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Abstract

Background: Chromatin compactness has been considered a major determinant of gene activity and has been
associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time,
genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted
from chromatin modification and gene expression data. However the universal applicability of such predictions is
not self-evident, and requires experimental verification.

Results: We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I
which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed
chromatin were identified by computational analysis of the data, and correlated to other genome annotations
including predicted chromatin “states”, individual chromatin modifications, nuclear lamina interactions, and gene
expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of
cases, we detected diverse “exceptions” from the conventional rules. We found a profound paucity of chromatin
modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is
opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of
large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes
including their promoters are located in closed chromatin.

Conclusions: These findings reveal limitations of the existing predictive models, indicate novel mechanisms of
epigenetic regulation, and provide important insights into genome organization and function.
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Background
Chromatin compactness is the key feature of chromatin
that reflects its accessibility to transcription machinery.
Tightly packed closed chromatin is considered a hallmark
of gene silencing, and chromatin opening precedes
lineage-specific gene expression thus providing an excel-
lent indicator of cell fate commitment [1,2]. However,
genome-wide analyses of chromatin configuration have
been focused not on direct assessment of chromatin com-
pactness, but on predictions based on chromatin marks
such as DNA methylation and histone modifications. Pre-
dictive models recognize numerous chromatin “states”
presumably indicating regulatory elements, gene activity,
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and other aspects of genome biology [3,4], thereby dedu-
cing chromatin configuration from our knowledge of gene
expression and chromatin marks. Such predictive ap-
proach intrinsically limits the discovery of novel mechan-
istic links between chromatin configuration and gene
expression as well as chromatin modifications, necessitat-
ing development of the alternative, more direct means to
analyze genome-wide patterns of open and closed chro-
matin. Moreover, although the models of predicted
“states” are excellent tools for basic research, they require
examination of numerous chromatin marks in multiplicity
of assays and thus are not readily applicable to routine
analysis of small clinical samples.
Here, we sought clarification on two important topics in

chromatin biology: first, whether there is a straightforward
and immutable association between chromatin compact-
ness and certain chromatin modifications or combinations
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thereof, and second – what is the relation between chro-
matin compactness and gene expression. Toward this ob-
jective we designed and validated a high throughput assay
for general chromatin sensitivity to DNase I (GCSDI) as a
powerful approach to determine chromatin compactness
across genome. Previous low-throughput studies have
established the power of GCSDI to detect domains of both
open and closed chromatin in specific genomic loci [5-8].
This feature separates GCSDI from other current experi-
mental approaches to chromatin structure, which employ
nuclease or transposase treatment to detect unusually
open chromatin regions (e.g. hypersensitive sites) and/or
nucleosome positioning [9-11], but do not reveal contigu-
ous open and closed chromatin domains that have been
broadly implicated in gene regulation. Specifically, the dif-
ference between GCSDI and the popular analysis for
DNase I hypersensitive sites (DHS) is that while both
methods use DNase I to introduce single-stranded nicks
in accessible DNA, DHS detects only sites where density
of nicks is high enough to generate double-stranded DNA
breaks, while GCSDI analyzes frequency of nicks continu-
ously across the region of interest (and hypersensitive sites
appear as signal peaks in open chromatin domains, such
as shown in Figure 1). Capitalizing on excellent annotation
of Drosophila genome and on previous genome-wide ana-
lyses of chromatin marks in Drosophila Schneider-2 (S2)
cell line, we have created the map of chromatin compact-
ness in these cells and cross-referenced it to known pat-
terns of chromatin modifications and gene expression.

Results and discussion
To measure GCSDI across genome we combined a brief
DNase I treatment of permeabilized cells with random
amplification of the DNase I-nicked genomic DNA,
followed with analysis of sequence representation in
amplified material by a high-throughput method. DNase
I preferentially nicks DNA in open chromatin, rendering
these regions inefficient template for amplification and
thus predisposing them for under-representation in
amplified material. The difference in representation be-
tween known open and closed chromatin loci can be re-
liably detected by the GCSDI assay after treatment with
diverse amounts of DNase I, and thus is a reliable ana-
lysis outcome that is not overly sensitive to DNase I
treatment conditions (Additional file 1: Figure S1).
To generate a GCSDI profile across genome, amplified

DNA samples from DNase I-treated and control un-
treated cells (n = 2) were hybridized with tiling Affyme-
trix microarrays, signal intensities for each probe were
averaged within the experimental groups and fold diffe-
rences between the groups were calculated. Positive log2
values were assigned to the sequences underrepresented
in DNase I-treated sample (open) and negative values -
to the sequences overrepresented in DNase I-treated
sample (closed). The identified open and closed chroma-
tin regions were extensive and contiguous, consistent
with previous low-throughput studies [5-8] and in con-
trast with the narrow discrete regions detected by the
DHS assay [4,12] (Figure 1, GCSDI versus DHSs tracks).
Two segmentation models of chromatin compactness

were created using the genome-wide GCSDI profiles. (i)
We used a sliding window algorithm to identify transi-
tion points and to segment genome into contiguous
series of open or closed chromatin domains, with the
mean size of 15 kb and ranging up to 500 kb (Additional
file 2: Figure S2A). Resulting Two-Configuration Model
(referred hereafter as 2CM) is well compatible with other
large-scale genome features such as lamina-associated do-
mains (LADs) [10] but did not provide sufficient reso-
lution for analysis of some gene-dense regions with small
genes. This problem was overcome by implementing an-
other type of analysis (ii) using HMM to identify positive
or negative peaks of differential signals, and consolidating
clusters of such peaks into domains. This approach to
identification of closed and open chromatin domains was
more selective, but at a cost of assigning about one-third
of genome to domains that are neither open nor closed,
thereby defined as “neutral”. Thus, the outcome of such
analysis was a Three-Configuration Model (3CM) of do-
mains with the mean size of 3–10 kb (Additional file 2:
Figure S2B). Further analyses showed similar results for
2CM and 3CM. We present findings for 2CM in the main
figures and the majority of results for 3CM, are shown in
Additional file figures.
Domains of open, closed, and neutral chromatin identi-

fied by both models appeared interspersed across genome
(Figure 2, Additional file 3: Figure S3). In euchromatin,
2CM detected approximately 60% of genome in closed
chromatin and 40% - in open (Figure 3A), while 3CM de-
tected 37% of genome in closed, 23% in open, and 40% in
neutral chromatin (Additional file 4: Figure S4A). Both the
pericentromeric heterochromatin regions and chromo-
some 4 were heavily enriched with neutral chromatin in
3CM, however heterochromatin only (not chromosome 4)
showed an overabundance of closed chromatin in 2CM.
Therefore, chromosome 4 appears to share overall similar-
ities with both euchromatin and heterochromatin, consist-
ent with known interspersion of unique sequences and
repeat clusters in this genome region [13].
Next, we analyzed the relationships between identified

open and closed chromatin domains and chromatin modi-
fications, beginning with the nine major chromatin pre-
dicted “states” [4]. In general, predictions were confirmed
in agreement with previous research linking chromatin
opening with cis-regulation and gene expression [5-9] as
states 1 through 3 (regulatory and transcribed sequences)
mostly corresponded to the open chromatin and the states
6, 8, and 9 (Polycomb-mediated repression, intercalated



Figure 1 Genome viewer snapshot shows domains of open and closed chromatin detected by GCSDI. An approximately 250 kbp window
demonstrates the relationship of differential GCSDI signal, 2CM, and 3CM models to the genes, predicted 9 chromatin states, and lamina-associated
domains (LADs). DNase I hypersensitive site assay signal (DHS) is shown for comparison. Open chromatin domains are shown in green and closed – in
red in 2CM and 3CM traces. Discrepancies between chromatin structure predictions (repressed) and chromatin compactness (open) are
outlined by arrows.
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heterochromatin, and silent intergenic regions) were pre-
dominantly identified as closed (Figure 3B, Additional file
4: Figure S4B). State 7 (pericentromeric heterochromatin)
was mostly identified as closed in 2CM and neutral in
3CM consistent with enrichment of the pericentromeric
regions with these configurations (Figure 2, Additional file
3: Figure S3). In a complementary analysis, we found that
a major proportion of open chromatin has been predicted
as one of the “active” chromatin states 1 through 3, and the
majority of closed chromatin - as “inactive” states 6 through
9 (Figure 4, Additional file 5: Figure S5). Although the state
Figure 2 Distribution of open (green) and closed (red) chromatin doma
5 (active genes on the X chromosome) appeared to be simi-
larly represented by open and closed chromatin in the
whole-genome study, analysis focusing on the X chromo-
some showed this state representing about 40% of open
and a lesser fraction of closed chromatin. Thus, overall re-
sults of our analysis of chromatin compactness were con-
sistent with the chromatin state predictions based on
chromatin modification marks, providing cross-validation
of these two approaches. However there were a number of
discrepancies as well. We were unable to find specific cor-
relations between chromatin compactness and state 4
ins detected by 2CM analysis on chromosomes of D. melanogaster.



Figure 3 Representation of detected open and closed chromatin domains in genome and their association with predicted chromatin
states. Proportions of open and closed chromatin detected by 2CM are shown for individual chromosomes (A) and for the genome regions
predicted as 9 chromatin states [4] (B).
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(active gene introns) which was equally distributed be-
tween open and closed chromatin and contributed about
10% to all chromatin configurations (Figures 3 and 4,
Additional file 4: Figure S4 and Additional file 5: Figure
S5); noteworthy, this promiscuous distribution pertained
to all four distinct sub-states 18, 19, 20 and 21 which have
been consolidated in state 4 [4] (Additional file 4: Figure
S4C). This finding reflected a peculiar relationship be-
tween gene expression and intron chromatin structure,
described in more detail below. Also, a relatively minor
portion (23%) of the closed chromatin detected in our
Figure 4 Contributions of the predicted chromatin states to open and
separately for major autosomes and chromosomes X and 4 (left panels). In ad
chromatin, and of the states 6–9 considered “inactive” or repressed, are shown
genome-wide analysis has been predicted as “active” states
1 through 3 and a similar fraction of open chromatin
(26%) – as “inactive” states 6 through 9 (Figure 4). A visual
inspection of the GCSDI signal distribution showed that
at least some of these mismatches represented genuine
differences between the direct and the predictive
approaches to chromatin structure analysis. Figure 1
provides an example: yellow arrows indicate open chroma-
tin detected in the regions predicted as “heterochromatin”
(blue) and “Polycomb-repressed” (black). These findings
identify cases of potentially novel unconventional
closed chromatin. Results are shown for the whole genome, and
dition, cumulative contribution of the states 1–5 considered “active”
for open and closed chromatin in the whole genome (right panel).
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epigenetic regulation which warrant further mechanistic
inquiries.
We also analyzed distribution of individual modifications

which have been traditionally linked to certain chromatin
structure predictions, and intriguingly found that while
open chromatin was associated with numerous abundant
chromatin modifications, closed chromatin was largely un-
modified. This was true in whole-genome analysis (Figure 5)
and also when the major autosome euchromatin, X
chromosome, heterochromatin, and chromosome 4 were
analyzed separately (Additional file 6: Figure S6). Histone
acetylation (with single exception of H3K23), ubiquitina-
tion, phosphorylation, and methylation at H3K4, H3K36,
and H3K79 were indicators of open chromatin, and deple-
tion of these modifications was characteristic of closed do-
mains. Among the positive indicators of closed chromatin,
dimethylation of H3K9 and especially trimethylation of
Figure 5 Enrichment and depletion of chromatin modifications in ope
enriched with (red) or depleted of (blue) particular chromatin modification
cumulative for the entire genome.
H3K27 were prominent, but still enrichment with these
modifications accounted only for less than one-quarter
of closed chromatin in 2CM and one-third in 3CM ana-
lysis. Thus, the prevalent mechanisms underlying chroma-
tin closing do not appear to extensively rely on known
chromatin marks, indicating that yet unknown chromatin
compaction-related modifications may exist - or perhaps
that “closed” is the default state of unmodified chromatin
(note that abundant DNA methylation is lacking in
Drosophila, hence it has little direct contribution to
chromatin structure).
Taking into account that morphologically dense het-

erochromatin is often situated at nuclear periphery, we
proposed that a significant proportion of closed chroma-
tin is included in lamina-associated domains (LADs). In-
deed, comparison of our GCSDI analysis with the LAD
map of Drosophila genome [14] revealed that LADs
n and closed chromatin. Bars show percent proportions of regions
s in open and closed chromatin domains detected by 3CM. Data are
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were predominantly closed (Figure 6A, Additional file 7:
Figure S7A) and approximately one-half of the closed
chromatin in the genome was included in LADs (Figure 6B,
Additional file 7: Figure S7B). Considering the emerging
major role for lamina in gene repression [15] these findings
were consistent with the model in which chromatin com-
paction is a feature of gene silencing, prompting further
inquiry into the relationship between chromatin configur-
ation and gene expression.
While intergenic spacers were mostly closed or neutral,

actively expressed genes were predominantly open and
silent genes were generally closed across the genome
(Figure 7A,B, Additional file 8: Figure S8A,B). However,
this analysis unexpectedly identified a substantial fraction
(one-third in 2CM and one-tenth in 3CM) of active gene
chromatin in closed configuration. Intriguingly, the
gene size appeared a major determinant, with larger ac-
tive genes displaying more closed chromatin (Figure 7C,
Additional file 8: Figure S8C). Structural elements of
the active genes were predominantly open with a single
exception of introns that were equally represented by the
open and closed chromatin, relevant to the aforementioned
promiscuous distribution of the predicted chromatin state
Figure 6 Link between lamina-associated domains (LADs) [14]
and closed chromatin detected by 2CM. (A), Proportions of
closed and open chromatin found in LADs in the entire genome
and in its compartments including major autosomes, chromosome
X, and chromosome 4. (B), contribution of LADs to the closed and
open chromatin in the genome.
4. Interestingly, the proportion of introns with closed
chromatin configuration increased rapidly as intron length
exceeded 1 kbp (Figure 7D, Additional file 8: Figure S8D).
Within the long introns of active genes, the closed chro-
matin content was the highest in the middle and gradually
decreased over several kbp toward the exon/intron bor-
ders (Figure 7E, Additional file 8: Figure S8E). Taking into
account a rapid transition of RNA polymerase across large
introns [16], it can be proposed that chromatin in these
regions can quickly condense once the transcription
complex has passed. This apparent disconnect be-
tween the activity of the genes with large introns and
the intron chromatin structure probably underlies
regulation of interleaved gene arrangements, where
small nested genes often show little correlation with
expression of larger including genes that harbor them
in introns [17].
Another intriguing finding was the presence of closed

chromatin in some active gene promoters (17% in 2CM
and 3% in 3CM) and open chromatin in silent gene pro-
moters (one-third in 2CM and 17% in 3CM). We first
sought to rule out the trivial explanations such as fre-
quent presence of alternative inactive promoters in ac-
tive genes, as well as imprecision of chromatin analysis
or incorrect selection of the promoter regions. In these
cases, even though a promoter may appear in “odd” con-
figuration, the chromatin structure of the gene body
would match its expression status. We found just the
opposite - the chromatin configuration of the gene body
followed that of the promoter (Figure 8A) indicating that
some genes can be active in closed chromatin and also
that some silent genes are open. The sets of genes de-
fined as active or silent were still clearly distinct in their
expression levels regardless of their promoter chromatin
configuration, however while silent genes with closed
promoters showed essentially no detectable expression
at all, a significant fraction of their counterparts with
open promoters demonstrated very low but noticeable
expression (Figure 8B) consistent with the model in
which chromatin compaction completely shuts down ex-
pression of silenced genes while opening (“potentiation”)
of chromatin exposes genes to transcriptional machinery
[1]. Closing of chromatin domains may be used for strict
control of tissue-specific genes, especially those orga-
nized in large clusters on chromosomes [18,19]. To test
this suggestion, we analyzed 66 clusters of three or more
testis-biased genes [19] and found that 28 of them repre-
sented uninterrupted domains of closed chromatin, 23 -
continuous domains of open chromatin, and only 15 had
a transition between open and closed domains within
the cluster. We further analyzed cluster genes from the
uninterrupted domains of open or closed chromatin.
Genes from closed clusters (n = 122) indeed had higher
tissue specificity and thus tighter transcriptional control



Figure 7 Relationship between open and closed chromatin and gene structure. Proportions of open and closed chromatin detected by
2CM are shown for intergenic spacers and active or silent genes (A) and for structural elements of active and silent gene (B). Analysis of relationship
between chromatin structure and the size of gene (C) and intron (D) shows that proportion of open chromatin diminishes as the gene and intron size
increases for both active and silent genes. (E), Distribution of poen and closed chromatin along large (>10 kbp) active gene introns.
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than their counterparts from open clusters (n = 72) as
their expression breadth metric tau [20] was significantly
higher (p < 10−8, t-test and U-test) (Figure 8C).

Conclusions
Intriguingly, we also found that active genes with closed
promoters showed lower transcript levels than conven-
tionally expected active gene with open promoters, indi-
cating that chromatin compactness may serve to
modulate active gene expression. The mechanisms under-
lying this type of regulation warrant further inquiry, as do
the other unexpected trends identified in our study, such
as the general paucity of known chromatin marks
Figure 8 Chromatin compactness versus gene expression. Representat
elements of genes that differ in their expression status and promoter chrom
per million (RPKM) are shown as surrogate expression levels for silent and a
metric tau [20] of testis-biased genes from gene clusters embedded in ope
the expression breadth is lower and thus tissue-specificity of gene expressi
positively identifying closed chromatin and the tendency
of large introns to stay in closed configuration even when
the genes are expressed. We expect that the novel analysis
of epigenomic regulation with a straightforward and sensi-
tive assay described here will contribute an empirical ap-
proach supplementing predictive chromatin structure
assessments, thereby advancing both basic and biomedical
research in chromatin biology.

Methods
General chromatin sensitivity to DNase I
DNase I treatment of cells was performed as previously
described [8] with minor modifications. 1×106 S2 cells
ion of open, closed, and neutral chromatin is shown for structural
atin configuration (A). (B), RNAseq reads per kilobase pair of gene
ctive genes with open or closed promoters. (C), expression breadth
n versus closed chromatin domains. Note that if tau value is higher,
on is increased.
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were permeabilized with 0.05% NP40 and resuspended
in DNase I Buffer (40 mM Tris–HCl, 0.4 mM EDTA,
10 mM MgCl2, 10 mM CaCl2, 0.1 mg/ml BSA). Part of
each sample was set aside and later used as non-digested
control. DNase I (Promega) digestion was performed at
37°C for 10 or 15 minutes with diverse amounts of the
enzyme to optimize the procedure (0.1U, 0.5U, 1U, 2U
and 5U); for further analysis cells were treated with 0.5U
DNase I for 10 minutes. 20 ng of DNA purified from the
treated cells using the DNeasy Blood & Tissue Kit
(Qiagen) were used as a template for whole genome
amplification. The library preparation step using Geno-
mePlex WGA2 Kit was followed by amplification with
the GenomePlex WGA 3 Reamplification Kit (Sigma).
dUTP was incorporated at the amplification step to en-
able the probe fragmentation procedure according to
Affymetrix recommendations. The amplification product
was purified with the Wizard SV Gel and PCR Clean-Up
System (Promega), fragmented and labeled using the
GeneChip WT Double-Stranded DNA Labeling Kit
(Affymetrix), and hybridized with GeneChip Drosophila
Tiling 2.0R Array following the manufacturer’s instructions.

GCSDI data analysis and genome segmentation
Raw data from microarray CEL files were normalized
using CisGenome [21] and log2 differential signals were
calculated for each probe.
To generate two-configuration model (2CM), probes with

log2 differential signal within 1 standard deviation of the
mean were discarded and the signals for the remaining
probes were capped at 1 for positive and −1 for negative. A
sliding window was used to determine transition points
between open (positive) and closed (negative) segments.
The difference (d) between the mean log2 differential sig-
nals of flanking regions was calculated for every probe. The
cutoff d values were established by analyzing 100 permuta-
tions of probes, with the requirement that real genome data
is significantly different from permuted models (p < 0.05).
A series of significant d values and flanking region sizes (n)
were tested to determine the model most discriminating
between real genome and random permutation. The results
presented here are based on analysis using n = 48 and d =
0.8, which identified 2244 transition probes in the real
dataset and only 72 on average in permutated controls.
To generate three-configuration model (3CM), all

probes were analyzed for presence of differential signal
peaks using an HMM algorithm built in CisGenome,
with a posterior probability greater than 0.5. An FDR
value of 0.1 was used to filter the detected peaks which
were further consolidated into domains as following:
two adjacent peaks are joined if the distance between
them is less that threshold value (16721 bp, which is
95th percentile of inter-peak distances in fly genome),
and if they are of the same sign (either both positive or
both negative). Otherwise, the segment between the
peaks is assigned neutral state. 2CM and 3CM domain
coordinates in BDGP5 genome annotation are provided
as tables in Additional files 9 and 10.

Association of segments with lamina-associated domains
(LADs), histone modifications, and chromatin states
LAD coordinates [14] were downloaded from NCBI GEO
(GSE20313). The coordinates for both “Binding Sites” and
“Depleted” regions for 49 individual histone modifications
were obtained from the modENCODE project (http://
www.modencode.org) [22]; specifically, the following data-
sets were used: H1.S2; H2AV_9751.S2; H2BK5ac.S2; H2B.
ubiq.NRO3..S2; H3 antibody2.S2; H3K9ac.S2; H3K18ac.S2;
H3K23ac.S2; H3K27Ac.S2; H3K27me1.S2; H3K27me2_TJ.
S2; H3K27me3.Abcam2..S2; H3K36me1.S2; H3K36me3.S2;
H3K4me1.S2; H3K4me2.ab.S2; H3K4Me2.Millipore.S2;
H3K4me3_S2; H3K79me1.S2; H3K79Me2.S2; H3K79Me.
S2; H3K9acS10P_.new_lot..S2; H3K9ac.S2; H3K9me1_
Diagenode.S2; H3K9me1.S2; H3K9me2.Ab2.new_lot.S2;
H3K9me2Antibody2.S2; H3K9me3.S2; K3K9me3_clone_
6F12_H4S2; H4.S2; H4K5ac.S2; H4K8ac.S2; H4K12ac.
S2; H4K16ac(L).S2; H4K16ac(M).S2; H4AcTetra.S2;
H4K20me.S2; Hp1a_552.S2; HP1a_hinge.S2; HP1a_wa184.
S2; HP1a_wa191.S2. DHS data were obtained from the on-
line resource http://compbio.med.harvard.edu/flychromatin/
data.html [4]. Coordinates for the 9 predicted chromatin
states were obtained from the Modencode progect [4]. All
datasets were converted to the BDGP5 Drosophila genome
annotation as needed. In order to determine the association
of chromatin compactness and each of the above genome
annotations, we calculated the cumulative overlap between
the open, closed, and neutral segments and the previously
characterized LADs, histone modification enriched/depleted
regions, and predicted chromatin states. The analyses were
performed for whole genome as well as for individual
chromosomes and their heterochromatic compartments.

Association of segments with gene expression
We downloaded short-read (Illumina) sequences for 5 mas-
sively parallel mRNA sequencing experiments on S2 cells
from two GEO datasets (GSM390063 and GSM390064),
aligned these reads to the Drosophila reference genome
(BDGP5) using TopHat [23], and calculated the Reads Per
Kilobase of transcript per Million mapped reads (RPKM)
for each gene reported in the BDGP5 reference annotation.
We used the criteria of genes with an RPKM value of at
least 1 in all five samples to classify genes as either active or
inactive. The cumulative overlaps of open, closed, and neu-
tral segments with active and inactive genes were computed
to determine the association of chromatin compactness
with gene expression. Similar analysis was conducted to de-
termine associations with gene length and different func-
tional regions of a gene (promoter, exon, intron, 5′UTR

http://www.modencode.org
http://www.modencode.org
http://compbio.med.harvard.edu/flychromatin/data.html
http://compbio.med.harvard.edu/flychromatin/data.html
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and 3′UTR regions). To analyze the link between gene/in-
tron size and chromatin structure, the genes were separated
into three categories (less than 1 kb, 1–4 kb, and more than
4 kb) and the introns were separated into 5 categories
(81 bp or less, 81–200 bp, 201 bp – 1 kb, 1–10 kb, and lar-
ger than 10 kb). Cumulative overlaps of these categories of
genes and introns with open, closed, and neutral segments
were computed. In order to determine the profile of chro-
matin compactness within introns larger than 10 kb, the in-
trons were divided into non-overlapping windows of
100 bp. These windows were pooled from all introns ac-
cording to their position relative to the 5′ and 3′ intron
ends, and the cumulative overlaps with chromatin com-
pactness segments were computed. The ratio of the open
to close states was derived separately for the long medium
intron (1 kb – 10 kb) and long intron (>10 kb) to illustrate
the transition of DNAse I hypersensitivity states within in-
tronic regions of active and inactive genes.

Additional files

Additional file 1: Figure S1. Evaluation of the amplified DNA from
DNase I-treated and untreated cells. Low amplification bias evident by
the absence of discrete bands in agarose gel (A), and selective depletion
of open chromatin in sample from cells treated with DNase I under diverse
conditions (B, C, qPCR data normalized to untreated control, error bars
indicate standard error of the mean). Four genome regions with known
chromatin compactness were analyzed: actin and Letm1 representing open
chromatin, and Crtp and Yu representing closed chromatin [8].

Additional file 2: Figure S2. Length of chromatin domains detected
by 2CM and 3CM models. Length distributions for domains of open,
closed, and neutral chromatin shown for the entire size range (right
panels) and in more detail for the lower size ends of distribution
histograms (left panels).

Additional file 3: Figure S3. Distribution of open (green), neutral
(yellow), and closed (red) chromatin domains detected by 3CM analysis
on chromosomes of D. melanogaster.

Additional file 4: Figure S4. Representation of detected open ,neutral,
and closed chromatin domains in genome and their association with
predicted chromatin states. Proportions of open and closed chromatin
detected by 3CM are shown for individual chromosomes (A) and for the
genome regions predicted as 9 chromatin states [4] (B). 2CM and 3CM
analyses also shown for the four sub-states which comprise the predicted
state 4 [4] (C).

Additional file 5: Figure S5. Contributions of the predicted chromatin
states to open, neutral, and closed chromatin detected by 3CM. Results
are shown for the whole genome, and separately for major autosomes
and chromosomes X and 4.

Additional file 6: Figure S6. Enrichment and depletion of chromatin
modifications in open, neutral, and closed chromatin. Heat maps show
percent proportions of regions enriched with (red) or depleted of (blue)
particular chromatin modifications in open and closed chromatin
domains detected by 2CM and 3CM. Data are cumulative for the entire
genome, euchromatin of major autosomes and chromosome X, the
entire chromosome 4, and combined pericentromeric heterochromatin
of major autosomes and chromosome X.

Additional file 7: Figure S7. Link between lamina-associated domains
(LADs) [14] and closed chromatin. Proportions of closed, open, and neutral
chromatin detected by 3CM in LADs (A) and contribution of LADs to the
closed, open, and neutral chromatin detected by 2CM and 3CM (B) are
shown for the entire genome and in its compartments including major
autosomes, chromosome X, and chromosome 4.
Additional file 8: Figure S8. Relationship between open and closed
chromatin and gene structure. Proportions of open, closed, and neutral
chromatin detected by 3CM are shown for intergenic spacers and active
or silent genes (A) and for structural elements of active and silent gene
(B). Analysis of relationship between chromatin structure and the size of
gene (C) and intron (D) shows that proportion of open chromatin
diminishes as the gene and intron size increases for both active and
silent genes. (E), Distribution of open and closed chromatin along large
(>10 kbp) active gene introns.

Additional file 9: GCSDI domains 2CM.

Additional file 10: GCSDI domains 3CM.

Competing interests
The authors declare that they have no competing interest.

Authors’ contributions
BM carried out the molecular experiments, participated in the analysis of the
data and in writing the manuscript. YS performed analysis of microarray data,
implemented 2CM and 3CM models, and analyzed correlation of chromatin
domains with LADs. TC performed gene expression analysis using RNAseq
data, AS analyzed comparison between GCSDI and DHS, WC and AM
analyzed the relation of chromatin domains to gene models and chromatin
modifications and participated in drafting the manuscript. DN and MN
conceived of the study, participated in its design and coordination and
wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work was supported by NSF grant 0842797 and NIH grant GM061549.
Dr. Maria Nurminskaya is currently working at National Institutes of Health.
This work was prepared while she was employed at the University of
Maryland. The opinions expressed in this article are the author’s own and do
not reflect the view of the National Institutes of Health, the Department of
Health and Human Services, or the United States government.

Author details
1Department of Biochemistry and Molecular Biology, School of Medicine,
University of Maryland, 108 N. Greene St., Baltimore, MD 21201, USA.
2Institute for Genome Sciences, School of Medicine, University of Maryland,
Baltimore, MD 21201, USA.

Received: 12 May 2014 Accepted: 23 October 2014
Published: 18 November 2014

References
1. Krawetz SA, Kramer JA, McCarrey JR: Reprogramming the male gamete

genome: a window to successful gene therapy. Gene 1999, 234:1–9.
2. Tollervey JR, Lunyak VV: Epigenetics: judge, jury and executioner of stem

cell fate. Epigenetics 2012, B:823–840.
3. Ernst J, Kellis M: Discovery and characterization of chromatin states for

systematic annotation of the human genome. Nat Biotechnol 2010,
28:817–825.

4. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, Ernst
J, Sabo PJ, Larschan E, Gorchakov AA, Gu T, Linder-Basso D, Plachetka A,
Shanower G, Tolstorukov MY, Luquette LJ, Xi R, Jung YL, Park RW, Bishop EP,
Canfield TK, Sandstrom R, Thurman RE, MacAlpine DM, Stamatoyannopoulos
JA, Kellis M, Elgin SC, Kuroda MI, Pirrotta V, Karpen GH, Park PJ: Comprehensive
analysis of the chromatin landscape in Drosophila melanogaster. Nature
2011, 471:480–485.

5. Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C: Core histone
hyperacetylation co-maps with generalized DNase I sensitivity in the
chicken beta-globin chromosomal domain. EMBO J 1994, 13:1823–1830.

6. Choudhary SK, Wykes SM, Kramer JA, Mohamed AN, Koppitch F, Nelson JE,
Krawetz SA: A haploid expressed gene cluster exists as a single
chromatin domain in human sperm. J Biol Chem 1995, 270:8755–8762.

7. Bulger M, Schübeler D, Bender MA, Hamilton J, Farrell CM, Hardison RC,
Groudine M: A complex chromatin landscape revealed by patterns of
nuclease sensitivity and histone modification within the mouse
beta-globin locus. Mol Cell Biol 2003, 23:5234–5244.

http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S1.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S2.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S3.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S4.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S5.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S6.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S7.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S8.jpeg
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S9.xlsx
http://www.biomedcentral.com/content/supplementary/1471-2164-15-988-S10.xlsx


Milon et al. BMC Genomics 2014, 15:988 Page 10 of 10
http://www.biomedcentral.com/1471-2164/15/988
8. Kalmykova AI, Nurminsky DI, Ryzhov DV, Shevelyov YY: Regulated
chromatin domain comprising cluster of co-expressed genes in
Drosophila melanogaster. Nucleic Acids Res 2005, 33:1435–1444.

9. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ: Transposition
of native chromatin for fast and sensitive epigenomic profiling of open
chromatin, DNA-binding proteins and nucleosome position. Nat Methods
2013, 10:1213–1218.

10. Rizzo JM, Sinha S: Analyzing the global chromatin structure of keratinocytes
by MNase-Seq. Methods Mol Biol 2014, [Epub ahead of print].

11. He HH, Meyer CA, Hu SS, Chen MW, Zang C, Liu Y, Rao PK, Fei T, Xu H, Long
H, Liu XS, Brown M: Refined DNase-seq protocol and data analysis reveals
intrinsic bias in transcription factor footprint identification. Nat Methods
2014, 11:73–78.

12. Song L, Crawford GE: DNase-seq: a high-resolution technique for mapping
active gene regulatory elements across the genome from mammalian cells.
Cold Spring Harb Protoc 2010, 2010(2):pdb.prot5384.

13. Riddle NC, Shaffer CD, Elgin SC: A lot about a little dot - lessons learned
from Drosophila melanogaster chromosome 4. Biochem Cell Biol 2009,
87:229–241.

14. van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W,
Kerkhoven RM, van Steensel B: The insulator protein SU(HW) fine-tunes
nuclear lamina interactions of the Drosophila genome. PLoS ONE 2010,
5:e15013.

15. Shevelyov YY, Nurminsky DI: The nuclear lamina as a gene-silencing hub.
Curr Issues Mol Biol 2012, 14:27–38.

16. Brodsky AS, Meyer CA, Swinburne IA, Hall G, Keenan BJ, Liu XS, Fox EA,
Silver PA: Genomic mapping of RNA polymerase II reveals sites of
co-transcriptional regulation in human cells. Genome Biol 2005, 6:R64.

17. Lee YC, Chang HH: The evolution and functional significance of nested
gene structures in Drosophila melanogaster. Genome Biol Evol 2013,
5:1978–1985.

18. Boutanaev AM, Kalmykova AI, Shevelyov YY, Nurminsky DI: Large clusters of
co-expressed genes in the Drosophila genome. Nature 2002, 420:666–669.

19. Shevelyov YY, Lavrov SA, Mikhaylova LM, Nurminsky ID, Kulathinal RJ,
Egorova KS, Rozovsky YM, Nurminsky DI: The B-type lamin is required for
somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A
2009, 106:3282–3287.

20. Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even
A, Horn-Saban S, Safran M, Domany E, Lancet D, Shmueli O: Genome-wide
midrange transcription profiles reveal expression level relationships in
human tissue specification. Bioinformatics 2005, 21:650–659.

21. Ji H, Jiang H, Ma W, Johnson DS, Myers RM, Wong WH: An integrated
software system for analyzing ChIP-chip and ChIP-seq data. Nat
Biotechnol 2008, 26:1293–1300.

22. modENCODE Consortium: Identification of functional elements and
regulatory circuits by DrosophilamodENCODE. Science 2010, 330:1787–1797.

23. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics 2009, 25:1105–1111.

doi:10.1186/1471-2164-15-988
Cite this article as: Milon et al.: Map of open and closed chromatin
domains in Drosophila genome. BMC Genomics 2014 15:988.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Conclusions
	Methods
	General chromatin sensitivity to DNase I
	GCSDI data analysis and genome segmentation
	Association of segments with lamina-associated domains (LADs), histone modifications, and chromatin states
	Association of segments with gene expression

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

