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Abstract

Background: DNA methylation (DNAm) levels can be used to predict the chronological age of tissues; however,
the characteristics of DNAm age signatures in normal and cancer tissues are not well studied using multiple studies.

Results: We studied approximately 4000 normal and cancer samples with multiple tissue types from diverse
studies, and using linear and nonlinear regression models identified reliable tissue type-invariant DNAm age
signatures. A normal signature comprising 127 CpG loci was highly enriched on the X chromosome.
Age-hypermethylated loci were enriched for guanine–and-cytosine-rich regions in CpG islands (CGIs), whereas
age-hypomethylated loci were enriched for adenine–and-thymine-rich regions in non-CGIs. However, the cancer
signature comprised only 26 age-hypomethylated loci, none on the X chromosome, and with no overlap with the
normal signature. Genes related to the normal signature were enriched for aging-related gene ontology terms
including metabolic processes, immune system processes, and cell proliferation. The related gene products of the
normal signature had more than the average number of interacting partners in a protein interaction network and
had a tendency not to interact directly with each other. The genomic sequences of the normal signature were well
conserved and the age-associated DNAm levels could satisfactorily predict the chronological ages of tissues
regardless of tissue type. Interestingly, the age-associated DNAm increases or decreases of the normal signature
were aberrantly accelerated in cancer samples.

Conclusion: These tissue type-invariant DNAm age signatures in normal and cancer can be used to address
important questions in developmental biology and cancer research.
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Background
DNA methylation (DNAm) is one type of epigenetic
modification that regulates gene expression heritably. It is
catalyzed by DNA methyltransferase that adds and main-
tains a methyl group to the 5′ position of the cytosine ring
to form 5′ methyl-cytosine [1]. In mammalian genomes,
this modification occurs almost exclusively on cytosine
residues that precede guanine (CpG dinucleotides). These
CpG dinucleotides are generally about 60%–90% methyl-
ated [2]. However, CpG islands (CGIs), which are the
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genomic regions with the highest CpG density, exhibit the
lowest levels of DNAm [3]. The potential role of aberrant
DNAm in human diseases such as cancer, both at a single-
gene level and on a genome-wide scale [4], is important.
Recently, DNAm has also been shown to be associated

with aging in a wide array of organisms, ranging from
yeast to humans [2,5,6]. For example, Horvath et al. ob-
served that a genome-wide decrease in DNA methylation,
preferentially hypermethylation at CGIs, occurred during
aging [7]. Some studies have investigated age-associated
methylation of CpG loci dependent on sex, body mass
index, specific tissue, or cell type [8-12]. These studies
were performed using various linear-based methods, in-
cluding conventional linear regression methods [11,12], a
weighted correlation network method [8,10], and a
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multidimensional scaling method [9]. However, most of
these studies were restricted to specific tissue types, and
included limited numbers of samples and/or limited
ranges of sample ages. More recently, several studies were
performed to identify more reliable CpG sites associated
with aging, which collected many samples with various tis-
sue types from public data sets [13-16]. These studies also
used linear-based regression methods of analysis. Al-
though previous studies have reported that age-associated
DNAm can show both nonlinear and linear patterns [12],
there has been little identification of age-associated
DNAm signatures through systematic analysis of nonlin-
ear DNAm patterns. More importantly, the characteristics
of DNAm age signatures that are applicable to multiple
types of normal or cancer tissues are not well studied.
In this study, we identify for the first time tissue type-

invariant DNAm age signatures for healthy normal and
cancer tissues using linear and nonlinear models. For
more reliable signatures, we collected diverse samples
from a range of studies available in public resources that
included multiple tissue types. After identifying the
DNAm age signatures from normalized DNAm levels of
the samples, we extensively investigated the characteristics
of the signatures and their biological meaning through a
number of analyses, including analysis of changes in
DNAm pattern with age, gene ontology term analysis, and
network and conservation analysis. We also compared
the signatures with the results of previous studies. Finally,
we checked that the signatures could be used as an age
predictor for multiple tissue types.

Results and discussion
Discovery of age-associated DNA methylation signatures
To identify robust age-associated DNAm signatures, we
first searched and downloaded various DNAm profiles
from diverse studies available in the Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/
geo/; Figure 1). We then excluded studies without age
information or with small numbers of samples (<10).
We also excluded samples of diseased tissues other than
cancer. It is known that technical bias exists across
different array platforms [17], so we considered only
the Illumina Infinium HumanMethylation27 Bead Chip
array, which was the most widely used among the down-
loaded profiles. Consequently, we collected DNAm pro-
files of 2149 samples (1537 disease-free normal and 612
cancer samples) from eight studies available in the GEO.
Additionally, we downloaded 1844 publicly available
DNAm profiles (275 normal and 1569 cancer samples) of
five cancer types (breast, ovarian, glioblastoma, kidney,
and colon) evaluated on the same platform from The
Cancer Genome Atlas (TCGA) consortium [18-22]. In
total, we gathered DNAm profiles of 1812 normal healthy
and 2181 cancer samples. These samples included diverse
tissue types and exhibited a wide range of ages from 0 to
91 years (Additional file 1: Table S1). We next normal-
ized DNAm levels (range from 0 to 1) using a single
beta-score measure that indicates conceptually the nor-
malized levels of DNAm (Methods). The normalized
DNAm levels were well correlated between normal or
cancer samples, but had higher correlation scores be-
tween normal samples (Figure 2A,B), and for both nor-
mal and cancer tissues, the DNAm levels in CGI regions
of individual samples were much lower than those in
non-CGIs (Additional file 2: Figure S1). Moreover, the
DNAm levels of normal and cancer tissue showed differ-
ent patterns depending on the genomic regions. In CGIs,
for example, the average DNAm levels were generally
higher in cancer than those in normal tissue, except for
ovarian cancer samples (Additional file 2: Figure S1).
Next, using various regression methods, we identified

an aging signature associated with the normalized
DNAm levels. Because some studies have reported that
methylation levels can change most dramatically during
childhood [12], we applied nonlinear regression models
as well as linear regression models. After finding statis-
tically significant age-associated DNAm sites using sin-
gle studies or combined multiple studies, we examined
the characteristics and biological meaning of the sites
through analysis of the associations of DNAm patterns
with age, gene ontology, sequence conservation, and pro-
tein networks. We also compared the age-associated DNA
loci across different studies or tissue types. To identify tis-
sue type-invariant age-associated DNAm signatures, we
integrated data from all samples of normal tissues, can-
cers, or both, after removing noisy samples (Methods).
We compared the methylation patterns of the normal
signature to those in cancer according to different gen-
omic regions. We finally checked the potential for age
prediction using the methylation levels of the age-
associated signature, regardless of tissue type.

CpG loci are widely associated with age in disease-free
normal samples
The distribution of DNAm levels showed a significant
disparity between normal and cancer tissues depending
on the genomic region. We first checked age-associated
DNAm sites separately in normal or cancer samples using
a linear regression model. For example, CG23854009
(located at 62802940 on chr19; correlation coefficient
R = 0.83) and CG00888479 (19141824 on chr20; R = 0.81)
sites showed linear hypermethylation patterns according
to age in normal samples from the GSE32393 study [23]
(Figure 2C). In contrast, hypomethylation patterns were
observed at CG23124451 (37878077 on chr20; R = −0.76)
and CG25256723 (167822568 on chr1; R = −0.78) in nor-
mal samples from the GSE41037 study [7] (Figure 2D).
We checked the number of significantly age-associated
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Figure 1 Study overview. (A) Sources of DNAm data with sample information. Eight studies from GEO and five from open TCGA data were
included. (B) Identifying an age-associated DNAm signature. Linear and nonlinear regression models using single or combined studies were
applied. (C) Age prediction and characterization of identified age-associated signatures. Various analyses using DNAm patterns and distributions,
gene ontology, and protein networks in normal and cancer tissues were performed.
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CpG loci in each study (P < 0.0001 by linear regression).
The numbers of significant CpG loci were quite different
between studies (Figure 2E), mainly because of different
ranges of age and/or different numbers of samples across
studies (Additional file 2: Figure S2). Although the num-
bers of age-associated loci in normal tissues varied be-
tween studies, the numbers were significant in all studies
included (P < 0.05 using a Z test of 100 age-permutation
tests; Figure 2E). In cancer samples, however, the numbers
of age-associated loci were not significant in some studies,
including GSE26126 and GSE30760.
Individual studies included samples of various tissue

types with different age ranges (Additional file 1: Table
S1). Therefore, the average DNAm levels per CpG site
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Figure 2 DNA methylation correlation and age-associated CpG loci across individual studies. (A) Heat map representing the Pearson’s
correlation coefficients between all samples of normal and cancer tissues used in this study. A hierarchical clustering was used. (B) Box plot
representing the correlations between normal samples or between cancer samples. P-value was calculated using a Wilcoxon rank-sum test.
(C) Examples of CpG loci (i.e., CG23854009 and CG0888479) hypermethylated with age in the GSE32393 study. (D) Examples of CpG loci (i.e.,
CG23124451 and CG25256723) hypomethylated with age in the GSE41037 study. R: correlation coefficient. (E) The number of significant
age-associated CpG loci in normal or cancer tissues from individual studies. The number and color in each cell corresponds to the number of
significant age-associated CpG loci and its significance in terms of a P-value, respectively. P-value: Z-test result using the random distribution of
the 100 age-permutation tests. NA: not available.
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were quite different between studies in both disease-free
normal samples (P < 2.2e–300 using a Kruskal–Wallis
test) and cancer samples (P < 2.2e–300) (Figure 3A).
Similar results were also observed for the average
DNAm levels per sample unit (Figure 3B). However,
most study pairs with normal samples showed signifi-
cantly greater degrees of overlap of age-associated CpG
loci than would be expected by chance (Figure 3C).
Moreover, the results of hierarchical clustering of the P-
values of the degrees of overlap demonstrated that com-
mon age-associated CpG loci were independent of tissue
or cell type. In the case of cancer samples, the degrees
of overlap of age-associated CpG loci between study
pairs were also significant, but less so than for normal
samples (Figure 3D).
Age-associated DNA methylation signatures in normal
and cancer
To identify tissue type-invariant age-associated CpG loci,
we integrated the normalized DNAm levels of all the
disease-free normal samples after removing noisy samples.
Using this integrated data set, we first identified CpG loci
with a linear relationship with age. For example, the
CG19722847 site was linearly hypomethylated (30740381
on chr12; R = −0.65) and CG22736354 was linearly hyper-
methylated (18230698 on chr6; R = 0.8) according to age,
regardless of tissue type (Figure 4A). However, DNAm
levels of some loci showed nonlinear patterns according
to age (Figure 4B). For these nonlinear relationships, we
also observed more rapid changes in DNAm levels at
younger ages, which is consistent with previous studies



Figure 3 Comparison of age-associated CpG loci across different studies with different tissue types. (A) Box plots of average methylation
values (y-axis) per CpG unit in normal and cancer tissues across individual studies (x-axis). (B) Box plots of average methylation values per sample
unit in normal or cancer tissue across individual studies. P-values were calculated by Kruskal–Wallis tests. (C, D) We checked the degree of overlap
of age-associated CpG loci between studies by calculating the number of common CpG loci. We performed 100 age-permutation tests with the
samples of individual studies to verify the significance of the degree of overlap. Hierarchical clustering results using the degree of overlap of
age-associated CpG loci between different studies with different tissue types in normal (C) and cancer (D). P-value: a Z-test result using the
distribution of 10,000 random selections.
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[9,12]. We also observed similar phenomena for gene-
level DNAm levels (Additional file 2: Figure S3A, B). We
thus identified tissue type-invariant age-associated DNA
methylation signatures using second- and third-degree
nonlinear regression models in addition to the linear
model. For the threshold, we used three measures, in-
cluding false discovery rate (FDR) (<0.01), correlation co-
efficient (≥0.55), and residual error (<0.15), to reduce
tissue-type variations. We identified 127 unique CpG loci
in the combined normal samples, which we termed a
“tissue type-invariant age-associated DNAm signature”.
Among these, 80 CpG loci had a linear relationship with
age and the other 47 loci were identified using nonlinear
models (Additional file 1: Table S2). Seventy-seven loci
were hypermethylated and 50 were hypomethylated with
age. We also applied a similar approach to examine the
DNAm levels of the combined 2181 cancer samples.
Compared with normal samples, only 26 age-associated
CpG loci were identified (Figure 4C). Interestingly, there
was no CpG locus common to the normal and cancer
age-associated signatures (Figure 4D). These epigenetic
phenomena were also observed with the gene-level
DNAm values (Additional file 2: Figure S3C, D). In case
of the combined normal and cancer samples, only 18
CpG loci were identified as age-associated. We examined
the positions on human chromosomes of the age-
associated CpG loci of each of the signatures by separat-
ing hypomethylated (blue) and hypermethylated (green)
loci, in normal (Figure 4E), cancer (Figure 4F), or com-
bined samples (Additional file 2: Figure S4). Generally,
the 127 age-associated loci in normal tissue were distrib-
uted throughout the human genome, except for chromo-
somes 18 and 21. In contrast to a previous study using
male pediatric samples [12], the X chromosome had the
largest number of age-associated loci. This difference
may be caused by differences in sex, age range, and tissue
types. We checked the significance of the numbers of loci
by chromosome using hypergeometric tests (green bars
for hypermethylation and blue bars for hypomethylation
with age in Figure 4E). Chromosomes X (P = 8.1E–08), 22
(1.3E–03), 12 (1.7E–02), 1 (4.0E–02), and 16 (4.9E–02)
were preferentially enriched for hypermethylated loci with
age, whereas chromosomes Y (P = 3.4E–05), X (9.4E–04),
3 (9.5E–03), and 11 (4.3E–02) were enriched for hypo-
methylated loci. Thus, the sex chromosomes, especially
X, were enriched for age-associated CpG loci in disease-
free normal tissues. In cancer samples, chromosomes 3
(P = 0.03), 5 (1.7E–03), 6 (0.03), 7 (0.02), 10 (0.01), 11



Figure 4 (See legend on next page.)
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Figure 4 Age-associated DNA methylation signature independent of tissue type. (A, B) Examples of age-associated CpG loci with linear (A)
or nonlinear (B) relationships identified in integrated normal samples. (C) Venn diagrams showing the numbers of age-associated CpG loci with
three regression models (linear and second- and third-degree nonlinear) in integrated normal, cancer, or all samples. (D) Venn diagram showing
the number of age-associated CpG loci among integrated normal, cancer, and all samples. (E) Manhattan plot of age-associated CpG loci in
integrated normal samples by chromosome. Hypermethylated CpG loci with age are shown with a –log (P-value) and hypomethylated loci are
shown with a log (P-value). The most significant P-values among linear and nonlinear models were chosen. Significant loci are marked as green
(hypermethylated) or blue (hypomethylated) dots. The numbers of significant age-associated CpG loci by chromosome. Bar plots of P-values with
hypergeometric tests for the degrees of significance of the numbers of the loci. (F) Manhattan plot of age-associated CpG loci in integrated
cancer samples by chromosome.
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(1.8E–04), and 21 (0.01) were enriched with age-
associated hypomethylated loci (Figure 4F). Interestingly,
there were no age-associated loci on the X or Y chromo-
somes in cancer samples. With the normal and cancer
samples matched in age distribution, we also observed
similar trends such as no overlap in signature between the
normal and cancer samples (Additional file 2: Figure S5).
It was previously suggested that a difference in methy-

lation variation might exist with gender [8]. We there-
fore identified age-associated signatures for males and
females separately (Additional file 2: Figure S6). We
found 560 (87 hypermethylated and 473 hypomethy-
lated) and 152 (103 hypermethylated and 49 hypome-
thylated) CpG loci in the male and female samples,
respectively. Even though the number of age-associated
loci differed between male and female, their ratio distri-
butions by chromosome were similar (P = 0.64 using a
Wilcoxon rank-sum test; Additional file 2: Figure S6A).
Moreover, the number of hyper- and hypomethylated
loci on the X chromosome were similar between males
and females (P = 0.22 using a Fisher’s test; Additional
file 2: Figure S6B).
We built a feasible age-prediction model to see

whether the normal 127-site signature could be used as
a tissue-invariant age predictor. We applied a multiple
linear regression model after identifying a feasible subset
of the signature using a genetic algorithm (Methods).
The selected age-prediction model was composed of 20
CpG loci of the signature (see “Predicted age” column in
Additional file 1: Table S2). The correlation between the
actual ages of the combined normal samples and their
predicted ages using the model was highly significant
(R = 0.91, P = 0.002 from 10,000 random selection tests
using all loci in the platform; Figure 5A), which indicates
that the DNAm levels of the age-associated signature
sites can be used to predict the age of tissues, regardless
of tissue type. We next compared the age-associated
normal signature with those identified in previous stud-
ies (Additional file 1: Table S3). Most previous studies
identified age-associated loci using a FDR threshold in a
linear model. Thus, we compared the loci resulting from
only linear regression (FDR < 0.01) and found that 430
age-associated CpG loci were age-associated in the
integrated normal samples. For instance, a recent study
using the Illumina Human 450 K platform and a linear
regression model identified 137993 CpG loci associated
with age in blood cells of 421 healthy subjects aged from
14 to 94 years [11]. Of these 137993 loci, the 6696 CpG
loci present on the Illumina 27 K overlapped 73% with
our 430 age-associated loci. Another study by Day et al.
[13] found that 4747 CpG loci correlated with age in
four tissue types, including brain samples, using a linear
regression method, and the degree of overlap with our
loci was 47%. Notably, we observed higher degrees of
overlap of CpGs with previous studies that used only
normal samples than with other studies that included dis-
eased samples (Figure 5B and Additional file 1: Table S3).
Sixteen of our 127 age-associated loci were not identified
in the previous studies. Interestingly, 13 of these 16 loci
were located on the X chromosome (see “Unique CpG”
column in Additional file 1: Table S2).
Our collected DNAm profiles included diverse tissue

types in the normal samples. We next identified tissue-
type-specific age-associated signatures (Additional file 2:
Figure S7). Although the number of age-associated loci
in normal samples varied from one (for prostate) to 2713
(for peripheral whole blood) loci across tissue types
(Additional file 2: Figure S7A), most tissue-type pairs
showed significant degrees of overlap of the age-associated
CpG loci compared with random expectation, except for
the prostate tissue samples (Additional file 2: Figure
S7B). In the cancer samples, we could not find significant
tissue-type-specific age-associated loci with the threshold
we used in most cases.

Characteristics of tissue type-invariant age-associated
DNA methylation signature
We investigated the genomic locations of the loci in the
age-associated DNAm signatures in normal or cancer
samples. Of the 127 loci in normal samples, 78 were lo-
cated in CGI regions and the others in non-CGI regions
(Additional file 1: Table S4); whereas in cancer, 22 loci
were located in CGIs and four in non-CGIs. Thus, while
the normal signature was enriched in CGI regions, the
cancer signature was even more enriched in CGI regions
(Fisher’s exact test, P = 0.02). In the normal age-associated



Figure 5 (See legend on next page.)
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Figure 5 Characteristics of age-associated DNA methylation signature. (A) Age prediction using the age-associated normal DNAm signature.
Age was predicted with the normal signature using a multivariate linear regression after using a genetic algorithm to identify a feasible set of loci.
(B) Degrees of overlap with age-associated DNAm signatures identified in previous studies. Overlap percentages were calculated by the common
numbers divided by the smaller number of total loci in either study. The studies with only normal samples are orange; other studies including
disease samples are gray. (C, D) The fractions of hyper- (green) or hypomethylated (blue) CpG loci in the age-associated signatures in normal
(C) or cancer (D) according to genomic regions. The number on each bar indicates the count of the corresponding loci. P-value was calculated
by a chi-square test. (E, F) The hyper- (E) or hypomethylation (F) patterns according to age group of normal age-associated DNA loci in CGI
or non-CGI. Blue or green dotted lines show the linear regressions of median values of individual age groups using only hypo- (blue) or
hypermethylated (green) loci, respectively. Numbers below are the counts of loci considered for the corresponding cases. (G, H) Nucleotide
compositions of the sequences surrounding the hypo- (G) or hypermethylated loci (H) of normal age-associated DNAm signature. –log (P-value)
of the y axis was calculated by random selection tests representing overrepresentation for each base at each location of the surrounding CpG.
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signature, hypermethylated loci were enriched in CGI
regions (41 age-hypermethylated and 37 age-hypomethy-
lated), whereas hypomethylated loci were enriched in non-
CGIs (40 age-hypomethylated and 9 age-hypermethylated)
(Chi-square test, P = 0.0002; Figure 5C). Interestingly, the
cancer signature had only age-hypomethylated loci in
both CGI and non-CGI regions (Figure 5D). Similar re-
sults were also detected for gene-level DNAm patterns
(Additional file 2: Figure S8). We next checked the chan-
ging rates of DNA methylation in the normal signature
within CGI or non-CGI regions. Age-hypermethylated
loci increased more rapidly in CGI regions (Figure 5E).
In contrast, hypomethylated loci decreased more rapidly
in non-CGI regions (Figure 5F). The cancer signature of
only hypomethylated loci showed much smaller changes
with age than did the normal signature (Additional file 2:
Figure S9).
Next, we investigated the nucleotide composition

surrounding the 127 CpG loci in the normal signature
(Additional file 2: Figure S10A). The sequences surround-
ing the normal signature showed significant overrepre-
sentation of thymine (T) residues at −6, −3, +1, +6, +8,
and +10 bases from the CpG loci (10,000 random selec-
tion tests of all CpG loci in the platform, P = 0.031, 0.036,
0.008, 0.036, 0.002, and 0.002, respectively), adenine (A)
residues at +3 and +7 bases (P = 0.023, 0.035), and guan-
ine (G) residues at −1 base (P = 0.04). Interestingly, the
sequence motifs surrounding age-associated CpG loci
were quite different between hypermethylated and hypo-
methylated loci. Sequences surrounding age-hypomethy-
lated loci presented AT-rich sequences (Figure 5G),
whereas the sequences surrounding age-hypermethylated
loci were enriched for GC-rich sequences (Figure 5H);
these are also enriched in CGI regions [24]. These
phenomena were also observed in the cancer signature
(Additional file 2: Figure S10B).
Analysis of gene ontology descriptors for the age-

associated DNA methylation signature in normal samples
indicated that the aging-related terms such as regulation
of protein kinase activity (P = 0.01), metabolic processes
(P = 0.04), immune system processes (P = 0.04), and
neuron differentiation (P = 0.04) were significantly en-
riched in the CGI regions (Additional file 1: Table S5A).
Genes related to age-associated loci in non-CGI regions
(n = 48) also carried aging-related ontology terms includ-
ing protein maturation (P = 0.04), and negative regulation
of cell proliferation (P = 0.07) (Additional file 1: Table
S5B). In cancer, the aging-related terms such as neuron
apoptosis (P = 0.02) and muscle organ development (P =
0.03) were significantly enriched (Additional file 1: Table
S6). We compared the normal signature with bivalent
chromatin domain regions. Previously, human aging-
associated DNA hypermethylation was found to occur
preferentially at bivalent chromatin domains in ES cells
[25]. Interestingly, we found that our normal age-associ-
ated hypermethylated loci overlapped significantly with
the previously reported bivalent regions (P = 3.08E–31
using a Z-test of 10,000 random selection tests; Additional
file 2: Figure S11).

Disruption of age-associated DNA methylation signature
in cancer
For several of the 127 normal age-associated DNAm loci,
multiple CpG sites were identified in a single gene. For ex-
ample, CG13697378 (68285433 on chr1), CG09118625
(68285559 on chr1) and CG24871743 (68285238 on chr1)
are located in the DIRAS family, GTP-binding RAS-like 3
(DIRAS3) gene. DIRAS3 is known as a tumor-suppressor
gene that is expressed in normal ovarian or breast epithe-
lial cells, but is rarely expressed in tumors [26]. These
three loci are in CGI regions that show a positive correl-
ation between DNAm levels and age (R = 0.57, 0.62, or
0.67, respectively) in normal tissues (Figure 6A). In
cancer, however, no correlation with age that observed
and methylation levels were generally high regardless
of age. Interestingly, the age-associated DNAm increases
or decreases of the normal signature were aberrantly
accelerated in cancer samples, indicating that abnormal
acceleration in age-associated DNAm change might in-
duce tumorigenesis. In another example, CG19235307
(130642844 on chr3) and CG18303397 (130642825 on
chr3), which are in non-CGI regions, are situated in
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Figure 6 Disruption of age-associated DNA methylation signature in cancer. (A D) Plots of DNA methylation patterns of normal
age-associated loci affiliated with DIRAS3 (CG13697378, CG09118625, and CG24871743 in A), MBD4 (CG19235307 and CG18303397 in B), MYF5
(CG26207503 and CG21126707 in C), and PRR34 (CG26394940 and CG13269407 in D) in normal (blue) and cancer (red) samples. Blue or red lines
are the linear (or nonlinear) regression results for normal or cancer samples, respectively. (E) Plots of DNA methylation patterns of tumor
suppressor genes including SEMA3B, RRP22 and CDKN2B.
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MBD4, methyl-CpG-binding domain protein 4, which
is associated with histone-modifying and chromatin-
remodeling complexes [27]. These two loci showed a
negative correlation between DNAm levels and age in
normal tissues. However, the correlation with age disap-
peared in cancer samples and the DNAm levels of the
loci were aberrantly lower (Figure 6B). Similar phenom-
ena were also observed in the multiple age-associated
CpG loci in MYF5 (myogenic factor 5) (Figure 6C) and
PRR34 (Figure 6D).
Of the normal signature, eight genes were common

with the tumor suppressor genes and PTTG1 was
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common with the proto-oncogenes listed in the
UniProt Knowledgebase (http://www.uniprot.org/uniprot/;
see “Tumor related” columns in Additional file 1: Table S2)
[28]. The degree of overlap between the normal signature
and the tumor suppressor genes was significant (P = 0.02;
hypergeometric test). DNAm levels of some tumor suppres-
sor genes including RRP22 (CG16612562 located at
28042045 on chr22), CDKN2B (CG18979223 located at
21995769 on chr9), and DIRAS3 increased with age;
whereas those of SEMA3B (CG02657721 located at
50280835 on chr3) decreased (Figure 6A,E). Those tumor
suppressor genes also showed abnormal acceleration in
methylation changes in cancer samples.
C

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60

F
ra

ct
io

n

Number of direct interactions

1

**P-value = 0.0038

Random

Age-associated

Wilcoxon rank sum test
Z test

*
**

A

:CGIs
:non-CGIs

hypo- hyper-

Methyl

#proteins = 1163
#interactions =  12620

MYF5 (CG21126707) 
2-4-6-8-01-

C A C G T G C G A

2-4-6-8-01-

C A T G T C C T GMYF6 (CG26711820) 

E

Figure 7 Network characteristics and sequence conservation of the a
of age-associated DNA methylation genes in normal tissue. Blue or green n
indicate the interacting neighbors of the age-associated gene products. Re
CGIs (red) or non-CGIs (purple). Edges between nodes indicate the protein
numbers of interacting proteins. (B) The distributions of numbers of interac
all protein interactions combined (in blue), respectively. (C) The number of
age-associated DNA methylation signature is indicated by a red arrow. The
proteins with the same number of the age-associated genes. (D) The num
scores (>1.3) is indicated by a red arrow. The black curve indicates the back
of age-associated loci in MYF5 and MYF6.
Interaction network and sequence conservation analysis
of the age-associated DNA methylation signature
We examined the human protein interaction network
of the 127 normal age-associated loci, mapped to 122
unique genes (Figure 7A). For this human protein inter-
action network analysis, we integrated protein interac-
tions from a number of open databases (Methods). We
found that a protein interaction subnetwork that in-
cluded the first neighbors of 122 gene products under
the integrated network included 1163 proteins and
12,620 interactions between them. Analysis of the num-
ber of interacting neighbors revealed that the age-
associated gene products in the normal signature had
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relatively more interacting partners than the average for
all proteins in the prepared interaction network, and the
overall distributions differed significantly between them
(Wilcoxon rank-sum test, P = 0.0043; Figure 7B). Fur-
thermore, the 122 unique gene products tended not to
interact directly with each other: only one interaction
existed among the 122 gene products (Z test, P = 0.0038;
Figure 7C). This indicates that the age-associated gene
products cover a large portion of the human protein
interaction network. We also analyzed the DNA se-
quence conservation scores of the 127 CpG positions
using the average phyloP [29] (Figure 7D). The results
showed that 15 CpG positions (“Conserved CpG” in
Additional file 1: Table S2) had significantly higher con-
servation scores (average phyloP score > 1.3) and that
this number was significantly higher than random ex-
pectations (P = 3.56E–09 from a Z test using the phyloP
distribution of 10,000 random selection tests). Gene
ontology term analysis of the highly conserved loci
showed that aging-associated terms such as metabolic
processes (P = 1.40E–06), muscle system processes (P =
8.68E–05), and cell proliferation (P = 1.87E–02) were
enriched (Additional file 1: Table S7). Of highly con-
served loci, MYF5 and MYF6 are associated with myo-
genic regulation, which is related with a decrease of
muscle in mass, strength, and contraction in aging [30].
The sequences surrounding MYF5 and MYF6 in CGI are
enriched guanine and cytosine nucleotides (Figure 7E).

Conclusion
In this study, we extensively investigated the relation be-
tween DNAm and age from a large number of collected
samples from a range of diverse studies of normal and
cancer tissues. Using these samples and both linear and
nonlinear models, we identified tissue type-invariant
DNAm age-associated signatures for both healthy nor-
mal and cancer samples. We observed that the charac-
teristics of the genomic regions involved in the normal
age signature were quite different from those of the can-
cer signature, and there was no common age-associated
locus between them. The normal age signature was par-
ticularly enriched on the X chromosome and satisfactor-
ily predicted the chronological ages of samples of many
different tissue types. Moreover, the DNAm levels of the
normal signature approached the corresponding cancer
levels with age. Interaction network analysis showed that
normal age-associated gene products had relatively more
interacting partners and had a tendency not to interact
directly with each other. The genomic sequences of
these age-associated loci were also well conserved. The
age-associated DNAm increases or decreases of the nor-
mal signature were aberrantly accelerated in cancer sam-
ples. Although we could not completely address the
biological significance of these characteristics, these
findings can be used to address important questions in
developmental biology and cancer research.

Methods
DNA methylation profiles and data processing
We collected human normal or cancer DNA methylation
profiles from public databases including GEO (http://
www.ncbi.nlm.nih.gov/geo/) and TCGA (http://cancergen-
ome.nih.gov/). We limited the samples to those analyzed
with the Illumina Infinium HumanMethylation27 assay
to reduce bias between platforms, and excluded studies
with fewer than 10 samples and diseases other than
cancer. In total, we collected 1812 normal samples and
2181 cancer samples from 13 studies (Additional file 1:
Table S1).
To compare and integrate DNA methylation profiles

across studies, we downloaded the methylated (M) and
unmethylated (U) signal intensities for genomic DNA for
each individual study. Normalized DNA methylation levels
(β) were calculated as the ratio of signal from a methylated
intensity relative to the sum of both methylated and
unmethylated intensity; i.e., [M/(M +U)], where β ranges
continuously from 0 (unmethylated) to 1 (methylated).
For gene-level methylation levels, we averaged the DNAm
levels of corresponding loci to individual genes from the
Illumina Infinium HumanMethylation27 annotation file.

Analysis of age-associated DNA methylation signature
Linear regression analysis, with age as the response and
DNA methylation as the predictor, was performed separ-
ately for each CpG site in each individual study. We also
identified tissue type-invariant age-associated signatures
using nonlinear regression with second- and third-degree
polynomial models. All regression models were fitted
using the R function “lm”. The applied FDR correction
was calculated using the R function “p.adjust”. Note that
in the analysis of integrated samples, we removed noisy
samples that had less than 0.5 median correlation coeffi-
cients with all other samples. The same methods were
applied to the analysis of gene-level methylation patterns,
which were mapped using the Illumina annotation files
for the HumanMethylation27 platform.

Random selection and permutation test in the analysis of
individual studies
All random selection test and permutation test analyses
were conducted in R. Permutation P-values for each CpG
locus were calculated by assessing the number of signi-
ficantly age-associated sites for each study under 100
age-permutated data sets (Figure 2E). To check the sig-
nificance of the degree of overlap between study pairs,
we randomly selected the same number of age-associated
loci 10,000 times from all the CpG sites in the platform.
The P-values of the overlaps were calculated from the

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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distributions of the numbers of random overlaps between
study pairs (Figure 3C,D).
Generation of an age-prediction model
The age-prediction model was generated with a multi-
variate linear model approach based on the genetic algo-
rithm implemented in the R package “genalg” [31]. We
identified a suboptimal set of 20 CpG loci from the nor-
mal age signature using a genetic algorithm with a con-
ventional linear regression model. The correlation
degree in the R package was used to analyze the rela-
tionship between predicted and actual ages of samples.
Analysis of chromosome distribution
Using NCBI Human Genome (build 36.1) and the Illu-
mina annotation files for the HumanMethylation27 plat-
form, CpG loci were mapped to a chromosome. P-value
significances of the numbers of hypermethylated or
hypomethylated loci with age were assessed using hyper-
geometric tests for each chromosome.
Analysis of sequence motifs
Sequences of CpG loci from the Illumina annotation
files were selected to analyze the 20 base pairs surround-
ing each CpG dinucleotide in all 27 k probes. We calcu-
lated the proportions and degrees of significance of the
four types of nucleotides at each base compared with the
10,000 randomly selected sets using all 27 k probes. Logo
plots (Figure 5G,H and Additional file 2: Figure S10)
were illustrated using the R package “seqLogo” [32].
Analysis of network and sequence conservation
For human protein–protein interaction networks, we in-
tegrated information from well-known open databases,
including HPRD [33], BioGRID [34], IntAct [35], MINT
[36], Reactome [37] and iRefWeb [38] and the previous
result of Lee et al. [39]. A total of 136,489 interactions
among 14,216 human proteins were prepared. For the
network of the normal age signature, we chose the re-
lated gene products of the 127 age-associated loci. We
also included the proteins that directly interacted with
the age-associated gene products, resulting in 12,620 in-
teractions between 1163 human proteins. The network
was visualized using Cytoscape [40]. To identify the se-
quence conservation score of the normal age signature,
we downloaded the average phyloP scores from the
UCSC Genome Browser [29]. We used the average phyloP
scores. Fifteen of the 127 normal age-associated loci had
significantly higher conservation scores (phyloP > 1.3). To
check the significance of the number of conserved loci,
we randomly selected 127 phyloP scores 10,000 times for
a background distribution.
Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article and its additional files.
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