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Abstract

and evolution.

Background: Eukaryotic promoters are regions containing various sequence motifs necessary to control gene
transcription. Much evidence has emerged showing that structural and/or contextual changes in regulatory
elements can critically affect cis-regulatory activity. As sequence motifs can be key factors in maintaining complex
promoter architectures, one effective approach to further understand the evolution of promoter regions in
vertebrates is to compare the abundance and distribution patterns of sequence motifs in these regions between
divergent species. When compared with mammals, the chicken (Gallus gallus) has a very different genome
composition and sufficient genomic information to make it a good model for the exploration of promoter structure

Results: More than 10% of chicken genes contained short tandem repeat (STR) in the region 2 kb upstream of
promoters, but the total number of STRs observed in chicken is approximately half of that detected in human
promoters. In terms of the STR motif frequencies, chicken promoter regions were more similar to other avian and
mammalian promoters than these were to the entire chicken genome. Unlike other STRs, nearly half of the
trinucleotide repeats found in promoters partly or entirely overlapped with CpG islands, indicating potential

association with nucleosome positions. Moreover, the chicken promoters are abundant with sequence motifs such
as poly-A, poly-G and G-quadruplexes, especially in the core region, that are otherwise rare in the genome. Most of
sequence motifs showed strong functional enrichment for particular gene ontology (GO) categories, indicating roles
in regulation of transcription and gene expression, as well as immune response and cognition.

Conclusions: Chicken promoter regions share some, but not all, of the structural features observed in mammalian
promoters. The findings presented here provide empirical evidence suggesting that the frequencies and locations
of STR motifs have been conserved through promoter evolution in a lineage-specific manner. Correlation analysis

between GO categories and sequence motifs suggests motif-specific constraints acting on gene function.

Keywords: Promoter, Transcription factor binding site, Short tandem repeat, CpG island, G-quadruplex, Gene
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Background

Promoters are well-characterized transcriptional cis-regu-
latory sequences in complex genomes [1]. They generally
locate immediately upstream of a transcription start site
(TSS) and have a variety of sequence motifs that partici-
pate in gene regulation [2]. The key elements include tran-
scription factor binding sites (TFBSs), short tandem
repeat (STR), G-quadruplex (G4), and CpG island (CGI),
which are frequently co-localized and otherwise integrated
into combined motifs. Given these cis-regulatory DNA
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sequences contain TFBSs and/or other regulatory modules
that play a critical role in transcription, mutations that
either alter affinity of TFBSs or disrupt spacing between
existing TFBSs have the potential to affect cis-regulatory
activity [3,4]. Throughout the last decade, empirical data
have accumulated suggesting that mutations in regula-
tory elements could be a major cause of phenotypic
divergence [5-7].

Recent studies have shown that eukaryotic promoters are
rich in repetitive sequences — approximately 25% of yeast
(Saccharomyces cerevisiae) genes contain at least one STR
in their regulatory elements [8]. In humans, the Short
Tandem Repeats in Regulatory Regions Table (STaRRRT)
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has shown that 5,264 STRs are present in the upstream
regulatory region of 4,441 genes [9]. Recently, genes driven
by repeat-containing promoters are reported to have signifi-
cantly higher rates of transcriptional divergence than those
without repeat elements, as corroborated by in vitro experi-
ments showing that the gain or loss of STR units within
promoters yields quantitative differences in gene expression
[8,10,11]. For example, the EWS/FLI protein, which belongs
to EST-type transcription factor (TF), directly binds to
GGAA-motifs in the glutathione S-transferase M4 pro-
moter, and transcriptional activity is highly dependent upon
the number of repeats [12-14]. These facts, together with a
higher conservation rate of STRs in regions proximal to
TSSs than that in distal regions [15], strongly support a
significant role for tandem repeats in differential transcrip-
tional regulation.

Other DNA sequence motifs that affect chromatin
structure have the potential to impact on gene expression
by changing the accessibility of transcription and regula-
tory proteins to the DNA. G4 is one such sequence motif
that has a four-stranded DNA structure held together by
four or more tandem guanine tracts [16]. Recent work has
shown that ~60% of the genes in warm-blooded animals
represented by human, mouse, and chicken have at least
one potential G-quadruplex sequence (PQS) within the
5 kb region upstream of TSS [17]. Some of the G4
sequences so far examined appear to act as silencer
elements in the promoter regions [18]. The clearest
evidence for a role of G4 structure in transcriptional regula-
tion comes from empirical study of the onco-gene c-myc
[19]. Disruption of G4 motifs in the c-myc promoter
resulted in increased gene expression, whereas stabilization
of the G4 decreased transcription, raising the strong possi-
bility that G4 formation affects the deposition of regulatory
proteins and histones on double-stranded DNA [17,18].

CpG islands are CG-rich stretches that have been found in
approximately half of mammalian promoters at or near the
TSS [20]. In vertebrates, promoters with CGI are character-
ized by the presence of many TSS and high transcriptional
activity in multiple tissues, whereas promoters without CGIs
are defined by a single TSS and show tightly regulated
expression in specific tissues [21,22]. Correlations between
gene ontologies (GOs) and CGI length hint at the important
role of CGI in higher-order chromatin structures via methy-
lation [23]. Most of the CGIs in chicken promoters remain
hypomethylated, contributing to nucleosome-free regions
over the promoter [24]. Open CGI/CG-rich promoters
would naturally lack nucleosome scaffolds that are required
to adopt an open conformation, and different histone modi-
fication patterns have been observed between genes with or
without CGI promoters [25].

Stochastic and spatial data on the aforementioned
sequence motifs that may modify chromatin structure and
affect transcription are essential for understanding the
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nature of regulatory complexity in higher organisms. In
this study we investigate the enrichment and arrangement
of several sequence motifs within chicken (Gallus gallus)
promoters to shed light on compositional structure in
avian promoter sequences and their association with gene
functions. Birds are hypothesized to have diverged from a
common ancestor with mammals around 300 million
years ago [26]. Thus, it is of interest to investigate whether
previous findings on the distribution and abundance of
sequence motifs in mammalian promoters would be consist-
ent with those derived from chicken promoters, given the
significant divergence times and very different evolutionary
trajectories these lineages have followed.

Results

GC content and CpG island density

Chicken promoter sequences had considerable variation
in their GC contents, ranging from 31.9 to 73.6%, and
their overall average was 51.5% (Additional file 1). The
average G + C ratio increased gradually as it approached
the TSS (Figure 1A). A sharp decline detected in the core
promoter region (-31 to —23 bp) was presumably attrib-
uted to the presence of a TATA box. The Newcpgreport
software identified 2,809 CGIs in promoter regions, and
the number of CGIs-containing genes reached to 2,251
(58.3%). This was almost the same with that reported
elsewhere [27], even though search conditions were not
exactly the same. The distribution of CpG observed/ex-
pected (O/E) ratio was slightly lower (mode O/E = 0.95 ~
1.00; Additional file 2) as compared with the previous report
[22] (mode O/E = 1.1 ~1.2). This might be due to the fact
that some of CGlIs identified in this study were truncated at
TSS. We referred to the chicken promoters harboring long
CGIs (>800 bp in total) as “long CGI” (LCGI) promoters,
because they occupied the topl0% of the genes in terms of
CGI length. “No CGI” (NCGI) promoter was hereafter used
to refer to promoters without CGL

Abundance of short tandem repeats and G-quadruplexes
in chicken promoters

Table 1 summarizes the frequencies of STR motifs in
chicken and other mammalian promoters as well as those
identified in the entire chicken genome. The total number
of STRs observed in chicken promoters was almost
equivalent to that observed in both duck and zebra finch
promoters. In all avian species, approximately 10% of
genes had at least 6 perfect repeat units of 2—6 nucleotide
STR in 2 kb upstream region from TSS, whereas mouse
and human promoters contained a much larger number
of STRs in the same regions. The number of STR motifs
counted per human promoter sequence was more than
double that of chicken promoter. A rank correlation
analysis showed that the STR motif frequency in chicken
promoter shares a significant level of similarity with all
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Figure 1 GC contents and the distribution of sequence motifs in the chicken promoter. (A) The GC contents in the upstream regulatory
regions. Horizontal line and arrow indicate the average GC ratio and expected position of TATA-box, respectively. (B) The number of each sequence
motif was counted in 10 bp bins as shown in blue bars (Short tandem repeat; STR) and red line (Potential G-quadruplex sequence; PQS).

the promoter sets examined here (Table 1). However,
the comparison of STR motif frequencies between
chicken promoter and the entire chicken genome exhib-
ited the lowest similarity values in all statistical parameters
(i.e., correlation coefficient, Kendall’s 7 distance, and 2-
sided p-value for Kendall 7 rank correlation), confirming
the paucity of STRs previously described for this genome
[28]. Several STR motifs also showed taxon-specific differ-
ences in their distribution. For example, avian promoters
were distinguishable from those of mammals on the basis
of a lower frequency of AG/CT motifs. The duck promoter
contained an extremely low number of GC-rich STR motifs
such as CG and CCG.

Chicken STRs were not equally distributed, but rather
varied over the region of promoters (Figure 1B). A total
of 302 PQSs were identified in the chicken promoters
but unlike STRs, PQSs were especially accumulated in
the core promoter region. The number of PQS identified

in this study was much fewer than that previously reported
in transcriptional regulatory region of chicken genome [29].
This was probably due to differences in the stringency of
PQS screening as well as in length of target promoter
region.

Heterogeneity in the pattern of STR expansion between
avian and mammalian promoters

The pattern of STR unit expansion was quite different be-
tween avian and mammalian promoters. All avian promoters
examined here exhibited a similar trend of STR expansion
with significantly larger number of STR units in tetra-,
penta-, and hexanucleotide (hereafter tetranucleotide) re-
peats against dinucleotide repeats (Figure 2; Mann—Whitney
U-test [chicken]; z =5.56, p <0.001, [duck]; z =7.33, p <0.001,
[zebra finch]; z =10.75, p <0.001). While human and mouse
promoters were characterized with much longer dinucleo-
tide repeats as compared with the tetranucleotide repeats
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Table 1 Comparison of STR motif distributions among chicken and avian/mammalian promoters
Promoter Genome*
Chicken Duck Zebra finch Mouse Human Chicken

Assembly galGal4 BGI_duck_1.0 taeGut3.2.4 mm10 hg19 galGal3

Motif Count Freq. Count Freq. Count Freq. Count Freq. Count Freq Count Freq.
AC 405 (25.9) 433 (31.5) 378 (23.2) 6006 (40.0) 3189 (35.6) 97994 (26.1)
AT 276 (17.6) 294 (214) 270 (16.6) 739 4.9 887 (9.9 52845 (14.1)
AG 174 (11.1) 174 (12.7) 186 (11.4) 2572 (17.1) 1356 (15.1) 98988 (26.4)
AGG 131 (84) 98 (7.1) 170 (10.4) 426 (2.8) 192 (2.1 13509 (3.6)
AAT 68 (4.3) 61 (44) 40 (2.5) 264 (1.8 413 (4.6) 18974 (5.1
CCG 66 (4.2) 1 0.1) 87 (5.3) 200 (1.3) 462 (5.2) 722 (0.2)
AAC 46 29 38 238 16 (1.0) 356 24 283 (32 13218 (3.5)
AGC 40 (26) 26 (19 72 (44) 73 05) 67 0.7) 31737 (8.5)
AAAT 30 (1.9 49 (3.6) 21 (1.3) 432 2.9 393 (4.4) 6017 (1.6)
AAAG 26 (1.7) 21 (1.5) 10 0.6) 583 (39 223 (2.5) 2769 0.7)
CG 26 (1.7) 0 C) 36 (2.2) 177 (1.2) 207 (2.3) 687 0.2)
ATCCC 18 (1.2) 6 (04) 14 (0.9 1 0.0 0 =) ND
AAAC 17 (1.1 33 (24) 14 0.9) 563 (3.7) 183 (2.0) 6290 (1.7)
AAGG 15 (1.0) 1 (0.8) 13 (0.8) 274 (1.8) 122 (1.4) 1094 (0.3)
AAG 13 (0.8) 9 0.7) 5 (0.3) 246 (1.6) 75 (0.8) 15000 (4.0)
ACC 13 0.8) 8 (0.6) 8 (0.5) 150 (1.0) 224 (2.5) 8154 (2.2)
AGAGG 13 0.8) 5 04) 7 04) 54 04 0 =) ND
ATCC 12 (0.8) 5 (04) 32 (2.0 41 0.3) 29 (0.3) 436 0.1
ACGGC 12 0.8) 0 (=) 12 07) 0 =) 0 =) ND
AAGGG 1 0.7) 22 (16) 6 04) 23 02) 4 0.0) ND
STR/seq** 0.114 0.101 0.104 0.555 0.231 -
vs.chicken promoter
Correlation r - 0.985 0.984 0.852 0912 0.841
Kendall T - 0.595 0.738 0.581 0.656 0487

p - < 0.001 < 0.0001 < 0.001 < 0.0001 < 0.05

*Data derived from [50]. ND: no data available.
**The number of STR motif counted per promoter sequence.

(Mann—Whitney U-test [human]; z =6.14, p <0.001,
[mouse]; z =27.72, p <0.001). The number of dinucleo-
tide repeat units was significantly lower in chicken
promoters than that of human (Mann—Whitney U-test;
z =8.69, p <0.001), but the reverse was true for tetranu-
cleotide repeats, which are prevalent in chicken versus
human (Mann—Whitney U-test; z =3.69, p <0.001).

Distribution of sequence motifs in conjunction with CpG
islands

Some chicken promoters contained multiple sequence mo-
tifs, which either co-existed with or were integrated with
CGIs. The maximum number of CGI, STR, and PQS iden-
tified in a single promoter was 5, 5, and 4, respectively. The
relative abundance of STRs did not change the rate of
multiple CGlIs, and vice versa. However, the co-existence of
PQSs significantly affected the CGI number in promoter

regions (Fisher’s exact test (FET); p <0.001; Additional file
3). The number of STRs that overlapped with CGI motifs
was significantly different between di- and trinucleotide
repeats (FET; p <0.001; Figure 3A). Most of dinucleotide
STRs were located upstream of CGIs, whereas a higher
proportion of trinucleotide repeats was found to be over-
lapped with CGIs. We anticipated that almost all of PQSs
would be found to overlap with CGIs, but actually 43.7% of
PQSs located in up- or down-stream of the CGL

Low repeat number and positional bias of trinucleotide
repeats in chicken promoter

The average number of trinucleotide repeat units were
the smallest both in avian and mammalian promoters in
all STR periods. All chicken trinucleotide repeats were
divided into four groups that had different numbers of
guanine or cytosine bases in each repeat unit (hereafter
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referred as 100%GC, 67%GC, 33%GC, and 0%GC).
Figure 3B shows different pattern of trinucleotide STR
distribution between 100%GC and low GC group (33%
and 0%GC; FET; p <0.01). The motifs with 100%GC
distributed mostly in the proximal and core regions,
while 33% and 0%GC motifs were predominantly found
in the distal part of promoter.

Conserved motifs identified in the chicken promoter

The MEME Suite [30] was used to detect conserved
motifs that might affect gene regulation. The most and
second most common blocks in the chicken promoter

Page 6 of 12

were poly-A and poly-G prevalent in promoter regions
(Figure 4A and B). Both polypurine repeats were rela-
tively constant in the motif frequencies through the dis-
tal promoter (-2000 to -500 bp), but gradually
increased through the proximal region (-500 to
-100 bp). Both motifs were characterized by a steep in-
crease in the core promoter region (-100 bp to TSS).
The other motif C[A/T]GC[A/T][C/G][A/T]G also ap-
peared in the distal promoter, but was seldom seen ei-
ther in proximal or in core regions. This motif was
compared to known motifs in JASPAR Vertebrates [31]
and UniPROBE Mouse database [32] by TOMTOM

A
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Figure 4 Conserved motifs identified by MEME Suite software. Chicken promoter sequences were divided into 100 bp bins and used for MEME

search. (A) Each archetype of motifs is shown with the maximum and minimum E-values and the proportion of motif identified in a dataset. Cut-off
E-value was set in 1.0E-100 except two cases (shown with asterisk). (B) The distribution of conserved motifs in the upstream regulatory regions.
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[33] ver 4.9.1. As a result, the following 10 TF motifs were
detected with significant level of similarities (FET; p <0.01);
Zfp691, TFAP4, Zicl, NHLH1, Zbtb3, Zic3, ZEB1, Osr2,
Tcf3, and Gfilb. Approximately 10% of chicken promoters
contained a TATA box in their core region and the number
and location of TATA boxes in the chicken promoters were
comparable to those reported in the genome-wide analysis
of mammalian promoters, showing —30 and -31 from TSS
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Gene functions associated with sequence motifs

For functional annotation analysis using the Database
for Annotation, Visualization, and Integrated Discovery
(DAVID) program [35], chicken promoters were grouped
into four sets of genes depending on the presence or
absence of sequence motifs (i.e., PQS, STR, LCGI, and
NCGI). The heat map shown in Figure 5 clearly illus-
trates a bias in biological processes that exhibit signifi-

as the preferred sites [34].
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the genes associated with development and morphogenesis,
while genes with STRs were less correlated with the particu-
lar GO terms. LCGI promoters were strongly associated
with gene functions related to regulation of transcription
and gene expression, whereas NCGI promoters associated
with other gene functions such as immune response and
cognition. A full list of GO categories found to be correlated
with the sequence motifs is presented in Additional file 4.

Discussion

In the present study, we show that chicken promoter
sequences share some, but not all features with the human
and mouse promoters. Although the frequency and variety
of STR motif were highly conserved even between avian
and mammalian promoters, chicken promoters had the
least similarity with the entire chicken genome in terms of
STR motif frequency. This finding is partly supported by
previous data that showed the predominant STR motifs
found in promoter region (TSS to -500 bp) were quite
distinct from those detected in the other part of genes (ie.,
5" untranslated region (UTR), coding, intron, and 3" UTR)
both in human and mouse [36]. The AC/GT was the most
common motif in all the promoter sequences examined in
this study, but AG/CT motifs were predominantly found in
human 5" UTR and coding regions [36]. The inconsistency
of predominant STR motifs between promoter and
adjacent non-promoter regions seems to support the previ-
ous suggestion that STR motifs in promoters can alter gene
expression as they expand or contract, with particular
attention to secondary structures [37]. Considering that
(AC/GT), dinucleotide repeats have a propensity to form
Z-DNA and occasionally block the movement of RNA
polymerase when it occurs downstream of the TSS [38],
repeat expansion or contraction of this motif might be
constrained by the conformation of other sequence motifs
that participate in transcriptional regulation. Hence, the
AC/GT motif may be regarded as the most frequently
used “tuning knob”, as demonstrated by Bayele et al. [39],
and this role appears to be evolutionarily conserved in
vertebrates.

However, there are some points of difference in the
STR motif frequencies and their expansion between
avian and mammalian promoters. In mammalian pro-
moters, the number of tetranucleotide STR units was
significantly lower than those of avian promoters. One
possible explanation of this pattern is that the expansion
of tetranucleotide repeats might have been subjected to
purifying selection to preserve some functions in human
promoters. Such a scenario is also consistent with the
frequently reported associations between tetranucleotide
expansion and human diseases [40]. For instance, alter-
ation in array length of TAAA affected the level of nadA
transcription through modulation of the binding of the
transcription factor IHF [41]. Another study on human
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prostate cancer also suggested an involvement of TAAA
tandem repeats as mediators of the expression of PCA3
gene [42]. Further investigation is needed to elucidate
any lineage-specific preference for STR expansion in
vertebrate promoters.

Another important finding is that the density of STRs in
the chicken promoter region is much lower than that
estimated for human promoter. Taking into account that
avian genomes contain much less STRs than mammals
[43,44], it may simply reflect the difference in the occurrence
rate of slippage-like indels across organisms, as suggested by
Kruglyak et al. [45]. In this case the higher GC contents
observed in chicken promoters [46] as well as relatively
small genome size [47] are plausible reasons for the lower
occurrence rate of slippage events.

Several previous works have shown cis-regulatory motifs
to be constrained in a position- and/or distance-specific
manner [48,49]. STRs are among the most plausible
factors contributing to the changing spaces between func-
tional elements in promoters. Our data clearly showed
that the distribution and expansion of STR in chicken pro-
moters are largely different among repeat unit classes. Di-
nucleotide tandem repeats were mainly found in non-
CpG sites, whereas a higher rate of trinucleotide repeats
were overlapped with CGI, with fewer repeats. Therefore,
it is tempting to speculate that the expansion of trinucleo-
tide STRs in chicken promoter is constrained either by a
position and distance limitation or by direct targeting of
TF. Furthermore, trinucleotide repeats showed skewed
distribution between high and low ratio of guanine/cyto-
sine in the repeat unit (Figure 3B). This finding is of great
interest since the previous study on STR abundance in the
chicken genome demonstrated that the rate of STR poly-
morphisms increases in high GC group (67% and 100%
GC), exclusively in trinucleotide tandem repeats [50]. This
discrepancy may be explained by the significant role of the
trinucleotide tandem repeats as an enhancer/modulator of
transcription in the core promoter region [51]. A previous
in vitro experiment also supports the significance of 100%
GC trinucleotide repeats as a key modulator of transcrip-
tion, indicating that the insertion of (CGG);, into the
CYC1- lacZ promoter increased gene expression about
10-fold, even other trinucleotide repeats of (CTG);, and
(GAA);; had little effect [52]. All these facts imply that tri-
nucleotide motifs with high guanine or cytosine contents,
especially those found in the proximal and core promoter
regions may have a pivotal role in the maintenance of an
open chromatin structure, which will constrain STR
expansion. Indeed, several studies clearly illustrated that
GC-rich trinucleotide repeats are highly flexibility and
possess a greater propensity to bend towards the major
groove [53,54].

Motif identification using the MEME software revealed
several conserved motifs either in all or in particular part
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of chicken promoters. The poly-A was the most ubiquitous
motif among them. Previous studies indicated that polypur-
ine motifs are the most common STRs in the human gen-
ome and are particularly enriched in promoter regions [55].
It was suggested that poly-A might act to alter the stability
or dynamics of nucleosomes, somehow enhancing the abil-
ity of gene activator proteins to bind nearby DNA target
sites [56]. This hypothesis is well supported by our observa-
tion that poly-A are especially abundant in the core pro-
moter region where maintenance of open chromatin
structure is necessary. In contrast, the abundance of poly-G
in core promoter is likely to provide potential binding sites
for Sp1, which is a crucial TF for the expression of some
genes. For example, the human vascular endothelial growth
factor (VEGF) promoter contains a 39-bp poly-G sequence,
located -85 to —50 bp relative to the TSS, including three
potential Sp1 binding sites [57]. These independent studies
give strong indications that sequence motifs — TFBS associ-
ations within the core promoter region may hold the key to
deciphering the complexity of gene expression. In chicken
promoters, we also detected another conserved motif, C[A/
T]GC[A/T][G/C][A/T]G in the distal promoter. Cooper
et al. reported that negative elements to human promoter
activity were identified —1000 to —500 bp upstream of the
TSS by their deletion analyses [58]. Therefore, it is possible
that the conserved motifs that are unique to the distal part
of the promoter may have some role as negative regulators
of promoter activity.

CGIs are deeply involved in gene regulatory processes
[59]. In particular, the length of CGIs is a pivotal factor in
determining the number of RNA polymerase II binding
sites in mammalian promoters [21]. In this study, LCGI
promoters were strongly associated with the biological
processes such as “regulation of transcription” (GO:
0045449, FET; p <1077) and “transcription” (GO: 0006350,
FET; p <1077), whereas NCGI promoters were signifi-
cantly involved in gene function that linked with “neuro-
logical system process” (GO: 0050877; FET; p <10™°) and
“defence response” (GO: 0006952: FET; p <107'). In
addition, some of GO categories related with development
and morphogenesis were moderately associated with
LCGI promoters. These findings are analogous to the
results obtained in mammalian promoters [21,22], indicat-
ing that an association between CGI lengths and particular
gene functions is conserved, at least within warm-blooded
vertebrates. In other words, we find that both the pattern of
tissue-specific gene expression [60] and the motif-specific
expression patterns are evolutionary conserved across the
warm-blooded vertebrates. Another intriguing finding is
that chicken promoters with PQS motifs are generally
correlated with GO categories related to development and
morphogenesis. It is notable that some specific biological
processes such as (inner) ear morphogenesis and heart
development were not significantly correlated with LCGI
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but with PQS mediated promoters. This observation sug-
gests that some PQSs that are non-overlapping with CGI
might play a decisive role in gene expression through the
fine-tuning of transcriptional activity. This, together with
the recent finding that cell proliferation/cell-cycle could be
regulated by presence of PQS - TFBS combinations in
mammalian promoters [61] hint at the importance of
positional context of sequence motifs. The case-by-case
approach should be employed to reveal the underlying role
of PQSs as transcriptional regulators in chicken promoters.

Conclusions

This paper has provided novel findings from the investi-
gation of sequence motifs in chicken promoter. The STR
motif frequency in chicken promoters is similar with
both those of other avian and mammalian promoters,
but relatively divergent from that of the rest of the
chicken genome. We have also revealed that the pattern
of STR unit expansion is largely different between avian
and mammalian promoters. These findings indicate that
STR sequence motifs in promoter regions are strongly
conserved and may play roles in transcription regulation,
but that lineage specific pressures on motif expansion
may exist. Although GC content in chicken promoter is
higher than in mammals, the same pattern of correla-
tions between biological processes and CGI lengths can
be found in this study. Moreover, we have shown that
PQSs are exclusively recognized in a set of genes
involved in development and morphogenesis. Searching
for lineage-specific patterns of various sequence motifs
in promoter regions will certainly extend our under-
standing of the relationship between structural complex-
ity of promoters and functional consequences.

Methods

Data preparation

In order to compare the STR motif distributions between
chicken and other animals (duck, zebra finch, mouse, and
human), the 2 kb upstream sequences from flanking genes
were obtained either from Ensemble BioMart [62] or from
the University of California, Santa Cruz (UCSC) Genome
Browser [63,64]. In this study, we expediently defined the
“promoter region” as 2 kb upstream of TSS, while acknow-
ledging that cis-regulatory elements can also be found
much further upstream, 3" of the gene, or inside of genes
[65]. Chicken sequences 2 kb upstream of the TSS of
RefSeq genes with annotated 5° UTRs were also down-
loaded from the UCSC browser and used for structural and
function-related analyses. Consequently, we obtained 3,858
promoter sequences from the corresponding genes with
functional annotations (up to 22.6% of total genes in the
chicken genome (UCSC release galGal4)).
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Identification of sequence motifs

CGIs were identified using the Newcpgreport downloaded
from the European Bioinformatics Institute (EMBL-EBI)
Browser [66]. The traditional criteria were used to identify
CGIs: (i) base composition of guanine and cytosine in a
window (100 bp) exceeded 50%, (ii) minimum length was
200 bp, and (iii) the ratio of observed to expected number
of CpG dinicleotides (CpG O/E) was more than 0.6 [67].
We did not try to seek 3" end of CGIs when they were
overlapping with TSS and reached to 5° UTRs. Thus,
some of CGIs identified in this study were truncated up to
several hundreds bp in length.

The avian and mammalian promoter sequences were
screened for STRs using the WebSat [68] and Phobos soft-
ware [69] integrated into the STADEN package [70]. We
searched STRs under following conditions: (i) only perfect
repeats were considered, (ii) repeats periods were 2, 3, 4,
5, and 6, (iii) STRs with at least six repeat units were
scored, and (iv) combined STRs with two or more motifs
were counted separately. We did not take mononucleotide
repeats into consideration, mainly due to their uncertainty
in the repeat number. The data on STR frequency distri-
butions were subjected to the non-parametric Kendall 7
trend analysis between chicken and other animals under
the null hypothesis of no association between two data
sets. The bottom 10% of minor motifs in chicken STR fre-
quency were eliminated from the data set. In addition, in-
formation on STR occurrence in the entire chicken
genome was obtained from the previous study [50] and
compared with those detected within promoter regions to
examine the heterogeneity of STR motif frequency be-
tween them.

PQSs were detected by the Quadruplex forming G-Rich
Sequences (QGRS) Mapper software [71]. The details of
search parameters were as follows: (i) max length of PQSs
was 30, (ii) the minimum number of tetrads in a G4 was
four, and (iii) the minimum loop size was set to zero. Note
that these parameters led some motifs being double-
counted in both STRs and PQSs. For example, the
(GGGGT)g motif found in the distal-less homeobox 3
(DLX3) gene was hit by both STRs and PQSs searches.
The motifs that comprised of undisrupted poly-G were
not counted as PQS motifs.

Motifs discovery by the MEME Suite

The MEME Suite was used to find sequence motifs repre-
senting features such as DNA binding sites and protein
interaction domains on the promoter regions [30]. The
promoter sequences were divided into 100 bp bin to
create query files. MEME has a large number of optional
inputs to fine-tune its performance. The following options
were used: (i) zero or one occurrence per sequence model
(i.e., zoops) was chosen, (ii) the maximum width of the
motifs was 15, (iii) motifs occurrences were on the given
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DNA strand or on its reverse complement (i.e., revcomp),
and (iv) the number of motifs was set to five. The probabil-
ity reported by MEME is actually an approximation of the
E-value of the log likelihood ratio, and the width of the
motifs can also affect the statistical significance of the
motifs. Thus, in general, motifs with a longer width tend to
have lower levels of E-value in MEME analysis.

Gene ontology analysis

The analysis of functional gene annotations was performed
using the DAVID ver. 6.7 available on website [35,72]. We
sorted chicken promoter sequences into four subgroups
based on presence or absence of the aforementioned target
motifs. The sequence motifs that shared characteristics with
both PQSs and STRs were sorted into the STR. FET p-
values were calculated to estimate the level of over-
representation of the selected genes in GO categories [73],
especially in the biological process. Probabilities less than
0.01 were used as cut-off value and considered to show sig-
nificant level of correlation. Heat map analysis was also con-
ducted through DAVID outcomes to visualize a matrix of
enriched GO. R software ver. 3.0.2 was used to create heat
map of the significances.

Additional files

Additional file 1: GC content of each chicken promoter sequence.
The GC content of each promoter shown with the overall average GC
content (horizontal bar).

Additional file 2: The observed/expected (O/E) CpG ratio in the
chicken promoter. The maximum O/E CpG ratio plotted against the
number of genes.

Additional file 3: Co-occurrence of CpG island and sequence motifs
in a single promoter. The number of chicken genes was statistically
examined whether it showed significant excess of co-occurring motif
pairs.

Additional file 4: A full list of genes found to be correlated with
sequence motifs. GO biological process categories enriched amongst
genes, either of which has a sequence motif within a promoter.
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