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Abstract

investigation.

Background: Metatranscriptome sequence data can contain highly redundant sequences from diverse populations
of microbes and so data reduction techniques are often applied before taxonomic and functional annotation. For
metagenomic data, it has been observed that the variable coverage and presence of closely related organisms can
lead to fragmented assemblies containing chimeric contigs that may reduce the accuracy of downstream analyses
and some advocate the use of alternate data reduction techniques. However, it is unclear how such data reduction
techniques impact the annotation of metatranscriptome data and thus affect the interpretation of the results.

Results: To investigate the effect of such techniques on the annotation of metatranscriptome data we assess two
commonly employed methods: clustering and de-novo assembly. To do this, we also developed an approach to simulate
454 and lllumina metatranscriptome data sets with varying degrees of taxonomic diversity. For the lllumina simulations,
we found that a two-step approach of assembly followed by clustering of contigs and unassembled sequences produced
the most accurate reflection of the real protein domain content of the sample. For the 454 simulations, the combined
annotation of contigs and unassembled reads produced the most accurate protein domain annotations.

Conclusions: Based on these data we recommend that assembly be attempted, and that unassembled reads be
included in the final annotation for metatranscriptome data, even from highly diverse environments as the resulting
annotations should lead to a more accurate reflection of the transcriptional behaviour of the microbial population under

Keywords: Metatranscriptomics, Sequence processing, Data reduction, Clustering, Assembly

Background

The sequencing and in-silico analysis of messenger RNA
(metatranscriptomics) is now routinely being applied to
complex microbial communities in diverse eco-systems,
including, but not limited to: soil [1-3], marine [4-6] and
intestinal [7,8] habitats. The typical goals of metatran-
scriptomics are to taxonomically classify transcripts, pre-
dict their functions and quantify their abundances, and to
relate these to environmental data in order to reveal how
environmental conditions impact microbial communities
in different habitats.
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Metatranscriptome data sets typically consist of hundreds
of thousands of 454 sequences, or, more recently tens of
millions of Illumina sequences per sample. Low taxonomic
diversity and/or highly expressed genes can lead to a high
degree of data redundancy; that is multiple identical or
nearly identical sequence fragments. In an investigation into
the proportion of artificial and natural duplicates in pyrose-
quenced metatranscriptome data, Niu et al. reported that
as much as 60% of all sequences in an early metatranscrip-
tome data set were likely natural duplicates [9]. Therefore,
some form of data reduction strategy is beneficial before
running computationally intensive homology searches.

Two approaches that are commonly employed to reduce
redundancy in large data sets are (a) assembly: where
sequences are assembled into longer contiguous fragments
(contigs) and (b) clustering: sequences are grouped into
clusters sharing a defined degree of similarity.
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The decisions as to whether to perform data reduction
and which method to employ are influenced by several
factors: (i) The availability of reference genomes: if suffi-
cient reference genomes are available for a small number
of dominant species then the sequences can be mapped
to them and taxonomy and function inferred and the
relative abundance of the transcripts calculated. (ii) Read
length - are the unprocessed reads long enough to
return annotations? Current Illumina platforms produce
shorter reads than 454 (up to 300 bp for the Illumina
MiSeq compared to ~1 kb with the 454 GS-FLX Titanium)
and are likely to return a lower hit rate to protein databases
compared to longer 454 reads [10]. (iii) The diversity of the
sample: although assembly can produce longer sequences
and increase the accuracy of subsequent annotations, the
variable coverage of transcripts in metatranscriptomics data
sets and the presence of closely related organisms can lead
to chimeric contigs. Indeed, for highly diverse metagenomic
samples it has been recommended that assembly not be
performed at all [11]. (iv) The aims of the analysis: if the
read length is adequate for annotation and the intention
is to count features (e.g. taxonomic affiliations of rRNA
sequences) then clustering at high identities is a recom-
mended alternative [12]. With the lower coverage but
higher read length of 454 metatranscriptome data, assembly
is relatively uncommon and instead authors tend to either
cluster or annotate sequences individually. Clustering is
regularly used for detecting and removing sequencing
artifacts from 454 data [13,14], grouping rRNA data
into operational taxonomic units (OTUs) [15,16], and
grouping proteins into families [17,18].

In addition to the known benefits of a reduction in
the size of the data set and therefore computation time,
we set out to assess whether, by clustering translated
metatranscriptome sequences and transferring protein
domain annotation from cluster representatives to cluster
members - some of which may only partially cover protein
domains used for classification, we can accurately increase
the number of classifiable reads.

More specifically, we investigated some popular data
reduction tools and assessed their performance on simu-
lated 454 and Illumina metatranscriptome data in terms
of the accuracy of resulting protein annotations. Note
that although several approaches have been described to
simulate metagenomic data sets [11,13,19-21] and RNA-
SEQ data [22], to date only small scale attempts have been
made to simulate metatranscriptome data sets based on a
small number of species [23,24].

Results

Simulated 454 data

The simulated 454 data sets contained 250,000 sequences
each, totalling ~50 megabases of sequence per diversity
level. Between 12 and 14% of 454 sequences from each
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data set returned matches to Pfam-A. When compared
to the theoretical domain content, the correlation coef-
ficients for all read annotation were 0.591, 0.605 and
0.576 for LD, MD and HD respectively (see Table 1).

Then, taking the parameter set that provided the largest
increase in true positives minus false positives, compared
to the annotation of all unclustered reads, we found that
the best clustering parameters were: > 60% overall similar-
ity and 100% coverage of cluster member sequences for
the LD data set; >80% similarity and 100% coverage of
the cluster members for the MD data set; and >60%
similarity, 225% coverage of the cluster representative and
between 0-50% minimum coverage of cluster members
for the HD data set (see Additional file 1: Figure S1).

While the best performing clustering parameters pro-
duced a net gain (TP — FP) of between 1,104 and 1,656
domains (see Additional file 1: Figure S1), the correlation
coefficients were slightly lower than for all read annotation
(0.589, 0.601 and 0.573 for LD, MD and HD respectively
(see Table 1)).

The MIRA assemblies incorporated ~50% of all se-
quences into 24,858 and 27,752 contigs for the LD and
MD samples respectively, and ~30% of sequences into
26,909 contigs for the HD sample. The average contig
lengths were 298.6, 298.3 and 257.3 base pairs for LD,
MD and HD, respectively (see Additional file 1: Table
S2 for assembly statistics). The average contig entropy
was 0.037, 0.0603 and 0.0552 for LD, MD and HD
respectively (see Figure 1) with 94.75%, 90.52% and
92.62% of contigs possessing an entropy of zero.

For the LD and MD data sets, the net gain of true pos-
itives (TP — FP) was a ~100% increase, and for the HD
data set an increase of ~20% was achieved (see Figure 2).
The contigs alone had a weaker correlation with the
theoretical domain content than all read or clustered
read annotation (see Table 1). When combined with the
debris sequences, the correlation coefficients for all three
samples were higher than for all all-read or clustered
annotations (0.610, 0.621 and 0.579 for LD, MD and

Table 1 Correlation coefficients between simulated data
set annotations and known protein domain content

454 lllumina
LD MD HD LD MD HD
ALL 0591 0605 0576 0717 0734 0.703
CLUSTERED 0589 0601 0573 0709 0728 0698
CONTIGS 0579 0595 0512 0772 0817 0735
DEBRIS 0551 0554 0578 0683 0702 0692
ASSEMBLY' 0610 0621 0579 0842 0868 0812
CLUSTERED ASSEMBLY 0610 0620 0578 0843 0869 0815

Summary of Pearson correlation coefficients between processed data sets and
the known domain content of sample for low diversity (LD), medium diversity
(MD) and high diversity (HD) simulated 454 and lllumina metatranscriptomes.
Assembly includes annotation from both contigs and debris sequences.
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Figure 1 Contig entropy for assembled simulated metatranscriptomes. Contig entropy plotted against contig length for a) MIRA assembled
simulated 454 data sets and b) Trinity assembled simulated lllumina data sets. Plots represent, from left to right: low diversity (LD), medium diversity
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HD respectively (see Table 1)). This could be due to two
factors: firstly the low proportion of sequences incorpo-
rated into the contigs, (less than a third of all sequences
were used for the HD contigs) and secondly the assem-
blies may be biased towards high-abundance transcripts
(see Figure 3 — top right).

Clustering of the 454 assemblies (combined contigs
and debris) led to a very slight increase in the detection
of true positives (~500) but the overall effect was a very
slight reduction in the correlation with the theoretical

domain content compared to the unclustered assembly
(see Table 1).

Simulated lllumina data

Around 4% of the Illumina reads could be annotated with
Pfam-A domains. The correlation coefficients for all read
annotation with the theoretical domain content were
(0.717, 0.734, 0.703 for LD and HD and MD respectively
see Table 1).
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Figure 2 Results from Pfam-A annotated simulated metatranscriptomes. Percentage of true positives, false positives, true negatives and
potential domains (domains present in original full-length transcript) based on a comparison with the known domain content of the data sets for
all reads (ALL), best clustering (CLS), assembly (ASS) and clustered assembly (CLA). a) results for simulated 454 data sets, from left to right: low,
medium and high diversity. b) results for simulated Illumina data sets from left to right: low, medium and high diversity.
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Figure 3 Correlation between high diversity simulations and known protein domain content. Correlation plots of Pfam-A annotations of
each processed data set compared to known domain content for a) high diversity 454 simulated data set and b) high diversity lllumina simulated
data set. Top row, left to right: all reads unprocessed; clustered reads; assembly - contigs only. Bottom row, left to right: assembly — debris only;
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The Illumina data sets were clustered with the best
performing parameter set for the equivalent diversity
level identified in the 454 simulations described above.
While clustering reduced the data sets by ~40% for LD
and MD and ~25% for the HD data set the resulting
annotations had a weaker correlation to the theoretical
domain content of the sample (0.709, 0.728 and 0.698
for LD, MD and HD respectively see Table 1).

The Trinity assemblies incorporated ~40% of sequences
from the LD and MD data sets into 31,799 and 41,191
contigs respectively with an average length of ~400 nt. For
the HD data set, ~14% of reads from the HD data set into
33,210 contigs with an average length of 328 nt. The aver-
age contig entropy was 0.037, 0.056 and 0.059 for LD, MD
and HD respectively (see Figure 1) with 94.55%, 91.1%
and 92% of contigs possessing an entropy of zero.

The number of domains correctly identified increased
by ~10 fold for the LD and MD data sets and by ~4 fold
for the HD data set compared to individual sequence
annotation (see Figure 2). The correlation between the
annotation of the contigs alone and the theoretical domain
content of the sample were higher than for all read anno-
tation (see Table 1). Again it appears that the contigs
capture the majority of the high-abundance transcripts
and the unassembled debris capture the lower abundance
transcripts (see Figure 3, Additional file 1: Figure S2), a
combination of the two provides a stronger correlation
with the known domain content of the samples than
either individually (0.842, 0.808 and 0.812 for LD, MD
and HD respectively see Table 1).

Clustering of the Illumina assemblies (combined contigs
and debris) produced a net gain of between 117,325 to
234,958 extra domains, however this made only a relatively
small improvement to the correlations with the known
domain content of each sample (see Table 1).

Discussion

The simulations show that the diversity of a metatran-
scriptome sample greatly impact the accuracy of protein
domain annotations; with the high diversity simulations
producing the weakest correlations with the known domain
content of the sample. With a highly diverse population of
organisms and transcripts, the average coverage of each
transcript will decrease, thus clustering will result in many
small clusters and fewer transcripts will be sequenced to
sufficient depth to allow extension into longer contiguous
fragments.

However, regardless of the diversity level a better reflec-
tion of the domain content of the samples was achieved
through applying data reduction techniques. The largest
improvements in the correlation with the known domain
content of the samples was achieved through assembly
(contigs and debris combined) for the 454 simulations and
assembly followed by clustering the contigs and debris
together for the Illumina simulations. Using near default
parameters, highly homogeneous (>90% of contigs with an
entropy of 0 at the sequence level) contigs were recreated
from both 454 and Illumina data.

It has been noted previously that assembly of 'omics
data is likely to favour highly abundant organisms [12],
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and it therefore follows that it would also favour highly
abundant transcripts. The results of our simulations
suggest that the annotations of contigs alone are insuf-
ficient, and we therefore recommend that they should
be combined with those of the debris sequences to
provide a better reflection of the real domain content
of the samples.

Overall, the simulated Illumina samples produced stron-
ger correlations with the known protein domain content
than the dollar cost-equivalent amount of 454 sequence
data. While we attempted to perform this analysis as
consistently as possible, it was necessary to employ
different assembly programs for the 454 and Illumina
data — (Although we did perform Trinity assemblies of
simulated 454 data, the results were poor; see Additional
file 1: Figure S3). However, the overall pattern of corre-
lations from the different methods is fairly consistent
and it seems likely that the stronger correlations of the
[lumina simulations are due to the greatly increased
coverage provided rather than any biases introduced by
the methods.

While these simulations have their limitations, the
results achieved were consistent with trials on real
metatranscriptome data. We applied the data reduction
methods previously employed on simulated data to two
real 454 metatranscriptome data sets: the mid-bloom,
marine metatranscriptome from [4]; and the 110 m marine
metatranscriptome from an oxygen minimum zone [14].
Although the genuine domain content of a real microbial
metatranscriptome is unknown, the results obtained from
the Gilbert and Stewart metatranscriptomes were, in terms
of data reduction and annotation rates, consistent with the
medium and high diversity 454 simulations (see Additional
file 1: Figure S4). Also, a recent study demonstrated that
assembly of a simulated low diversity eukaryotic metatran-
scriptome could recreate a high number of contigs with
low chimerism [25].

In the future, these methods could be extended to
exploit the increasing availability of microbial genomes
and transcriptomes. For example, in real metatranscrip-
tome data, the most abundant transcripts are often asso-
ciated with fundamental processes such as biosynthesis
[26]. As more microbial transcriptome data become
available (e.g. through sequencing efforts such as the
MMETSP (http://marinemicroeukaryotes.org/)), it should
be possible to refine these models of transcript abundance
to reflect increased levels of transcripts involved in core
processes and thereby produce more realistic simulations
of metatranscriptome data.

Conclusions

Based on our simulations, it appears that older recommen-
dations to omit the assembly stage when dealing with
high-diversity samples do not extend to metatranscriptome

Page 5 of 7

data. Our results also show that including unassembled
reads in downstream annotation can improve the overall
accuracy and we would recommend that they should not
be discarded after assembly. Therefore, whether dealing
with 454 or Illumina data, we recommend combining
annotations from contigs and unassembled (debris)
sequences for 454 samples and employing a two-step
data reduction of assembly followed by clustering of
contigs and debris for Illumina.

The high coverage afforded by Illumina sequencing has
made it an increasingly popular choice for sequencing
microbial communities. As more purpose built de-novo
transcript assemblers become available there is a need for
a systematic assessment of assembly tools and sequencing
protocols for Illumina metatranscriptome data.

Methods

Simulated data sets

To simulate microbial metatranscriptome data sets with
varying degrees of diversity, we created three population
profiles to represent low, medium and high diversity
communities (referred to as LD, MD and HD respectively
from here on). To tie in our simulations with previous
simulation studies, we based them on the organism lists
and genome coverage levels used in a simulated metagen-
ome study [20]. The genome coverage values from the
Pignatelli study were scaled to create discrete organism
abundances to give a total population size of approxi-
mately 1,000 for each sample (see Additional file 1: Table
S1 for list of organisms used).

For each diversity level, we then generated a set of
species-specific transcript expression profiles. For each
of the 112 species in the samples, we generated a
Pareto-like, power law distribution (P(k) « k ™) to model
the expression values of each gene. This distribution has
been empirically demonstrated (based on genome-wide
microarray data) to apply to gene expression from a range
of model organisms such as Escherichia coli (bacteria),
Saccharomyces cerevisiae (yeast), Arabidopsis thaliana
(plant), Drosophila melanogaster (insect) and Homo
sapiens (mammal) [27,28]. For each species we used J.
Cristobal Vera's transcript simulator (http://personal.
psu.edu/jhm10/Vera/SoftwareC.html) to produce an ex-
pression profile using an r exponent of 1.69 (exponent
for E. coli value as shown by [27]), where each gene
could take an expression value between 1 and 1,000
within a Pareto power law distribution, reflecting the
number of transcript copies present in the cell, which is
then scaled up by the total abundance of the organism
in the sample.

Using the gene sequences for the 112 species from the
Joint Genome Institutes Integrated Microbial Genomes
database (JGI-IMG) [29] we then created the transcript
pools. Briefly, for each diversity level we scaled each
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expression profile by the abundance of that organism
(as defined in the population profile) and created a pool
of full-length transcripts.

For the 454 data sets we randomly sampled 250,000
sequences from each transcript pool, taking fragments of
up to 400 bp. We then ran these fragments through
454sim [30] using GS-FLX error models to introduce
sequence errors and translated the resulting sequences
into their longest open reading frames. We also used the
same population and expression profiles to create a test
data set for each diversity level consisting of sequence
fragments taken directly from the manually curated, error-
free amino-acid gene models for the same organisms.

For the Illumina data sets we randomly sampled 7.5
million, 100 bp single-end reads from each transcript
pool. This equates to ~15X more bases sequenced with
[lumina compared to 454, based on estimations by
Mende et al. [13]. To introduce sequence errors the
sampled transcripts were run through the Illumina
simulator Art [31] using Genome Analyzer II settings.

Clustering

All nucleotide sequences were translated into their
longest open reading frames and clustered with CD-HIT
[32]. A nested loop was used to increment overall sequence
similarity (C) from 40% to 100% (in 20% increments), and
then percentage coverage of the cluster representative (al)
and cluster members (aS) increasing in 25% increments
from 0 to 100%.

Assemblies

The simulated 454 nucleotide data sets and the two real
metatranscriptomes were assembled using MIRA [33], in
de-novo, accurate, EST mode, with non-uniform read
depth, and all other parameters as default. Both the contigs
and debris (reads not incorporated into any contig) were
translated into their longest open reading frames.

The Illumina data sets were assembled using Trinity
[34] with default settings for a single-end read assembly.
As Trinity does not report the specific reads incorporated
into assembled transcripts, we aligned all reads back to
the final Trinity assemblies with alignRead.pl script of
the Trinity package using Bowtie [35] allowing us to
scale protein annotation by contig coverage.

We combined the assembled contigs and debris (or
unmapped reads for the Illumina data sets), translated
them into their longest open reading frames and clustered
them using a single parameter set to assess clustered
assemblies.

Annotation

The original full-length genes of all JGI-IMG genes used,
and the longest open reading frames of all individual
sequences and contigs were compared against the Pfam-
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A database (Release 26.0) [36] with pfam_scan.pl (ftp://ftp.
sanger.ac.uk/pub/databases/Pfam/Tools/OldPfamScan/
HMMER3.0/) using default gathering thresholds. Protein
annotations were scaled by cluster size or the number
of reads incorporated/mapped to a contig for clustered
and assembled data respectively. To show how well the
resulting annotations of each method (individual read/
clustered reads/assembled reads etc.) reflected the real do-
main content of each sample, we calculated the Pearson
correlation coefficient of annotated sequences/clustered
sequences/contigs against the full domain content of the
original sample - that is, the domain content of the
equivalent number of full transcripts in the sample. For
comparative purposes each unique domain was counted
once per gene/contig/sequence.

Contig entropy

To investigate the extent of potential contig chimeri-
city — that is, the level of heterogeneity in the set of
reads incorporated into a contig - we took a similar
approach to [37] and measured contig entropy for
both MIRA 454 and Trinity Illumina assemblies. We
measured contig entropy as follows:

ENTROPY = - "log (p,)/p,
p=i

Where p; represents the fraction of reads originating
from transcript i and p;, represents the total read set for
the contig.

Additional file

Additional file 1: Table S1. Summary of organisms used for simulations.
Table S2. Summary of assembly statistics. Figure S1. Histogram of increase
TP and increase FP for 454 simulations. Figure S2. Additional correlation
plots. Figure S3. Entropy plot for Trinity 454 assembly. Figure S4. Plot of TP
etc for real metatranscriptomes compared to simulations.
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