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Abstract

growth, proliferation, etc.

Background: Human induced pluripotent stem cells (iPSCs) have a wide range of applications throughout the
fields of basic research, disease modeling and drug screening. Epigenetic instable iPSCs with aberrant DNA
methylation may divide and differentiate into cancer cells. Unfortunately, little effort has been taken to compare the
epigenetic variation in iPSCs with that in differentiated cells. Here, we developed an analytical procedure to
decipher the DNA methylation heterogeneity of mixed cells and further exploited it to quantitatively assess the
DNA methylation variation in the methylomes of adipose-derived stem cells (ADS), mature adipocytes differentiated
from ADS cells (ADS-adipose) and iPSCs reprogrammed from ADS cells (ADS-iPSCs).

Results: We observed that the degree of DNA methylation variation varies across distinct genomic regions with
promoter and 5'UTR regions exhibiting low methylation variation and Satellite showing high methylation variation.
Compared with differentiated cells, ADS-iPSCs possess globally decreased methylation variation, in particular in
repetitive elements. Interestingly, DNA methylation variation decreases in promoter regions during differentiation
but increases during reprogramming. Methylation variation in promoter regions is negatively correlated with gene
expression. In addition, genes showing a bipolar methylation pattern, with both completely methylated and
completely unmethylated reads, are related to the carbohydrate metabolic process, cellular development, cellular

Conclusions: This study delivers a way to detect cell-subset specific methylation genes in a mixed cell population
and provides a better understanding of methylation dynamics during stem cell differentiation and reprogramming.
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Background

DNA methylation is the most common covalent modifi-
cation known to occur on mammalian genomic DNA.
During development, the establishment of tissue spe-
cific patterns of DNA methylation enables cells with
same genetic composition to exhibit distinct pheno-
types [1]. On the other hand, fully differentiated cells
could be reprogrammed into pluripotent cells through
different approaches, including nuclear transfer, cell
fusion and transcriptional-factor transduction [2]. Epi-
genome remodeling is the key to these procedures to
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allow cells reacquiring pluripotency [3-5]. Besides dermal
fibroblast, the inductions of iPSCs have been achieved
with a number of human tissues. Adipose-derived stem
cells (ADS) are a heterogeneous group of proliferative and
multipotent mesenchymal stem cells. This cell population
demonstrates differentiation capacity toward a variety of
lineages, including adipogenic, chondrogenic, myogenic,
neurogenic, and osteogenic cell lineages [6-9]. Considering
the multipotency and tissue accessibility, ADS cells be-
come one of the most attractive parental cells for repro-
gramming. Recently, great efforts have been made to
improve the efficiency of iPSCs induction with ADS
cells in a feeder-independent manner [10-13]. Providing
the appropriate culture environment, these adipose-derived
iPSCs exhibit the characteristics and morphologies similar
to embryonic stem cells (ESCs).
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Despite similar global gene expression and DNA methy-
lation profiles to those of ESCs, iPSCs have been reported
to frequently carry substantial genetic and epigenetic ab-
normalities [5,14]. In normal cells, DNA methyltransferase
1 (DNMT1) is recruited to replication foci during DNA
replication and faithfully copy the patterns of DNA methy-
lation from the parental to the daughter DNA strand
[15]. Remarkably accurate transmission of genomic DNA
methylation patterns has been documented in both in vitro
and in vivo studies [15-17]. However, the activities of
DNMTs are dynamic and under the control of post-
transcriptional regulations mediated by miRNAs [18] and
a variety of post-translational modifications [19]. Incom-
petent epigenetic inheritance mechanism in pluripotent
stem cells or iPSCs at the early passages frequently results
in the aberrant DNA methylation [20,21]. In addition, epi-
genetic reprogramming of iPSCs requires many rounds of
cell division to erase epigenetic memory or to establish
epigenetic states [22,23]. During the gradual repro-
gramming of iPSCs with long-term passaging, stochas-
tic de novo methylation followed by selection/fixation
was shown to be critical for the formation of ESCs-like
methylation profiles [20]. Not surprisingly, such DNA
methylation dynamics could result in substantial vari-
ation in DNA methylation patterns within a population
of stem cells or iPSCs [20,24].

Many previous studies made the assumption that all
cells within a tissue are with identical or greatly similar
methylation patterns. However, in a mixed cell popula-
tion, cells may demonstrate similar phenotypes but with
distinct methylation patterns on genomic regions associ-
ated with cell specification. Moreover, the heterogeneity
in cellular composition, leukocytes for instance, was rec-
ognized as an important confounding factor that could
compromise the resulting interpretations for methylation
studies [25,26]. These findings emphasize the import-
ance of examining the methylation pattern heterogeneity
within a cell population or between different cell types.
However, it remains unknown whether the methylation
variation for a given genomic locus would change during
differentiation and reprogramming. As an important regu-
lator on gene expression, DNA methylation on promoters
is negatively correlated with gene transcription [27]. Re-
cently, the comparison on methylation levels of 69 human
individuals showed a modest negative correlation between
DNA methylation variation and gene expression variation
[28]. Nevertheless, the relationship between the promoter
methylation variation within a cell population and the ex-
pression levels of associated genes are poorly understood.

In this study, we developed a computational pipeline to
systematically analyze the methylation variation within a
cell population. We reanalyzed the single-base-resolution
DNA methylation maps for ADS cells, mature adipocytes
differentiated from ADS cells (ADS-adipose) and iPSCs
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reprogrammed from ADS cells (ADS-iPSCs) [5]. Specific-
ally, we aim to gain global views on DNA methylation
variation in cells with different levels of pluripotency,
explore its relationships to different genomic features,
and analyze the dynamics of promoter methylation pattern
during differentiation and reprogramming.

Results

In order to determine DNA methylation variation within
a cell population, we designed and implemented a data
analysis pipeline illustrated in Figure 1. All bisulfite sequen-
cing reads were first mapped to an artificially-bisulfite-
converted reference genome with Bismark [29]. According
to the mapping results, only reads with four or more CpG
dinucleotides were kept and the methylation calls for CpG
dinucleotides were extracted. We progressively scanned
the entire methylome to identify genomic DNA segments
with four neighboring CpG dinucleotides and at least six-
teen read coverage. Using this analytical procedure we
were able to reanalyze several recently published methy-
lomes for ADS and derivatives [5,30] to obtain a genome-
wide view of DNA methylation variations during cell dif-
ferentiation and reprogramming.

Global assessment of methylation heterogeneity

A total of 1,097,779, 1,803,432 and 3,197,158 segments cov-
ering 2,506,221, 3,885,201 and 6,316,365 CpG sites were
identified for ADS cells, ADS-adipose cells and ADS-
iPSCs, respectively (Table 1). For each segment, the aver-
age DNA methylation level and the methylation entropy
[31] were determined. To enable cross-sample compari-
son, further analyses were focused on the common set of
754,372 segments for three methylomes.

Similar to the previous observation [5], the methyla-
tion levels of CpG dinucleotides and the identified four-
CpG segments follow a bimodal distribution (Figure 2A).
For ADS, ADS-adipose and ADS-iPSCs, a total of 82.3%,
82.7% and 92.7% segments are either hypermethylated
(average methylation level >80%) or hypomethylated
(average methylation level <20%). The methylation profiles
of ADS cells and ADS-adipose cells resemble each other,
but are significantly different from that of ADS-iPSCs.
Compared with ADS and ADS-adipose, ADS-iPSCs are
with less hypomethylated segments (49.0% vs. 52.6% and
52.6%), especially for the completely unmethylated seg-
ments (18.3% vs. 24.6% and 25.7%) but with ~13% more
hypermethylated segments. DNA methylation entropy
is highly correlated to methylation level. According to
the definition, the entropy of completely methylated or
unmethylated segments is zero [31]. Approximately 26% of
segments demonstrate homogenous methylation patterns
with methylation entropy as zero in ADS and ADS-
adipose cells and over 96% of these segments are com-
pletely unmethylated (Figure 2B). Maximum methylation
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entropy may be observed in half-methylated regions with
highly variable methylation patterns. We plotted the methy-
lation levels and entropy for the common set of four-CpG
segments observed in three methylomes together with
simulation result. The simulation was performed based on
the read depth and methylation level of a given four-CpG
segment [31]. For each segment, we randomly assigned

the methylation state of the CpG site in each read but
achieved the same methylation level as real data. For each
of the given four-CpG segments observed in the three
methylomes, we repeated this simulation 1,000 times to
obtain 1,000 random methylation patterns with the same
methylation level and then determined the median of
methylation entropies of the simulation results. For the

Table 1 Statistics of MethylC-Seq data for the ADS, ADS-adipose and ADS-iPSCs

Cell type # Segments # Total CpG sites (%) # Sequence reads Average reads per segment Average level Average entropy
ADS 1097779 2506221 (9%) 21678208 19.75 0.39 0.25
ADS-adipose 1803432 3885201 (14%) 36759110 20.38 0.43 0.26
ADS-iPSCs 3197158 6316365 (23%) 73199400 2290 0.60 0.21
Common segments 754372 1822209 (7%) 15412714 2043 0.38 0.24
16677071 22.11 0.38 0.24
21202094 28.11 046 0.19
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majority of the four-CpG segments, the methylation en-  are not limited to the common set, we further performed
tropies observed in three methylomes are lower than that  pairwise comparison between shared segments among
of simulated counterpart (Figure 2C-F). This indicates that  three methylomes. Stronger correlation between ADS and
the majority of methylation patterns in genome regions = ADS-adipose than between ADS and ADS-iPSCs was ob-
are not originated from stochastic methylation events but  served with respective to the methylation level and en-
rather under substantial constraint. tropy (Additional file 1: Figure S1). We noticed that the

For ADS-iPSCs, 19.0% of segments are with homogenous  methylome data generated for ADS-iPSCs are of much
methylation patterns and 88.2% are with methylation en-  higher sequencing depth compared with the other two
tropy less than 0.4. However, the proportion of segments  methylomes (28Xs read coverage on average for ADS-
with methylation entropy over 0.4 in ADS and ADS- iPSCs, 20Xs for ADS and 22Xs for ADS-adipose). To re-
adipose cells exceeds 27.2%. To show such observations duce the potential bias resulted from the difference in
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sequence read depth, for each segment, we randomly
chose 71.4% reads (20/28) and simulated for 1,000 times.
The average methylation entropy of simulation sets for
ADS-iPSCs is 0.19, which is only 0.01 less than the aver-
age entropy obtained from real data. This indicated that
the low methylation entropy for ADS-iPSCs cannot be
simply explained with additional sequence reads. Due to
the low reprogramming efficiency, ADS-iPSCs were de-
rived from manually picked colonies rather than the entire
pool of ADS cells [5]. We then questioned whether the
variation in the methylation pattern of ADS-iPSCs is simi-
lar to that of embryonic stem cells (ESCs). We made use
of the methylome of human H1 ESCs from previous study
[30] (Additional file 2: Table S1). Interestingly, we found
the methylation level of ADS-iPSCs is highly correlated to
that of H1 and methylation entropy is modestly correlated
(Pearson correlation r = 0.93 and r = 0.51, respectively,
Additional file 1: Figure S1). It suggested that the ADS-
iPSCs cells gain the ES-cell like DNA methylation patterns
through reprogramming. In conclusion, compared with dif-
ferentiated cells, ESCs and iPSCs are with more homogenous
DNA methylation patterns on genome average.

DNA methylation heterogeneity varies in different
genomic regions

It has been shown that a great number of partially
methylated domains in ADS cells become highly meth-
ylated in ADS-iPSCs and such methylation changes are
not uniformly distributed across the entire genome [5].
In addition, a previous study focusing on representative
loci demonstrated that the CpG islands (CGIs) are with
higher methylation fidelity than those of repetitive ele-
ments, such as LINE repeats [32]. Using genome-scale
methylome data, we examined the dynamics of methylation
variations between different cell lines, and among different
genomic regions including CpG islands, gene structures,
and various types of repeats.

According to the common set of three methylomes, the
methylation entropies varied among different genomic re-
gions (Figure 3). Compared with other gene-associated re-
gions, promoters and 5-UTRs show substantially low
methylation variation (Figure 3A). Since CGIs are usually
hypomethylated, we further classified promoters into two
groups: CGI-promoters and non-CGI promoters. Interest-
ingly, segments in CGI promoters show significantly homo-
geneous methylation patterns with the median methylation
entropy near zero, whereas segments in non-CGI promoter
show much higher methylation entropy (0.15, 0.14 and
0.20 for ADS, ADS-adipose and ADS-iPSCs, respectively).
In addition, the median methylation entropies of coding
exons, introns and 3’-UTRs decreased from 0.22 in ADS
and ADS-adipose to around 0.17 in ADS-iPSCs. High
methylation variation is observed in some repetitive
elements. Satellite repeat regions show the highest
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methylation variation in all three methylomes while
Simple repeats (micro-satellites) possess the lowest on
average (Figure 3B). The degrees of DNA methylation
variation among CGI shelves, CGI shores and CGI were
similar in these three cell lines (around 0.16, Figure 3C).
Intriguingly, ADS-iPSCs show higher methylation vari-
ation in promoters and 5-UTR regions than those of ADS
and ADS-adipose cells, but the lowest methylation vari-
ation in all the rest genomic regions.

Methylation heterogeneity at TSS and bipolar methylated
genes

DNA methylation on transcription start site (TSS) was
known to be negatively correlated with gene expression
in human stem cells [27]. Since methylation level is cor-
related with methylation entropy, we expect the degree
of methylation variation may be associated with the level
of gene expression as well. We re-analyzed the RNA-Seq
data, and classified genes into five classes ranked by
their expression levels. We found both the methylation
level and entropy of segments around TSS are negatively
correlated with gene expression in all three cell lines
(Figure 4 and Additional file 3: Figure S2). For instance,
in the ADS, the average methylation entropy is only 0.07
in promoters of the top expressed genes but reaches
0.19 in those of the lowest expressed genes. In general,
the average methylation entropy decreases approaching
TSSs. Interestingly, in ADS-iPSCs, we observed a small
increase in the promoter regions immediately adjacent
to the TSSs (Figure 4).

To further explore the epigenetic heterogeneity at pro-
moter regions, we retrieved the putative cell-subset spe-
cific methylated segments as described in the Methods
section. We first identified 113,860, 112,343 and 141,200
four-CpG segments with completely methylated and com-
pletely unmethylated reads in ADS, ADS-adipose and
ADS-iPSCs, respectively. Segments associated with allelic
DNA methylation and stochastic methylation events were
filtered. Accordingly, 82,555, 77,617 and 117,305 segments
were identified as putative cell-subset specific methylated.
The overlapped segments were merged into regions and a
total of 2,497, 2,447 and 3,866 segments or regions were
mapped to the gene promoters. After filtering genes with
less than 10 CpGs within the gene promoter, a total of
175, 143 and 396 genes in ADS, ADS-adipose and
ADS-iPSCs methylomes were identified, respectively
(Additional file 4: Figure S3 for the overlapping relationship
of the three gene sets). Using Ingenuity Pathways Analysis
software, we found that the cell-subset specific methylated
genes shared in all the three cell lines are enriched in bio-
logical processes involved in cellular development, cell
death and survival. Cell-subset specific methylated genes in
ADS, ADS-adipose are enriched in pathways associated
with cell cycle, cellular movement, cellular assembly, and
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Figure 3 DNA methylation entropy of different genomic regions for three methylomes. The ADS, ADS-adipose and ADS-iPSCs (from left to
right) were plotted in each box plot where shows the median, upper and lower quartiles and 95% confidence intervals. The number of segments
within each class was shown below the class label. (A) methylation pattern variation in gene structures. (B) methylation pattern variation in repeat

regions. (C) methylation pattern variation in CpG island structures.

cellular organization. Meanwhile, cell-subset specific meth-
ylated genes in ADS-iPSCs are enriched for cellular growth,
cellular proliferation, carbohydrate metabolism, cell-to-cell
signaling and interaction (Additional files 5: Table S2,
Additional file 6: Table S3, Additional file 7: S4).

Discussion

In this study, we implemented a new workflow to decipher
DNA methylation variation on a genome-wide scale and
performed a comprehensive analysis on the methylation
heterogeneity for ADS cells, mature adipocytes differenti-
ated from ADS cells and iPSCs reprogrammed from ADS
cells. During cell differentiation and reprogramming, al-
though the majority of segments didn’t show significant
changes, several genes were observed to show dynamic
changes (Additional file 8: Figure S4A-C). For instance,
ABHDS showed decreased methylation level and methyla-
tion entropy during differentiation whereas the hox gene
HOXAS showed decreased level and entropy during re-
programming. Compared with ADS and ADS-adipose,
ADS-iPSCs show reduced methylation variation on repeat
regions but increased methylation variation in promoter
regions. Such increased variation in promoters of ADS-
iPSCs may have resulted from either the random selection
among the starting cell population or aberrant DNA
methylation [33]. DNA methylation is reported to be anti-
correlated with gene expression level. During cellular dif-
ferentiation, DNA methylation can stably silence gene
transcription [1]. Here, we showed that the DNA methyla-
tion pattern variations were also anti-correlated with gene

expression levels. Interestingly, for the reprogrammed
ADS-iPSCs, higher plasticity was observed around TSSs
of transcripts, especially for the lowly expressed genes
(e.g. LSP1, Additional file 8: Figure S4C). In line with
that, the segments with an increased methylation level
are frequently accompanied with an increase in methy-
lation entropy. The stochastic methylation events may
also account for the high plasticity of lowly expressed
genes, which are frequently heavily methylated. Recent
single cell analyses revealed much more heterogeneous
gene expression in iPSCs than in ES cells [34]. The high
variability of DNA methylation at promoter regions ob-
served for iPSCs in this study may provide a mechanis-
tic explanation.

Within a mixed cell population, the degree of DNA vari-
ation varies for genomic segments at different methylation
levels. Highly variable methylation patterns were frequently
observed at intermediate methylated loci. Compared with
the simulated results representing random methylation
events, some intermediate methylated loci were observed
to be with significantly low entropy. The methylation pro-
files of these regions may be a result of cell-subset specific
methylation or allele-specific methylation [35]. Further-
more, recent work on human adipose-derived stem cells
lineage commitment demonstrated that several lineage-
specific genes contained plastic methylation patterns [36],
which indicated the intermediate methylation with low
entropy at gene promoters may be potentially related to
lineage commitment events. Our result indicates that
besides allele-specific methylation, there exist putative
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cell-subset specific methylated regions. Moreover, a num-
ber of regions (612, 654 and 2,272 segments for ADS,
ADS-adipose and ADS-iPSCs, respectively) demonstrate
only two extreme methylation patterns: either completely
methylated or completely unmethylated. We identified
promoters hosting such bipolar methylated regions and
found that there are more than twice the cell-subset spe-
cific methylated genes in ADS-iPSCs than in ADS and
ADS-adipose. Gene function analysis revealed these genes
are highly associated with the process of metabolic, cellu-
lar growth and proliferation. This result suggests the exist-
ence of sub-populations of ADS-iPSCs, which may be
with diverse growth patterns. Future studies are highly de-
sired to further explore the functional relevance of these
cell-subset specific methylation regions.

In this study, we arbitrarily chose four-CpG segments
with > = 16 reads as our analysis objectives. Less CpG
sites will lead to much more segments but reduce the
complexity of the variations while more CpG sites will
reflect much more complexity of pattern variations but
will leads to less segments since the minimum require-
ment of read coverage to cover all the possible combina-
tions of DNA methylation states will be high (e.g. for a
five-CpG segment, we may have to require 2”5 = 32 reads).
This is a limitation of our current method on methylation
variation analysis. With high read coverage data, more
accurate estimation may be achieved to determine DNA
methylation pattern variations.

Conclusions

In this study, we used entropy to quantitatively assess
the heterogeneity of DNA methylation in the methy-
lomes of adult stem cells (ADS), fully differentiated cells
(ADS-adipose) and reprogrammed cells (ADS-iPSCs).
The methylation variation varies among different gene-
related regions and different types of repetitive elements.
Globally, DNA methylation heterogeneity decreases dur-
ing reprogramming and ADS-iPSCs shows a higher
methylation variation in promoters and 5'UTRs. In
addition, in ADS-iPSCs, promoters are more frequently
associated with putative cell-subset specific methylated
regions. Taken together, our study provided new insights
into the methylation dynamics during cell differentiation
and reprogramming.

Methods

Re-analysis of genome-wide bisulfite sequencing datasets
All human datasets re-analyzed in this study were gener-
ated in previous studies [5,30] from cell lines and depos-
ited in public domain. This research involves no human
subject or identifiable personal information, and thus no
ethics approval is required. The high-throughput genome-
wide bisulfite sequencing datasets were downloaded from
The Salk Institute (http://neomorph.salk.edu/human_
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methylome/) where the mapped reads were reported.
The methylome of human H1 embryo stem cell was
generated with Illumina single-end (75 bp in length)
sequencing strategy and the methylomes of female
adipose-derived stem cells (ADS), adipocytes derived
from the ADS cells (ADS-adipose) and ADS induced
pluripotent stem cells (ADS-iPSCs) were generated
with a paired-end (75 bp x 2) bisulfite sequencing ap-
proach [5,30].

In order to extract the methylation pattern embedded
in each sequence read, we re-mapped all the reads to the
human reference genome (NCBI37/Hg19) with Bismark
V1.0.5 [29]. To ensure the accuracy of the mapping result
and methylation pattern extracted, no mismatch between
the query sequence and the reference sequence was
allowed, and only unique mapped reads were adopted. For
all MethylC-Seq datasets, each sequence read was pro-
gressively scanned to identify genomic segments with four
neighboring cytosines. For methylation entropy analysis,
the four-CpG segments with at least sixteen sequence
reads were selected for further analysis. The methylation
entropy of each four-CpG segment was calculated as de-
scribed previously [31,37] and the methylation level of a
four-CpG segment was defined as the percentage of meth-
ylated CpG sites.

Genome association analysis

NCBI build 37/Hgl9 genome annotations, including
transcripts, repetitive elements and CpG islands (CGI),
were downloaded from the UCSC Genome Browser
[38]. Promoters were arbitrarily defined as regions 1 kb
upstream of each RefSeq transcript. 5UTR, coding exon,
intron and 3'UTR were defined according to the RefSeq
annotation table. Several major repetitive elements, in-
cluding LINE, SINE, LTR, Satellite, and SimpleRepeat
from the RepeatMasker annotation table were used.
Flanking regions surrounding CpG islands, including
CGI shore (2 kb flanking regions of CGI) and CGI shelf
(the neighboring regions of the shore and up to 4 kb
away from the CGI), were considered. When analyzing
methylation pattern of genes, segments located at 1 kb
upstream and 200 bp downstream of each RefSeq tran-
script were determined and used to calculate the aver-
age methylation level and entropy.

Analysis of RNA-Seq data

RNA-Seq data were adopted from a previous study [5]
and originally annotated based on Hgl8 RefSeq table.
We updated the transcripts annotation information to
the Hg19 RefSeq annotation table by using LiftOver tools
(an utility from UCSC Genome Browser: http://hgdown-
load.cse.ucsc.edu/downloads.html). Genes were grouped
as five equally-sized categories according to their expres-
sion levels. The average methylation level and entropy of
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segments surrounding the TSSs were calculated for each
category using 100 bp windows.

Identification of putative cell-subset specific genes

The putative cell-subset specific genes were determined
according to the following pipeline: i) select four-CpG seg-
ments with both completely methylated and unmethylated
reads; ii) calculate their weighted entropy and p-values; iii)
filter allele-specific methylation associated (four-CpG
segments with at least 1 bp overlap with reported allele-
specific methylation regions in [35]) and four-CpG seg-
ments associated with stochastic methylation events
(p-value >0.05); iv) merge the remaining segments
within 1 bp distance into larger regions; iii) associate
to genes, promoters of which overlapped with the putative
cell-subset specific regions (a promoter region was defined
as regions within 1 kb upstream and 200 bp downstream
from TSS) ; iv) the segments or regions within the same
promoter region were further merged; v) filter genes with
the number of CpGs within the promoter that are less
than 10 (the average number of CpG sites for associ-
ated genes).

The calculation of weighted DNA methylation entropy
is similar to the original methylation entropy, except that
each pattern was weighted with the number of methyla-
tion state transitions (from methylated CpG to unmethy-
lated one, and vice versa) observed in a four-CpG segment.
The number of transitions for a complete methylated or
an unmethylated segment is zero, and the maximum
number of transitions for a four-CpG segment is 3. For
simulation purposes, given a DNA methylation pattern,
we randomly generated the distribution of methylation
patterns based on its read depth and methylation level,
and then calculated the weighted methylation entropy.
We repeated this process 1,000 times, and the p-value
was determined as the frequency of simulations with
weighted entropy lower than observed one. The p-value
threshold was set as 0.05.

Gene functional analyses

In order to investigate the function of relevance of different
gene sets, we generated the functional analyses through
the use of QIAGEN’s Ingenuity Pathway Analysis (IPA°,
QIAGEN Redwood City, www.qiagen.com/ingenuity). The
p-value was used to indicate the significantly enrichment,
and the threshold was set as 0.05.

Availability of supporting data
The datasets supporting the results of this article are in-
cluded within the article or additional files. Original data
re-analyzed in this manuscript are deposited in NCBI’s
Short Read Archive database under accession number:
SRA023829.2 and SRP003529.
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Additional files

Additional file 1: Figure S1. Pairwise comparisons between

overlapped segments among different methylomes. The methylation level
correlations between ADS and ADS-adipose, between ADS and ADS-iPSCs,
between ADS-adipose and ADS-iPSCs, and between ADS-iPSCs and H1 were
plotted in (A). The methylation entropy correlations between corresponding
methylomes were plotted in (B).

Additional file 2: Table S1. Statistics of MethylC-Seq data between
ADS-iPSCs and H1.

Additional file 3: Figure S2. Correlation of methylation levels around
the TSS regions with gene expression levels in ADS, ADS-adipose and
ADS-iPSCs. Genes were grouped as five equally-sized categories ranked
by their expression levels.

Additional file 4: Figure S3. Venn diagram of putative cell-subset
specific methylated genes in ADS, ADS-adipose and ADS-iPSCs.

Additional file 5: Table S2. ADS cell-subset specific methylation
associated gene function analysis.

Additional file 6: Table S3. ADS-adipose cell-subset specific methylation
associated gene function analysis.

Additional file 7: Table S4. ADS-iPSCs cell-subset specific methylation
associated gene function analysis.

Additional file 8: Figure S4. lllustration of DNA methylation dynamics
during differentiation and reprogramming. Regional view of DNA
methylation profile of (A) ABHD8 showing increased level and entropy
during differentiation, (B) HOXA5 showing decreased level and entropy
during reprogramming, (C) LISPT showing increased level and entropy
during reprogramming.

Abbreviations
ADS: Adipose derived stem cells; iPSCs: Induced pluripotent stem cells;
ESCs: Embryonic stem cells; TSS: Transcription start site.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HX designed and supervised the research with assistance from XL; XS, CZ
and MS analyzed the data; XS and HX drafted the manuscript and all authors
discussed the results and commented on the manuscript. All authors read
and approved the final manuscript.

Acknowledgements

Funding: This work was supported by the VBI new faculty startup fund for H.
X., the Strategic Priority Research Program of the Chinese Academy of
Sciences to X.L. [Grant number XDB13040300], and the National Science
Foundation of China [Grant number 31201002, 81270633 and 91131903].

Author details

'Key Laboratory of Genomic and Precision Medicine, Beijing Institute of
Genomics, Chinese Academy of Sciences, Beijing 100101, China. *Virginia
Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24060, USA.
®Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA.

Received: 30 June 2014 Accepted: 30 October 2014
Published: 18 November 2014

References

1. Mohn F, Schubeler D: Genetics and epigenetics: stability and plasticity
during cellular differentiation. Trends Genet 2009, 25(3):129-136.

2. Yamanaka S, Blau HV: Nuclear reprogramming to a pluripotent state by
three approaches. Nature 2010, 465(7299):704-712.

3. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM:
Reprogramming towards pluripotency requires AID-dependent DNA
demethylation. Nature 2009, 463(7284):1042-1047.

Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein
BE, Jaenisch R, Lander ES, Meissner A: Dissecting direct reprogramming
through integrative genomic analysis. Nature 2008, 454(7200):49-55.


http://www.qiagen.com/ingenuity
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S7.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-978-S8.pdf

Shao et al. BMIC Genomics 2014, 15:978
http://www.biomedcentral.com/1471-2164/15/978

20.

21.

22.

23.

24.

25.

Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-
Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart
R, Ren B, Thomson JA, Evans RM, Ecker JR: Hotspots of aberrant
epigenomic reprogramming in human induced pluripotent stem
cells. Nature 2011, 471(7336):68-73.

Gimble J, Guilak F: Adipose-derived adult stem cells: isolation, characterization,
and differentiation potential. Cytotherapy 2003, 5(5):362-369.

Zuk PA: The adipose-derived stem cell: looking back and looking ahead.
Mol Biol Cell 2010, 21(11):1783-1787.

Gimble JM, Katz AJ, Bunnell BA: Adipose-derived stem cells for
regenerative medicine. Circ Res 2007, 100(9):1249-1260.

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC,
Fraser JK, Benhaim P, Hedrick MH: Human adipose tissue is a source of
multipotent stem cells. Mol Biol Cell 2002, 13(12):4279-4295.

Sun N, Panetta NJ, Gupta DM, Wilson KD, Lee A, Jia F, Hu S, Cherry AM,
Robbins RC, Longaker MT, Wu JC: Feeder-free derivation of induced
pluripotent stem cells from adult human adipose stem cells. Proc Nat!
Acad Sci U S A 2009, 106(37):15720-15725.

Sugii S, Kida Y, Kawamura T, Suzuki J, Vassena R, Yin YQ, Lutz MK, Berggren
WT, Izpisua Belmonte JC, Evans RM: Human and mouse adipose-derived
cells support feeder-independent induction of pluripotent stem cells.
Proc Natl Acad Sci U S A 2010, 107(8):3558-3563.

Sugii S, Kida Y, Berggren WT, Evans RM: Feeder-dependent and feeder-
independent iPS cell derivation from human and mouse adipose stem
cells. Nat Protoc 2011, 6(3):346-358.

Chakravarty S, Chikkatur A, de Coninck H, Pacala S, Socolow R, Tavoni M:
Sharing global CO2 emission reductions among one billion high
emitters. Proc Natl Acad Sci U S A 2009, 106(29):11884-11888.

Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Narva E, Ng S,
Sourour M, Hamalainen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz
M, Brustle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T:
Copy number variation and selection during reprogramming to
pluripotency. Nature 2011, 471(7336):58-62.

Ooi SK, Bestor TH: Cytosine methylation: remaining faithful. Curr Biol 2008,
18(4):R174-R176.

Goyal R, Reinhardt R, Jeltsch A: Accuracy of DNA methylation pattern
preservation by the Dnmt1 methyltransferase. Nucleic Acids Res 2006,
34(4):1182-1188.

Vilkaitis G, Suetake |, Klimasauskas S, Tajima S: Processive methylation of
hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase.

J Biol Chem 2005, 280(1):64-72.

Holz-Schietinger C, Reich NO: RNA modulation of the human DNA
methyltransferase 3A. Nucleic Acids Res 2012, 40(17):8550-8557.

Denis H, Ndlovu MN, Fuks F: Regulation of mammalian DNA
methyltransferases: a route to new mechanisms. EMBO Rep 2011,
12(7):647-656.

Nishino K, Toyoda M, Yamazaki-lnoue M, Fukawatase Y, Chikazawa E,
Sakaguchi H, Akutsu H, Umezawa A: DNA methylation dynamics in
human induced pluripotent stem cells over time. PLoS Genet 2011,
7(5):€1002085.

Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP, Bestor TH:
Dynamic instability of genomic methylation patterns in pluripotent stem
cells. Epigenetics Chromatin 2010, 3(1):17.

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI,
Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S,
Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P,
Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ:
Epigenetic memory in induced pluripotent stem cells. Nature 2010,
467(7313):285-290.

Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E,
Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T,
Hochedlinger K: Cell type of origin influences the molecular and
functional properties of mouse induced pluripotent stem cells.

Nat Biotechnol 2010, 28(8):848-855.

Tsai AG, Chen DM, Lin M, Hsieh JC, Okitsu CY, Taghva A, Shibata D, Hsieh CL:
Heterogeneity and Randomness of DNA Methylation Patterns in Human
Embryonic Stem Cells. DNA Cell Biol 2012, 31:893-907.

Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, Reinius L,
Acevedo N, Taub M, Ronninger M, Shchetynsky K, Scheynius A, Kere J,
Alfredsson L, Klareskog L, Ekstrom TJ, Feinberg AP: Epigenome-wide

Page 10 of 10

association data implicate DNA methylation as an intermediary of
genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147.

26.  Adalsteinsson BT, Gudnason H, Aspelund T, Harris TB, Launer LJ, Eiriksdottir
G, Smith AV, Gudnason V: Heterogeneity in white blood cells has
potential to confound DNA methylation measurements. PLoS One 2012,
7(10):246705.

27. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW,
Rigoutsos |, Loring J, Wei CL: Dynamic changes in the human methylome
during differentiation. Genome Res 2010, 20(3):320-331.

28. Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, Gilad Y,
Pritchard JK: DNA methylation patterns associate with genetic and gene
expression variation in HapMap cell lines. Genome Biol 2011, 12(1):R10.

29. Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller
for Bisulfite-Seq applications. Bioinformatics 2011, 27(11):1571-1572.

30. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR,
Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V,
Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base
resolution show widespread epigenomic differences. Nature 2009,
462(7271):315-322.

31. Xie H, Wang M, de Andrade A, Bonaldo Mde F, Galat V, Arndt K, Rajaram V,
Goldman S, Tomita T, Soares MB: Genome-wide quantitative assessment
of variation in DNA methylation patterns. Nucleic Acids Res 2011,
39(10):4099-4108.

32, Laird CD, Pleasant ND, Clark AD, Sneeden JL, Hassan KM, Manley NG, Vary JC Jr,

Morgan T, Hansen RS, Stoger R: Hairpin-bisulfite PCR: assessing epigenetic
methylation patterns on complementary strands of individual DNA
molecules. Proc Natl Acad Sci U S A 2004, 101(1):204-209.

33. Liang G, Zhang Y: Genetic and epigenetic variations in iPSCs: potential
causes and implications for application. Cell Stem Cell 2013, 13(2):149-159.

34. Narsinh KH, Sun N, Sanchez-Freire V, Lee AS, Almeida P, Hu S, Jan T, Wilson KD,

Leong D, Rosenberg J, Yao M, Robbins RC, Wu JC: Single cell transcriptional
profiling reveals heterogeneity of human induced pluripotent stem cells.
J Clin Invest 2011, 121(3):1217-1221.

35. Fang F, Hodges E, Molaro A, Dean M, Hannon GJ, Smith AD: Genomic
landscape of human allele-specific DNA methylation. Proc Natl Acad Sci U
S A 2012, 109(19):7332-7337.

36. Berdasco M, Melguizo C, Prados J, Gomez A, Alaminos M, Pujana MA, Lopez M,
Setien F, Ortiz R, Zafra |, Aranega A, Esteller M: DNA methylation plasticity of
human adipose-derived stem cells in lineage commitment. Am J Pathol
2012, 181(6):2079-2093.

37. He J, Sun X, Shao X, Liang L, Xie H: DMEAS: DNA methylation entropy
analysis software. Bioinformatics 2013, 29(16):2044-2045.

38, Fujita PA, Rhead B, Zweig AS, Hinrichs AS, Karolchik D, Cline MS, Goldman
M, Barber GP, Clawson H, Coelho A, Diekhans M, Dreszer TR, Giardine BM,
Harte RA, Hillman-Jackson J, Hsu F, Kirkup V, Kuhn RM, Learned K, Li CH,
Meyer LR, Pohl A, Raney BJ, Rosenbloom KR, Smith KE, Haussler D, Kent WJ:
The UCSC Genome Browser database: update 2011. Nucleic Acids Res
2011, 39(Database issue):D876-D882.

doi:10.1186/1471-2164-15-978

Cite this article as: Shao et al: Deciphering the heterogeneity in DNA
methylation patterns during stem cell differentiation and
reprogramming. BMC Genomics 2014 15:978.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Global assessment of methylation heterogeneity
	DNA methylation heterogeneity varies in different genomic regions
	Methylation heterogeneity at TSS and bipolar methylated genes

	Discussion
	Conclusions
	Methods
	Re-analysis of genome-wide bisulfite sequencing datasets
	Genome association analysis
	Analysis of RNA-Seq data
	Identification of putative cell-subset specific genes
	Gene functional analyses
	Availability of supporting data

	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

