasm grown in east Asia
(EA accessions) and in the Mediterranean basin (WE).
The entries were all highly homozygous and thus pheno-
typically stable. Genomic DNA was extracted from fresh
young leaves harvested from three individuals of each
accession, using an E.Z.N.A.™ Plant DNA mini kit
(OMEGA Bio-Tek, Norcross, GA, USA), according to the
manufacturer’s protocol. The quality of each DNA sample
was monitored by electrophoresis through an 0.8% agarose
gel and its DNA concentration estimated spectrophoto-
metrically (DU730, Beckman Coulter Brea CA, USA).

SNP data acquisition
Each accession was genotyped at 384 SNP loci as reported
by Barchi et al. [18]; 339 of these have been genetically
mapped [10]. SNPs were selected taking into account a
quality score, based on the probability of good perform-
ance using the Illumina Golden Gate assay (Illumina, San
Diego, CA, USA); the score >0.6 indicates a high probabil-
ity of success. A BlastX search was carried out against the
TAIR9 dataset using the 2,201 highest quality score SNPs
as query; the 384 sequences having the highest e-value
were then chosen. The GoldenGate assay was carried out
at the UC Davis Genome Center (www.genomecenter.
ucdavis.edu). Automatic allele calling was handled by
GenCall software (Illumina). Two of the entries were in-
cluded in duplicate as an internal control. SNP loci in
which the minimum allele frequency (MAF) fell below 5%,
along with those where >10% of the data were missing,
were discarded. Each SNP locus was scored as a binary
data point, and the PIC (polymorphism information con-
tent) of each was estimated following Anderson et al. [19].

Population structure
Genetic similarities between pairs of entries were quanti-
fied by the Dice [20] similarity index, then used to de-
scribe genetic relationships using both the unweighted
pair-group arithmetic mean (UPGMA) method, and
principal coordinate analysis (PCoA) by means of Past
2.08 software [21]. STRUCTURE v2.1 software [22] was
used to estimate the number of sub-populations in the
panel, applying the admixture model for the ancestry of
individuals and correlated allele frequencies. The popula-
tion structure was modelled with a burn-in of 50,000 cycles
followed by 100,000 Markov Chain Monte Carlo (MCMC)
repeats. The Evanno et al. [23] transformation method
was then used to infer K, the most likely number of popu-
lations. Pair-wise kinship coefficients between the acces-
sions were estimated using SPAGeDi software [24]. The
diagonal of the matrix was set to two, and negative values
were set to 0, following Yu et al. [15].

LD analysis
LD decay was quantified by plotting pair-wise r2 values
against the distance (cM) between adjacent SNP loci,
based on the genetic map developed by Barchi et al.
[10]. The effect of population structure on LD was in-
vestigated with three approaches as suggested by Mangin
et al. [25]: r2 (an estimate of LD between SNP loci with-
out any correction); r2s (taking into account population
structure derived from STRUCTURE analysis) and r2sv
(taking into account both the STRUCTURE output and
the kinship matrix). To quantify the reach of LD, an r2

threshold of 0.15 was set [26]. The relationship between
the baseline r2 values and genetic distance was deter-
mined using a locally weighted scatter plot smoothing
line [27]. To visualize LD throughout the genome, heat
maps were produced based on pair-wise r2, r2s and r2sv
values [28]. The estimation of all LD measures was car-
ried out by programs implemented in the R package
LDcorSV [25].

Acquisition and analysis of phenotypic and
morphological data
The accessions were grown in field both at Montanaso
Lombardo (ML: 45°20'N, 9°26'E) and at Monsampolo del
Tronto (MT: 42°53'N; 13°47'E) in 2010 and again in
2011. In each trial, the material was set out as two ran-
domized complete blocks with six plants per entry per
block, and standard horticultural practices were applied.
Phenotyping methodology was based on the European
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Cooperative Programme for Plant Genetic Resources
Solanaceae descriptors (ECPGR [29]) and the Inter-
national Board for Plant Genetic Resource descriptors
for eggplant (IBPGR [30]). The traits assayed were adax-
ial leaf lamina anthocyanin (adlan), stem anthocyanin
(stean), abaxial leaf lamina anthocyanin (ablan), calyx
anthocyanin (calan), corolla color (corcol), adaxial leaf
venation anthocyanin (adlvean), abaxial leaf venation
anthocyanin (ablvean), peduncle anthocyanin (pedan),
fruit color (fcol) and fruit glossiness (fglo). The anthocya-
nin content of the vegetative part of the plant was
scored on a 0–5 scale, with “0” representing no visible
anthocyanin pigmentation (completely green tissue), and
“5” representing dark violet tissue. corcol was scored as
“0” for white, “1” for pink and “2” for violet. fcol was
measured using a CR-400 Chroma-meter (Konica
Minolta, Tokyo, Japan) to generate three Hunter color
coordinates (L*, a* and b*), averaged across three regions
of the surface on each fruit; the measurements were re-
duced to a single variable by calculating the Euclidean
distance from white (L* =100, a* =0, b* =0), following
Prohens et al. [31]. fglo was scored as “1” for opaque, “2”
for intermediate and “3” for bright peel color. The trait
data were treated as adjusted entry means (best linear
unbiased predictors). Several multivariate linear mixed
models were tested using a combination of the F-test
(for the fixed component) and the Akaike test (for the
random component). The model shown to best fit the
data was: pijsb = lj + ys + rbjs + gi + mij + nis + eijs, where
pijsb represents the phenotype of the bth replicate of the
ith genotype at the jth location in the sth year; lj repre-
sents the fixed effect of the jth location, ys the fixed effect
of the sth year, rbjs the fixed effect of the bth replicate
within the jth location in the sth year, gi the random ef-
fect of the ith genotype, mij the random effect of the
genotype by location interaction, nis the random effect
of the genotype by year interaction and e the residual.
Broad-sense heritabilities were calculated from the
expression

h2 ¼ σ2
g

σ2
g þ σ2y=ny þ σ2l=nl þ σ2e= ny � nl

� �

where σ2g represented the genotypic variance, σ2y the
genotype x year interaction, σ2l the genotype x location
interaction, σ2e the residual variance, ny the number of
years (2) and nl the number of locations (2). Pearson
correlation coefficients were calculated between each
pair of phenotypic traits. All analyses were carried out
by algorithms implemented in R software [32].

GWA mapping
The GWA analysis was performed using Tassel v4.0.25
software [33]. Three models were tested: the simple general
linear model (GLM, Naive-model), the structured associ-
ation model (GLM, Q-model), based on the STRUCTURE
output, and the mixed linear model (MLM, K +Q-model),
taking into account both the STRUCTURE output and the
kinship matrix [15]. The mixed-model approach has been
used elsewhere [34-36] to analyse variation in qualitative
traits by treating them as quantitative ones, on the assump-
tion that averaging across replicates would produce nor-
mality. The cumulative density function was applied to
assess the efficiency of the various models in correcting for
population structure. The false positive rate (p-value) was
converted into a false discovery rate [37], using the QVA-
LUE package implemented in R. The estimation of the
overall proportion of true null hypothesis π0 was based on
λ range set from 0 to 0.95 by 0.05 and the smoother
method was applied [38]. q-values <0.05 were considered
as significant. For each significantly associated SNP locus,
a general linear model with all fixed effect terms was ap-
plied to estimate the proportion of the phenotypic variance
explained (PVE). In order to visualize the associations and
to compare them with established QTL [6,10], all SNPs as-
sociated with a particular trait mapping within less than
double the mean LD stretch were considered as a single
unit defining association groups. The resulting genetic
map, incorporating the associations and QTL detected
here into an F2-based linkage map [10], was drawn using
MapChart v2.1 software [39]. Synteny between tomato and
eggplant chromosomal regions was investigated by aligning
the RAD tag sequences [40] surrounding SNPs against the
tomato SL2.40 genome sequence (http://solgenomics.net/)
using the Burrows-Wheeler alignment tool [41]. Align-
ments with a MAPping Quality value >10 were considered
as valid.

Results
Genotypic characterization and population structure
The 191 accessions were initially genotyped at 384 SNP
loci, of which 338 were retained after quality control.
The two replicated accessions gave uniformly consistent
allele calls. MAF at most of the SNP loci ranged from
10% to 50% (Additional file 2: Figure S1A), with only 24
displaying a MAF value <5%. These were discarded, leav-
ing a genotypic matrix of 191 entries by 314 SNP loci, of
which 307 have been placed on the Barchi et al. [10]
genetic map. The global average PIC value was 0.41; loci
on chromosome E02 had a low mean PIC value (0.28),
while the mean PIC for the remaining loci on a
chromsome-by-chromosome basis lay between 0.38 and
0.46 (Additional file 2: Figure S1B).
The STRUCTURE analysis resulted in a prediction for

K of either 1 or 2 (Figure 1A). The UPGMA-based den-
drogram (Figure 1B) and the PCoA (Figure 1C) show
the genetic relationships between the 191 accessions.
Their form, as well as the ΔK analysis provided by the
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Evanno et al. [23] transformation, suggested a popula-
tion structure comprising two subgroups. According to
the level of membership provided by STRUCTURE, cluster
A contained 91% of the EA accessions, while 96% of the
cluster B membership comprised WA accessions. The
remaining 35 accessions (18%) had ambiguous member-
ship and were thus classified as admixed. PCoAs carried
out separately on the EA accessions showed some cluster-
ing among the Chinese entries, and among the Indian and
SE Asian ones (Additional file 3: Figure S2A). The WA
entries were grouped according to previously described
morphology-based groups (Additional file 3: Figure S2B)
[17], where group 1 accessions produced long, light and
curved fruits, group 2 oblong shaped fruits of medium
weight and group 3 round, heavy fruits.

LD evaluation
An r2 threshold of 0.15 was applied to define which SNP
loci were significantly associated with one another. On
the basis of the r2 model (with no correction for the
population structure, Figure 2A), the mean genetic
length of these associated groups was 4.8 cM. A mean r2

of 0.15 was observed between all pairs of linked loci,
with a mean maximum r2 value of 0.56. The mean LD
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Figure 1 The genetic architecture of the full germplasm panel. A) Ln(
derived after taking account of the STRUCTURE analysis. C) PCoA visualizati
panel. Cluster A is shown in orange, cluster B in blue and admixtures in gre
between unlinked loci was 0.10. When the r2s model was
applied (Figure 2B), the LD stretch was reduced to
3.9 cM, with a mean level of 0.07 between adjacent loci;
an average of the highest r2s value of each marker with
any other of 0.45, and the mean LD between unlinked
loci was 0.02. On the basis of the r2sv model (Figure 2C),
LD extended over 3.4 cM, with a whole genome mean of
0.03 between adjacent (maximum 0.26) and a mean LD
between unlinked loci of less than 0.01. Heat maps pro-
duced for each of the three models showed that strong
LD was limited to certain regions, mostly aligned to the
diagonal (Figure 3). Apparent high levels of LD between
loci mapping to a different chromosome were suggested
in the r2 model, but this phenomenon was largely absent
in the r2s and r2sv models.

Phenotypic data analysis and association mapping
A summary of the accessions’ phenotypic performance is
presented in Table 1 together with the heritabilities for
scored traits. The PVEs are included in Additional file 4:
Figure S3. A wide range of variation was observed for
most of the traits, and the genotypic variance compo-
nent was substantial for all of them (P <0.01). pedan, fcol
and calan were the most genetically variable of the traits
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K) and DK plots derived from the SNP data. B) UPGMA dendrogram
on of the genetic relationships between members of the association
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Figure 2 LD decay. The curve was fitted using a locally weighted scatterplot smooth regression with the threshold set at 0.15. A) r2 model, B) r2s
model, C) r2sv model.
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Figure 3 Heat maps indicating genome-wide variation in LD across the genome. A) r2 model, B) r2s model, C) r2sv model.
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(Additional file 4: Figure S3), and also the most highly
heritable. The GxE component of the variance (involving
both season and location) was small, with the exception
of that for corcol and fglo, the two least heritable of the
traits. Broad-sense heritabilities averaged 0.71 (0.38-
0.98), with the least heritable traits being fglo and corcol,
and the most heritable pedan and fcol (Table 1). Some
significant inter-trait correlations were observed: traits
associated with the anthocyanin content of the plant
(adlan, stean, ablan, calan, adlevan, ablevan and pedan)
were strongly and positively correlated with one another,
but only moderately correlated with corcol. The traits fglo
and fcol were somewhat inter- correlated, and correlated
with the anthocyanin content-related traits, but were un-
correlated with corcol. Both the correlation data and the
distribution of each trait are reported in Additional file 5:
Figure S4.
Associations between SNP alleles and morphology

were acquired on the basis of three different models.
The GLM Naive-model, which involves no correction
for population structure, identified several spurious asso-
ciations. This failing was improved by applying the GLM
Q-model, but only the MLM K +Q-model produced a
distribution of p-values comparable to the theoretical
one (Figure 4). Thus the latter model was pursued. Fol-
lowing q-value correction, 56 significant genotype/
phenotype associations were detected. Regions carrying
the presumed genes/QTL were identified on nine of the
12 chromosomes (none were detected on chromosomes
E04, E09 or E12) (Table 2), and involved eight of the ten
traits (no associations involved either ablan or corcol).
The number of associations per trait ranged from four
(calan and fglo) to 11 (stean), and the total number of
SNP loci involved was 20; these loci had a mean MAF of
33.4%. The PVE per association laid between 5% and
24% (mean 10%). In order to match the associations with
previously identified QTL, loci linked to one another by
<6.8 cM were considered as a unit, and their genomic
Table 1 Codes used to identify the various traits along with m
variation (CV) and broad-sense heritabilities

Trait Code

Adaxial leaf lamina anthocyanin (scale 0–5) adlan

Stem anthocyanin (scale 0–5) stean

Abaxial leaf lamina anthocyanin (scale 0–5) ablan

Calyx anthocyanin (scale 0–5) calan

Corolla color (scale 0–3) corcol

Adaxial leaf venation anthocyanin (scale 0–5) adlvean

Abaxial leaf venation anthocyanin (scale 0–5) ablvean

Fruit peduncle anthocyanin (scale 0–5) pedan

Fruit color (L*a*b* coordinates distance from 0) fcol

Fruit glossiness (scale 0–3) fglo
location was obtained from the Barchi et al. [10] map.
Overall, 12 association groups, comprising 1–4 SNP loci,
were defined in this way (Figure 5). The most prominent
clustering of traits occurred on chromosome E10, which
also proved to harbor the most genes/QTL underlying
variation in anthocyanin content and fruit color. The
E10.2 group (four SNPs) harbored genetic factors for
adlan, stean, calan, adlevean, ablevean, pedan and fcol
while E10.3 (three SNPs) included genetic factors for
stean, ablevean, adlevean, pedan, fcol and fglo. One of
the two other large clusters was on chromosome E02
(one SNP), which was influential for adlan, stean, calan
and adlvean, and the other was on E05 (one SNP), with
genes/QTL determining stean, adlvean, pedan and fcol
(Figure 5).
Detailed information regarding the individual geno-

type/phenotype associations is given in Table 2. The
SNP locus most significantly associated with adlan was
24985_PstI_L311 (group 06.1), with a MAF of 33.5% and
a PVE of 22%; for stean, calan, adlvean, ablvean, pedan
and fcol 35442_PstI_L404 (group 10.2), with a MAF of
48.7% and a PVE of 14-24%. For fglo, three highly signifi-
cantly associated SNPs were detected, namely
3382_PstI_L285, 19601_PstI_L364 and 33571_PstI_L387;
these had a MAF of 30% and each had a PVE of 10%.

Synteny with tomato and the identification of potential
candidate genes
The regions of chromosomes E02, E05 and E10 harbor-
ing genetic factors underlying anthocyanin content were
aligned with the tomato genome sequence. E02 and T02
are known to be syntenic, while part of E05 is syntenic
with the lower section of T05 and the rest with the
lower section of T12; E10 corresponds to the upper sec-
tion of T05 and the lower one of T10 [42,43]. Genes in
tomato encoding flavonone 3-hydroxylase and dihydro-
flavonol 4-reductase are present on T02 in a region
homologous with group E02.1, which harbors genes/
ean values, standard deviations (SD), coefficients of

Average SD CV Heritability

1.37 1.49 1.09 0.67

2.80 1.83 0.65 0.81

1.08 1.08 1.00 0.55

2.74 1.75 0.64 0.87

1.49 0.51 0.34 0.42

2.27 1.53 0.67 0.75

2.26 1.78 0.78 0.76

2.20 2.13 0.97 0.95

74.57 15.60 0.21 0.98

2.37 0.73 0.31 0.38



Figure 4 Cumulative density function using three alternative association models: the GLM Naive (violet trace), GLM Q-model (green trace)
and MLM (red trace). Traits showing significant associations are indicated. The latter provided the most consistent p-values.
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QTL for adlan, stean, calan and adlvean (Figure 6). The
location of the E05.1 group (stean, adlvean, pedan and
fcol) corresponds to a segment of T12 in which a gene
encoding the anthocyanin synthesis-associated enzyme
UDP glucose anthocyanidin 5–0 glucosyltransferase is
located (Figure 6). The tomato gene encoding UDP glu-
cose anthocyanidin 3–0 glucosyltransferase and the two
MYB transcription factors Ant1 and An2 are present on
T10, in a region syntenic to groups E10.2 and E10.3;
genes/QTL in these groups had a strong influence over
the pigmentation of both the vegetative parts of the
plant and the fruit.

Discussion
Genetic variation and population structure
The 191 members of the association panel were deliber-
ately selected to represent the full range of phenotypic
diversity in eggplant. The panel was genotyped with a
subset of 384 of the >10,000 SNPs identified by sequen-
cing RAD tags generated from the genomic DNA of
67/3 and 305E40, the parents of an established F2 map-
ping population [44]. Most of the SNPs included in the
genotyping chip were unambiguously scorable and in-
formative, producing average MAF and PIC values of 0.30
and 0.41, respectively. A small number of SNPs had to be
discarded for reasons of poor scoring quality or low
informativeness. Particularly low PIC values were obtained
in the distal region of the chromosome E02 (Additional
file 2: Figure S1B); this chromosomal region is the site of
the locus Rfo-sa1, which confers resistance against the
soil-borne fungus Fusarium oxysporum f. sp. melongenae
which was introgressed in the parental line 305E40 from
Solanum aethiopicum gr. gilo [45,46]. Therefore, 305E40
carries some rather low frequency alleles which show a
rather low frequency among the accession under study.
The information provided by these polymorphisms are of



Table 2 Significant genotypic associations with anthocyanin content- and fruit color-related traits

Trait Marker Chrom. Position (cM) Association group p-value q-value PVE MAF

adlan 10532_PstI_L317 E01 28.48 E01.1 5.04E-04 1.19E-02 8% 24.6%

21901_PstI_L329 E02 58.27 E02.1 2.34E-03 4.80E-02 6% 19.9%

24985_PstI_L311 E06 151.80 E06.1 3.76E-11 2.32E-09 22% 33.5%

35442_PstI_L404 E10 69.13 E10.2 2.04E-05 5.24E-04 11% 48.7%

15158_PstI_L379 E10 69.39 E10.2 4.08E-07 1.79E-05 13% 43.5%

36033_PstI_L358 E11 68.04 E11.1 1.69E-05 4.74E-04 11% 42.4%

stean 27031_PstI_L365 E01 110.78 E01.2 3.25E-04 1.77E-02 7% 31.4%

21901_PstI_L329 E02 58.27 E02.1 7.73E-04 2.85E-02 7% 19.9%

12391_PstI_L355 E05 94.93 E05.1 1.05E-03 2.85E-02 7% 46.6%

9226_PstI_L398 E08 1.80 E08.1 1.47E-03 3.63E-02 5% 19.4%

35442_PstI_L404 E10 69.13 E10.2 5.51E-09 1.50E-06 18% 48.7%

15158_PstI_L379 E10 69.39 E10.2 2.89E-05 3.92E-03 9% 43.5%

19126_PstI_L349 E10 69.39 E10.2 2.08E-04 1.41E-02 7% 5.7%

31471_PstI_L271 E10 70.39 E10.2 1.91E-03 3.99E-02 6% 30.4%

3382_PstI_L285 E10 128.30 E10.3 9.56E-04 2.85E-02 6% 29.8%

19601_PstI_L364 E10 128.34 E10.3 9.56E-04 2.85E-02 6% 29.8%

33571_PstI_L387 E10 128.55 E10.3 9.56E-04 2.85E-02 6% 29.8%

calan 21901_PstI_L329 E02 58.27 E02.1 2.87E-05 2.71E-03 11% 19.9%

31763_PstI_L370 E10 6.25 E10.1 3.37E-04 2.39E-02 8% 43.5%

35442_PstI_L404 E10 69.13 E10.2 5.96E-12 1.69E-09 24% 48.7%

15158_PstI_L379 E10 69.39 E10.2 5.12E-08 7.24E-06 15% 43.5%

adlvean 21901_PstI_L329 E02 58.27 E02.1 3.74E-04 1.48E-02 8% 19.9%

25734_PstI_L387 E05 87.34 E05.1 1.51E-03 3.26E-02 7% 39.3%

35442_PstI_L404 E10 69.13 E10.2 1.22E-09 2.91E-07 20% 48.7%

15158_PstI_L379 E10 69.39 E10.2 2.41E-05 2.87E-03 9% 43.5%

19126_PstI_L349 E10 69.39 E10.2 1.36E-03 3.23E-02 5% 5.7%

3382_PstI_L285 E10 128.30 E10.3 1.68E-04 7.99E-03 7% 29.8%

19601_PstI_L364 E10 128.34 E10.3 1.68E-04 7.99E-03 7% 29.8%

33571_PstI_L387 E10 128.55 E10.3 1.68E-04 7.99E-03 7% 29.8%

36033_PstI_L358 E11 68.04 E11.1 7.80E-04 2.10E-02 7% 42.4%

ablvean 35442_PstI_L404 E10 69.13 E10.2 8.16E-07 1.35E-04 14% 48.7%

15158_PstI_L379 E10 69.39 E10.2 4.21E-07 1.35E-04 13% 43.5%

31471_PstI_L271 E10 70.39 E10.2 7.03E-04 3.87E-02 7% 30.4%

3382_PstI_L285 E10 128.30 E10.3 7.28E-06 4.81E-04 10% 29.8%

19601_PstI_L364 E10 128.34 E10.3 7.28E-06 4.81E-04 10% 29.8%

33571_PstI_L387 E10 128.55 E10.3 7.28E-06 4.81E-04 10% 29.8%

pedan 25734_PstI_L387 E05 87.34 E05.1 3.80E-06 4.28E-04 12% 39.3%

35442_PstI_L404 E10 69.13 E10.2 2.05E-10 6.94E-08 20% 48.7%

15158_PstI_L379 E10 69.39 E10.2 1.39E-09 2.35E-07 17% 43.5%

3382_PstI_L285 E10 128.30 E10.3 1.90E-04 1.07E-02 7% 29.8%

19601_PstI_L364 E10 128.34 E10.3 1.90E-04 1.07E-02 7% 29.8%

33571_PstI_L387 E10 128.55 E10.3 1.90E-04 1.07E-02 7% 29.8%

fcol 27031_PstI_L365 E01 110.78 E01.2 4.66E-04 9.83E-03 7% 31.4%

25776_PstI_L386 E05 100.27 E05.1 1.07E-04 4.53E-03 11% 20.4%
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Table 2 Significant genotypic associations with anthocyanin content- and fruit color-related traits (Continued)

34571_PstI_L286 E07 15.66 E07.1 2.60E-04 6.09E-03 6% 46.6%

19381_PstI_L396 E10 64.21 E10.2 8.81E-05 4.53E-03 10% 49.2%

35442_PstI_L404 E10 69.13 E10.2 1.22E-08 2.58E-06 22% 48.7%

19126_PstI_L349 E10 69.39 E10.2 2.15E-04 5.67E-03 10% 5.7%

3382_PstI_L285 E10 128.30 E10.3 1.51E-04 4.53E-03 6% 29.8%

19601_PstI_L364 E10 128.34 E10.3 1.51E-04 4.53E-03 6% 29.8%

33571_PstI_L387 E10 128.55 E10.3 1.51E-04 4.53E-03 6% 29.8%

36033_PstI_L358 E11 68.04 E11.1 6.92E-06 7.30E-04 17% 42.4%

fglo 3687_PstI_L304 E03 104.00 E03.1 4.87E-04 3.88E-02 6% 23%

3382_PstI_L285 E10 128.30 E10.3 1.07E-05 1.14E-03 10% 30%

19601_PstI_L364 E10 128.34 E10.3 1.07E-05 1.14E-03 10% 30%

33571_PstI_L387 E10 128.55 E10.3 1.07E-05 1.14E-03 10% 30%

The associated SNPs’ ID, genomic location, relevant association group, the significance of the association (both p- and q-values), PVE (phenotypic variability
explained) and MAF (minimum allele frequency) are shown.
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interest only in the artificial progeny in which they are
well represented while may result of scarce usefulness in a
germplasm panel.
The population structure of the panel (Figure 1) com-

prised two rather distinct sub-populations, which broadly
matched the accessions’ provenance. The species is thought
to have been domesticated in Asia [47-49] and introduced
into the Mediterranean basin by the Arabs in the 7th to 8th

century CE [50]. The distinctness of the two gene-pools re-
flects a history of independent selection and adaptation to
different environments and consumer preferences. When
the PCO analysis was applied to just the “Occidental” en-
tries no evidence of correlation between provenance and
genetic relatedness was found, while a clustering related to
the three morphological groups we previously described
(i.e. group 1 -long, light and curved fruits-, group 2 -oblong
shaped, medium weighted fruits- and group 3 -round an
heavy fruits), was detected (Additional file 3: Figure S2B)
[17]. Possibly, different uses of different types of fruits may
have generated separate groups of varieties cultivated in dif-
ferent areas, with a different history of selection responsible
of the observed genetic differentiation. The picture was ra-
ther different for the “Oriental” gene pool (Additional file 3:
Figure S2A); the Asian material did form two recognizable
clusters (Additional file 3: Figure S2A), with most of the In-
dian, SE Asian and Indonesian materials forming one group
and the Chinese ones the other. This behavior replicated
the outcome of a previous diversity study based on SSR
markers [17], thereby further supporting the hypothesis
that eggplant was domesticated independently in the Indian
subcontinent and in China [47,49].

LD in eggplant
In order to account for population structure, two different
corrections to the r2 measure were attempted, as proposed
by Mangin et al. [25]. The estimate of LD derived without
these corrections was unreliable, as it included apparent as-
sociations over long intra-chromosomal distances (Figure 2),
and even between loci mapping to two different chromo-
somes (Figure 3). Applying the r2s model reduced the extent
of these clearly artefactual associations, but a more strin-
gent method was still needed to correct for bias due to gen-
etic relatedness. This was provided by the r2sv model, which
achieved a 30 fold reduction in associations between un-
linked markers, leaving high LD values only between pairs
of genetically linked SNP loci. The end estimate for the ex-
tension of LD was 3.4 cM, which matches reasonably well
with the level reported for eggplant by Ge et al. [16], and
also with those documented in other self-pollinating species
such as the near-relative tomato (6–8 cM; [51]), Arabidop-
sis thaliana (10 kb; [52]), barley (3.5 cM; [26]) and wheat
(1–5 cM; [27]). LD was not uniformly distributed along the
genome (Figure 3), a phenomenon which has also been
noted elsewhere [27,51,53,54]. Its non-uniformity is
thought to reflect the irregular distribution of recombin-
ation along the chromosome, but can also be influenced by
positive selection [55]. Furthermore, the high level of LD
and extended haplotype blocks in our material may be due
to the high level of homozygosity which can hardly gener-
ate recombinations as well as the genetic bottleneck due to
selection which drastically reduced the low frequent haplo-
types and extended the association between markers. Such
a level of LD is ideal for the GWA method, as it allows for
an efficient coverage of the genome based on a relatively
moderate number of markers, while still encouraging a high
level of genetic diversity.

GWA mapping of genetic factors underlying anthocyanin
pigmentation and fruit color
QTL discovery in eggplant has to date been achieved
using linkage mapping in bi-parental inter and intra-
specific populations [6,7,10,11,56]. A first attempt to
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Figure 5 Regions identified by GWA in comparison to QTL locations described by Barchi et al. [10]. The GWA outcome is given to the left
of each chromosome (the vertical bars represent a ±3.4 cM interval around the position of the associated SNP loci) and the various association
groups are indicated in panels and marked in red. The QTL locations are shown to the right of each chromosome.
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apply GWA has been published recently [16], in which
49 marker associations related to eight traits were re-
ported. Some potentially fatal weaknesses in the analysis
can, however, be identified. Firstly, the issue of a MAF
threshold was not addressed, so it is not clear whether
loci associated with a low MAF were discarded or in-
cluded; the effect of their inclusion would be to generate
false associations caused by the co-incidence of variation
for a trait and a statistically under-represented allele.
Secondly, the GLM model was used to estimate the sig-
nificance of locus/trait associations, but this method has
been shown to be incapable of adequately correcting for
population structure [15,57], unlike the MLM model
used in the present study. Thirdly, no evidence of
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Figure 6 Synteny between tomato and eggplant chromosomes. The latter are shown on the left with bars indicating the site of QTL for
anthocyanin content and fruit color. Their tomato orthologs are shown on the right, along with the position of possible candidate genes.
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correcting for spurious associations (such as a q-q plot
or a cumulative density function) was provided.
Fourthly, a threshold false positive rate (p-value) of 0.01
was adopted as a threshold to validate the associations,
instead of using a corrected threshold (e.g. the Bonferroni
correction), or one for the false discovery rate.
The genetic basis of anthocyanin synthesis and accu-

mulation has been widely explored in the Solanaceae
[58-64]. In eggplant, this has long been thought to be ra-
ther complex [65,66], involving at least three major and
five minor loci, with the added complication of epistatic
interactions and/or pleiotropic effects. The GWA pro-
cedure generated 56 associations between SNP loci and
either anthocyanin content- or fruit color-related traits.
According to Collard et al. [67], a QTL associated with a
PVE of at least 10% should be considered as a “major”
locus. There was a lack of any significant association in-
volving corcol and ablan, but at least one “major” QTL
was putatively identified for each of the other eight
traits. The SNP loci associated with one (or more) traits
were clustered into 12 groups, scattered over nine chro-
mosomes. The extent of some of the inter-trait correla-
tions suggests that what appeared to be a cluster of QTL
is more likely a single pleiotropic locus, although the pres-
ence of a set of linked QTL cannot be definitively ruled
out. Broad-sense heritabilities were generally >0.5 (the ex-
ceptions were fglo (0.38) and corcol (0.42)) with a limited
genotype by environment effect, which confirms the
proposition that the influence of the growing environment
on anthocyanin pigmentation is quite limited [10,68].
The genomic location of eight of the 12 association

groups overlapped that of a known QTL, showing how
effective GWA can be in identifying the genetic basis of
quantitative traits. QTL identified via linkage analysis of
bi-parental populations are generally considered to be
experiment-specific, unless validated [69] and have often
proven to be genetic background specific as well. Of the
20 SNP loci involved in the genotype/phenotype associa-
tions discovered here, six mapped to four genomic re-
gions where no QTL related to anthocyanin content or
fruit color has yet been reported (association groups
E01.1, E03.1, E07.1 and E10.3; Figure 5, Table 3). Some
of these markers could only have been identified thanks
to the extent of the genetic variability which the GWA
approach makes accessible; following a validation exer-
cise, they may well prove to provide viable indirect selec-
tion tools in a practical breeding programme. The GWA
study of Ge et al. [16] has located two marker/fcol asso-
ciations, one on chromosome E01 and the other on E05,
in correspondence to the association groups E01.2 and
E05.1 carrying QTLs for the same trait.

Synteny and possible orthologs in other Solanaceae
species
To date most of the effort invested in the genetic ana-
lysis of anthocyanin pigmentation in the Solanaceae has



Table 3 Genotype/phenotype associations and known QTL location

GWA mapping Family-based QTL mapping

Chromosome Association Group Trait QTL Reference

E01 E01.1 adlan - -

E01.2 stean - -

fcol fai1.1 Doganlar et al. [6]

fap Ge et al. [16]

E02 E02.1 adlan lla2.2 Doganlar et al. [6]

stean steanE02.MT Barchi et al. [10]

calan - -

adlvean - -

E03 E03.1 fglo - -

E05 E05.1 stean steanE05.ML; steanE05.MT Barchi et al. [10]

adlvean lveanE05.ML; lveanE05. MT Barchi et al. [10]

pedan pedanE05.ML; pedanE05.MT Barchi et al. [10]

fcol fap Ge et al. [16]

E06 E06.1 adlan ablanE06.ML Barchi et al. [10]

lla6.1 Doganlar et al. [6]

E07 E07.1 fcol - -

E08 E08.1 stean - -

E10 E10.1 calan - -

E10.2 adlan ablanE10a.ML; ablanE10a.MT Barchi et al. [10]

lla10.1 Doganlar et al. [6]

stean steanE10.ML; steanE10.ML Barchi et al. [10]

sa10.1 Doganlar et al. [6]

calan calanE10.ML; calanE10.MT Barchi et al. [10]

adlvean lveanE10.ML; lveanE10.MT Barchi et al. [10]

ablvean lveanE10.ML; lveanE10.MT Barchi et al. [10]

pedan - -

fcol fap10.1; fai10.1; fc10.1 Doganlar et al. [6]

E10.3 stean - -

adlvean - -

ablvean - -

pedan - -

fcol - -

fglo - -

E11 E11.1 adlan ablanE11.ML Barchi et al. [10]

E11 adlvean - -

E11 fcol - -

The four locations where no QTL related to anthocyanin content or fruit color have been located are shown in bold.
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been focused on potato, sweet pepper and tomato. In
the latter crop, 13 genes (some encoding enzymes and
transcription factors) involved in anthocyanin synthesis
have been described [62]. The detailed understanding of
this pathway, along with the well-established syntenic re-
lationships between the tomato and eggplant chromo-
somes [10,42,70], means that it is reasonable to search
for candidate genes in eggplant by inspecting the gene
content of the syntenic tomato sequence. Synteny was
observed between E02.1 (harboring marker/trait associa-
tions for stean, adlan, calan and adlvean) and a portion
of tomato chromosome T02, where two genes encoding
enzymes (flavonone 3-hydroxilase and dihydroflavonol
4-reductase) involved in the anthocyanin production
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pathway reside. One of these has been identified as the
gene underlying the aw (anthocyanin without) QTL, in
the presence of which there is a complete absence of
anthocyanin throughout plant development [71]. The
same gene is responsible for the potato R QTL [72],
which produces red pelargonidin-based anthocyanin pig-
ments. E05.1 (harboring marker/trait associations for
adlvean, pedan, stean and fcol) lies in a region syntenic
to a portion of T12 which harbors 5GT, a gene involved
in the storage of betanidin (a fruit and flower pigment)
in the vacuole [73]. E10.2 and E10.3 (harboring marker/
trait associations for ablvean, adlan, adlvean, calan, fcol,
fglo, pedan and stean) share synteny with a portion of
T10 which carries several genes related to the anthocya-
nin production pathway, 3GT and the two MYB tran-
scription factors ANT1 and AN2 (a and b loci) [62].
ANT1 regulates the genes encoding chalcone synthase
and dihydroflavonol 4-reductase, key enzymes involved
in the synthesis of anthocyanin compounds [74]. ANT1
is considered to be the prime candidate for the ag
(anthocyanin gainer) QTL responsible for the delayed
expression of anthocyanin [70]. In potato, AN2a is the
likely candidate for QTL I, responsible for tissue-specific
anthocyanin expression [59,75] and AN2b for F, a regu-
lator of anthocyanin expression in the flower [58]. In
sweet pepper, a MYB transcription factor encoded by A
underlies the accumulation of anthocyanin pigment in
the foliage, flower and immature fruit [61].

Conclusion
The development of large-scale genotyping capacity has
allowed the concept of GWA to become a viable ap-
proach for the genetic dissection of quantitative traits.
Here, the technique has been applied to uncover the
genomic regions harboring genes underlying anthocya-
nin pigmentation and fruit color traits in eggplant. The
GWA mapping approach was effective in validating a
number of established QTL and, thanks to the wide di-
versity captured by the panel of genotypes in study, was
able to detect a series of novel marker/trait associations.
Synteny with tomato has allowed the ready identification
of candidate orthologues for the chromosome E02, E05
and E12 QTLs related to anthocyanin accumulation.

Availability of supporting data
The data sets supporting the results of this article are
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Additional file 1: Table S1. List of the accessions used for the
association mapping study.
Additional file 2: Figure S1. A) SNP performance. Loci with a
MAF <0.05 were excluded from the GWA analysis. B) SNP PIC values
across chromosomes. The solid line represents the average genome-wide
PIC, and the broken line the variation in PIC value across chromosome E02;
note the particularly low informativeness of loci at the distal end of this
chromosome.

Additional file 3: Figure S2. The genetic architecture of the
components of the germplasm panel. A) PCoA of the EA accessions.
Those of Chinese origin cluster to the right of the plot, separated from
those of S and SE Asian origin. B) PCoA of the WA accessions cluster
according to their fruit morphology: group 1 - long, light, curved fruits,
group 2 – oblong fruits of intermediate weight, group 3 – round, heavy
fruits as defined by Cericola et al. [17].

Additional file 4: Figure S3. PVE values. adlan = adaxial leaf lamina
anthocyanin; stean = Stem anthocyanin; ablan = abaxial leaf lamina
anthocyanin; calan = calyx anthocyanin; corcol = corolla color;
adlvean = adaxial leaf venation anthocyanin; ablvean = abaxial leaf
venation anthocyanin; pedan= fruit peduncle anthocyanin; fcol= fruit color;
fglo= fruit glossiness. Var(g) = genotypic variance; Var(m) = genotype by
location variance; Var(n) = genotype by year variance; Var(e) = residual variance.

Additional file 5: Figure S4. Pearson’s inter-trait correlations (upper part
of the matrix) and regression coefficients (lower part). The histograms included
on the diagonal show the distribution of trait values (see also Table 1).
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